improve flexibility of user defined prediction dataframe
This commit is contained in:
@@ -245,7 +245,7 @@ class FreqaiDataDrawer:
|
||||
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
|
||||
|
||||
else:
|
||||
for label in dk.label_list:
|
||||
for label in pred_df.columns:
|
||||
mrv_df[label] = pred_df[label]
|
||||
if mrv_df[label].dtype == object:
|
||||
continue
|
||||
@@ -278,15 +278,16 @@ class FreqaiDataDrawer:
|
||||
# strat seems to feed us variable sized dataframes - and since we are trying to build our
|
||||
# own return array in the same shape, we need to figure out how the size has changed
|
||||
# and adapt our stored/returned info accordingly.
|
||||
length_difference = len(self.model_return_values[pair]) - len_df
|
||||
i = 0
|
||||
|
||||
if length_difference == 0:
|
||||
i = 1
|
||||
elif length_difference > 0:
|
||||
i = length_difference + 1
|
||||
# length_difference = len(self.model_return_values[pair]) - len_df
|
||||
# i = 0
|
||||
|
||||
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-i)
|
||||
# if length_difference == 0:
|
||||
# i = 1
|
||||
# elif length_difference > 0:
|
||||
# i = length_difference + 1
|
||||
|
||||
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-1)
|
||||
|
||||
if pair in self.historic_predictions:
|
||||
hp_df = self.historic_predictions[pair]
|
||||
@@ -296,7 +297,8 @@ class FreqaiDataDrawer:
|
||||
hp_df = pd.concat([hp_df, nan_df], ignore_index=True, axis=0)
|
||||
self.historic_predictions[pair] = hp_df[:-1]
|
||||
|
||||
for label in dk.label_list:
|
||||
# incase user adds additional "predictions" e.g. predict_proba output:
|
||||
for label in predictions.columns:
|
||||
df[label].iloc[-1] = predictions[label].iloc[-1]
|
||||
if df[label].dtype == object:
|
||||
continue
|
||||
@@ -318,11 +320,11 @@ class FreqaiDataDrawer:
|
||||
for key in df.keys():
|
||||
self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
|
||||
|
||||
if length_difference < 0:
|
||||
prepend_df = pd.DataFrame(
|
||||
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
|
||||
)
|
||||
df = pd.concat([prepend_df, df], axis=0)
|
||||
# if length_difference < 0:
|
||||
# prepend_df = pd.DataFrame(
|
||||
# np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
|
||||
# )
|
||||
# df = pd.concat([prepend_df, df], axis=0)
|
||||
|
||||
def attach_return_values_to_return_dataframe(
|
||||
self, pair: str, dataframe: DataFrame) -> DataFrame:
|
||||
@@ -343,7 +345,12 @@ class FreqaiDataDrawer:
|
||||
|
||||
dk.find_features(dataframe)
|
||||
|
||||
for label in dk.label_list:
|
||||
if self.freqai_info.get('predict_proba', []):
|
||||
full_labels = dk.label_list + self.freqai_info['predict_proba']
|
||||
else:
|
||||
full_labels = dk.label_list
|
||||
|
||||
for label in full_labels:
|
||||
dataframe[label] = 0
|
||||
dataframe[f"{label}_mean"] = 0
|
||||
dataframe[f"{label}_std"] = 0
|
||||
|
||||
Reference in New Issue
Block a user