improve flexibility of user defined prediction dataframe

This commit is contained in:
Robert Caulk
2022-08-06 13:51:19 +02:00
parent fdc82f8302
commit c172ce1011
6 changed files with 42 additions and 31 deletions

View File

@@ -245,7 +245,7 @@ class FreqaiDataDrawer:
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
else:
for label in dk.label_list:
for label in pred_df.columns:
mrv_df[label] = pred_df[label]
if mrv_df[label].dtype == object:
continue
@@ -278,15 +278,16 @@ class FreqaiDataDrawer:
# strat seems to feed us variable sized dataframes - and since we are trying to build our
# own return array in the same shape, we need to figure out how the size has changed
# and adapt our stored/returned info accordingly.
length_difference = len(self.model_return_values[pair]) - len_df
i = 0
if length_difference == 0:
i = 1
elif length_difference > 0:
i = length_difference + 1
# length_difference = len(self.model_return_values[pair]) - len_df
# i = 0
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-i)
# if length_difference == 0:
# i = 1
# elif length_difference > 0:
# i = length_difference + 1
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-1)
if pair in self.historic_predictions:
hp_df = self.historic_predictions[pair]
@@ -296,7 +297,8 @@ class FreqaiDataDrawer:
hp_df = pd.concat([hp_df, nan_df], ignore_index=True, axis=0)
self.historic_predictions[pair] = hp_df[:-1]
for label in dk.label_list:
# incase user adds additional "predictions" e.g. predict_proba output:
for label in predictions.columns:
df[label].iloc[-1] = predictions[label].iloc[-1]
if df[label].dtype == object:
continue
@@ -318,11 +320,11 @@ class FreqaiDataDrawer:
for key in df.keys():
self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
if length_difference < 0:
prepend_df = pd.DataFrame(
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
)
df = pd.concat([prepend_df, df], axis=0)
# if length_difference < 0:
# prepend_df = pd.DataFrame(
# np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
# )
# df = pd.concat([prepend_df, df], axis=0)
def attach_return_values_to_return_dataframe(
self, pair: str, dataframe: DataFrame) -> DataFrame:
@@ -343,7 +345,12 @@ class FreqaiDataDrawer:
dk.find_features(dataframe)
for label in dk.label_list:
if self.freqai_info.get('predict_proba', []):
full_labels = dk.label_list + self.freqai_info['predict_proba']
else:
full_labels = dk.label_list
for label in full_labels:
dataframe[label] = 0
dataframe[f"{label}_mean"] = 0
dataframe[f"{label}_std"] = 0

View File

@@ -342,7 +342,7 @@ class FreqaiDataKitchen:
:df: Dataframe of predictions to be denormalized
"""
for label in self.label_list:
for label in df.columns:
if df[label].dtype == object:
continue
df[label] = (
@@ -716,14 +716,16 @@ class FreqaiDataKitchen:
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
return weights
def append_predictions(self, predictions, do_predict, len_dataframe):
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
"""
Append backtest prediction from current backtest period to all previous periods
"""
append_df = DataFrame()
for label in self.label_list:
for label in predictions.columns:
append_df[label] = predictions[label]
if append_df[label].dtype == object:
continue
append_df[f"{label}_mean"] = self.data["labels_mean"][label]
append_df[f"{label}_std"] = self.data["labels_std"][label]
@@ -1009,7 +1011,7 @@ class FreqaiDataKitchen:
import scipy as spy
self.data["labels_mean"], self.data["labels_std"] = {}, {}
for label in self.label_list:
for label in self.data_dictionary["train_labels"].columns:
if self.data_dictionary["train_labels"][label].dtype == object:
continue
f = spy.stats.norm.fit(self.data_dictionary["train_labels"][label])

View File

@@ -221,7 +221,7 @@ class IFreqaiModel(ABC):
pred_df, do_preds = self.predict(dataframe_backtest, dk)
dk.append_predictions(pred_df, do_preds, len(dataframe_backtest))
dk.append_predictions(pred_df, do_preds)
dk.fill_predictions(dataframe)
@@ -543,15 +543,17 @@ class IFreqaiModel(ABC):
self.dd.historic_predictions[pair] = pred_df
hist_preds_df = self.dd.historic_predictions[pair]
for label in hist_preds_df.columns:
if hist_preds_df[label].dtype == object:
continue
hist_preds_df[f'{label}_mean'] = 0
hist_preds_df[f'{label}_std'] = 0
hist_preds_df['do_predict'] = 0
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
hist_preds_df['DI_values'] = 0
for label in dk.data['labels_mean']:
hist_preds_df[f'{label}_mean'] = 0
hist_preds_df[f'{label}_std'] = 0
for return_str in dk.data['extra_returns_per_train']:
hist_preds_df[return_str] = 0