Merge branch 'develop' into interface_ordertimeoutcallback

This commit is contained in:
Matthias
2020-02-21 20:35:07 +01:00
104 changed files with 3583 additions and 1065 deletions

View File

@@ -1,13 +1,27 @@
""" FreqTrade bot """
""" Freqtrade bot """
__version__ = 'develop'
if __version__ == 'develop':
try:
import subprocess
__version__ = 'develop-' + subprocess.check_output(
['git', 'log', '--format="%h"', '-n 1'],
stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
# from datetime import datetime
# last_release = subprocess.check_output(
# ['git', 'tag']
# ).decode('utf-8').split()[-1].split(".")
# # Releases are in the format "2020.1" - we increment the latest version for dev.
# prefix = f"{last_release[0]}.{int(last_release[1]) + 1}"
# dev_version = int(datetime.now().timestamp() // 1000)
# __version__ = f"{prefix}.dev{dev_version}"
# subprocess.check_output(
# ['git', 'log', '--format="%h"', '-n 1'],
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception:
# git not available, ignore
pass

View File

@@ -7,13 +7,16 @@ Note: Be careful with file-scoped imports in these subfiles.
as they are parsed on startup, nothing containing optional modules should be loaded.
"""
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.data_commands import start_download_data
from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data,
start_download_data)
from freqtrade.commands.deploy_commands import (start_create_userdir,
start_new_hyperopt,
start_new_strategy)
from freqtrade.commands.hyperopt_commands import (start_hyperopt_list,
start_hyperopt_show)
from freqtrade.commands.list_commands import (start_list_exchanges,
start_list_hyperopts,
start_list_markets,
start_list_strategies,
start_list_timeframes)

View File

@@ -6,8 +6,8 @@ from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional
from freqtrade import constants
from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS
from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
@@ -30,7 +30,9 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
@@ -43,12 +45,17 @@ ARGS_TEST_PAIRLIST = ["config", "quote_currencies", "print_one_column", "list_pa
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
ARGS_BUILD_CONFIG = ["config"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
"timeframes", "erase", "dataformat_ohlcv", "dataformat_trades"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
@@ -57,15 +64,20 @@ ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "ticker_interval"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable", "print_colorized",
"print_json", "hyperopt_list_no_details"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"hyperopt_list_min_trades", "hyperopt_list_max_trades",
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
"print_colorized", "print_json", "hyperopt_list_no_details"]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperopt_show_no_header"]
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"list-strategies", "hyperopt-list", "hyperopt-show", "plot-dataframe",
"plot-profit"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies",
"list-hyperopts", "hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
@@ -99,10 +111,23 @@ class Arguments:
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
# Allow no-config for certain commands (like downloading / plotting)
if ('config' in parsed_arg and parsed_arg.config is None and
((Path.cwd() / constants.DEFAULT_CONFIG).is_file() or
not ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED))):
parsed_arg.config = [constants.DEFAULT_CONFIG]
if ('config' in parsed_arg and parsed_arg.config is None):
conf_required = ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED)
if 'user_data_dir' in parsed_arg and parsed_arg.user_data_dir is not None:
user_dir = parsed_arg.user_data_dir
else:
# Default case
user_dir = 'user_data'
# Try loading from "user_data/config.json"
cfgfile = Path(user_dir) / DEFAULT_CONFIG
if cfgfile.is_file():
parsed_arg.config = [str(cfgfile)]
else:
# Else use "config.json".
cfgfile = Path.cwd() / DEFAULT_CONFIG
if cfgfile.is_file() or not conf_required:
parsed_arg.config = [DEFAULT_CONFIG]
return parsed_arg
@@ -130,11 +155,13 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_create_userdir, start_download_data,
from freqtrade.commands import (start_create_userdir, start_convert_data,
start_download_data,
start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_markets,
start_list_strategies, start_new_hyperopt,
start_new_strategy, start_list_timeframes,
start_list_exchanges, start_list_hyperopts,
start_list_markets, start_list_strategies,
start_list_timeframes, start_new_config,
start_new_hyperopt, start_new_strategy,
start_plot_dataframe, start_plot_profit,
start_backtesting, start_hyperopt, start_edge,
start_test_pairlist, start_trading)
@@ -177,6 +204,12 @@ class Arguments:
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# add new-config subcommand
build_config_cmd = subparsers.add_parser('new-config',
help="Create new config")
build_config_cmd.set_defaults(func=start_new_config)
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
@@ -198,6 +231,15 @@ class Arguments:
list_strategies_cmd.set_defaults(func=start_list_strategies)
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
# Add list-hyperopts subcommand
list_hyperopts_cmd = subparsers.add_parser(
'list-hyperopts',
help='Print available hyperopt classes.',
parents=[_common_parser],
)
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
@@ -251,6 +293,24 @@ class Arguments:
download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)
# Add convert-data subcommand
convert_data_cmd = subparsers.add_parser(
'convert-data',
help='Convert OHLCV data from one format to another.',
parents=[_common_parser],
)
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
self._build_args(optionlist=ARGS_CONVERT_DATA_OHLCV, parser=convert_data_cmd)
# Add convert-trade-data subcommand
convert_trade_data_cmd = subparsers.add_parser(
'convert-trade-data',
help='Convert trade-data from one format to another.',
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
# Add Plotting subcommand
plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe',

View File

@@ -0,0 +1,193 @@
import logging
from pathlib import Path
from typing import Any, Dict
from questionary import Separator, prompt
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.exchange import available_exchanges, MAP_EXCHANGE_CHILDCLASS
from freqtrade.misc import render_template
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def validate_is_int(val):
try:
_ = int(val)
return True
except Exception:
return False
def validate_is_float(val):
try:
_ = float(val)
return True
except Exception:
return False
def ask_user_overwrite(config_path: Path) -> bool:
questions = [
{
"type": "confirm",
"name": "overwrite",
"message": f"File {config_path} already exists. Overwrite?",
"default": False,
},
]
answers = prompt(questions)
return answers['overwrite']
def ask_user_config() -> Dict[str, Any]:
"""
Ask user a few questions to build the configuration.
Interactive questions built using https://github.com/tmbo/questionary
:returns: Dict with keys to put into template
"""
questions = [
{
"type": "confirm",
"name": "dry_run",
"message": "Do you want to enable Dry-run (simulated trades)?",
"default": True,
},
{
"type": "text",
"name": "stake_currency",
"message": "Please insert your stake currency:",
"default": 'BTC',
},
{
"type": "text",
"name": "stake_amount",
"message": "Please insert your stake amount:",
"default": "0.01",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
},
{
"type": "text",
"name": "max_open_trades",
"message": f"Please insert max_open_trades (Integer or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "3",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_int(val)
},
{
"type": "text",
"name": "ticker_interval",
"message": "Please insert your ticker interval:",
"default": "5m",
},
{
"type": "text",
"name": "fiat_display_currency",
"message": "Please insert your display Currency (for reporting):",
"default": 'USD',
},
{
"type": "select",
"name": "exchange_name",
"message": "Select exchange",
"choices": [
"binance",
"binanceje",
"binanceus",
"bittrex",
"kraken",
Separator(),
"other",
],
},
{
"type": "autocomplete",
"name": "exchange_name",
"message": "Type your exchange name (Must be supported by ccxt)",
"choices": available_exchanges(),
"when": lambda x: x["exchange_name"] == 'other'
},
{
"type": "password",
"name": "exchange_key",
"message": "Insert Exchange Key",
"when": lambda x: not x['dry_run']
},
{
"type": "password",
"name": "exchange_secret",
"message": "Insert Exchange Secret",
"when": lambda x: not x['dry_run']
},
{
"type": "confirm",
"name": "telegram",
"message": "Do you want to enable Telegram?",
"default": False,
},
{
"type": "password",
"name": "telegram_token",
"message": "Insert Telegram token",
"when": lambda x: x['telegram']
},
{
"type": "text",
"name": "telegram_chat_id",
"message": "Insert Telegram chat id",
"when": lambda x: x['telegram']
},
]
answers = prompt(questions)
if not answers:
# Interrupted questionary sessions return an empty dict.
raise OperationalException("User interrupted interactive questions.")
return answers
def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
"""
Applies selections to the template and writes the result to config_path
:param config_path: Path object for new config file. Should not exist yet
:param selecions: Dict containing selections taken by the user.
"""
from jinja2.exceptions import TemplateNotFound
try:
exchange_template = MAP_EXCHANGE_CHILDCLASS.get(
selections['exchange_name'], selections['exchange_name'])
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_{exchange_template}.j2",
arguments=selections
)
except TemplateNotFound:
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_generic.j2",
arguments=selections
)
config_text = render_template(templatefile='base_config.json.j2',
arguments=selections)
logger.info(f"Writing config to `{config_path}`.")
config_path.write_text(config_text)
def start_new_config(args: Dict[str, Any]) -> None:
"""
Create a new strategy from a template
Asking the user questions to fill out the templateaccordingly.
"""
config_path = Path(args['config'][0])
if config_path.exists():
overwrite = ask_user_overwrite(config_path)
if overwrite:
config_path.unlink()
else:
raise OperationalException(
f"Configuration file `{config_path}` already exists. "
"Please delete it or use a different configuration file name.")
selections = ask_user_config()
deploy_new_config(config_path, selections)

View File

@@ -59,7 +59,8 @@ AVAILABLE_CLI_OPTIONS = {
),
"config": Arg(
'-c', '--config',
help=f'Specify configuration file (default: `{constants.DEFAULT_CONFIG}`). '
help=f'Specify configuration file (default: `userdir/{constants.DEFAULT_CONFIG}` '
f'or `config.json` whichever exists). '
f'Multiple --config options may be used. '
f'Can be set to `-` to read config from stdin.',
action='append',
@@ -256,7 +257,7 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
'Different functions can generate completely different results, '
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss.'
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
'(default: `%(default)s`).',
metavar='NAME',
default=constants.DEFAULT_HYPEROPT_LOSS,
@@ -332,6 +333,30 @@ AVAILABLE_CLI_OPTIONS = {
'desired timeframe as specified as --timeframes/-t.',
action='store_true',
),
"format_from": Arg(
'--format-from',
help='Source format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"format_to": Arg(
'--format-to',
help='Destination format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"dataformat_ohlcv": Arg(
'--data-format-ohlcv',
help='Storage format for downloaded ohlcv data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='json'
),
"dataformat_trades": Arg(
'--data-format-trades',
help='Storage format for downloaded trades data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='jsongz'
),
"exchange": Arg(
'--exchange',
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
@@ -398,6 +423,54 @@ AVAILABLE_CLI_OPTIONS = {
help='Select only best epochs.',
action='store_true',
),
"hyperopt_list_min_trades": Arg(
'--min-trades',
help='Select epochs with more than INT trades.',
type=check_int_positive,
metavar='INT',
),
"hyperopt_list_max_trades": Arg(
'--max-trades',
help='Select epochs with less than INT trades.',
type=check_int_positive,
metavar='INT',
),
"hyperopt_list_min_avg_time": Arg(
'--min-avg-time',
help='Select epochs on above average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_time": Arg(
'--max-avg-time',
help='Select epochs on under average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_avg_profit": Arg(
'--min-avg-profit',
help='Select epochs on above average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_profit": Arg(
'--max-avg-profit',
help='Select epochs on below average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_total_profit": Arg(
'--min-total-profit',
help='Select epochs on above total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_total_profit": Arg(
'--max-total-profit',
help='Select epochs on below total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_no_details": Arg(
'--no-details',
help='Do not print best epoch details.',

View File

@@ -5,6 +5,8 @@ from typing import Any, Dict, List
import arrow
from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.converter import (convert_ohlcv_format,
convert_trades_format)
from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
@@ -37,24 +39,32 @@ def start_download_data(args: Dict[str, Any]) -> None:
pairs_not_available: List[str] = []
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
# Manual validations of relevant settings
exchange.validate_pairs(config['pairs'])
for timeframe in config['timeframes']:
exchange.validate_timeframes(timeframe)
try:
if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=config['datadir'],
timerange=timerange, erase=bool(config.get("erase")))
timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange,
erase=bool(config.get("erase")))
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else:
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange,
erase=bool(config.get("erase")))
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_ohlcv'])
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
@@ -63,3 +73,18 @@ def start_download_data(args: Dict[str, Any]) -> None:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
Convert data from one format to another
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])
else:
convert_trades_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])

View File

@@ -6,7 +6,7 @@ from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGY
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template
from freqtrade.state import RunMode
@@ -57,7 +57,7 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGY / (args["strategy"] + ".py")
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args["strategy"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "

94
freqtrade/commands/hyperopt_commands.py Normal file → Executable file
View File

@@ -19,13 +19,24 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
only_best = config.get('hyperopt_list_best', False)
only_profitable = config.get('hyperopt_list_profitable', False)
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
no_details = config.get('hyperopt_list_no_details', False)
no_header = False
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
@@ -33,7 +44,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
trials = _hyperopt_filter_trials(trials, filteroptions)
# TODO: fetch the interval for epochs to print from the cli option
epoch_start, epoch_stop = 0, None
@@ -44,7 +55,8 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
try:
# Human-friendly indexes used here (starting from 1)
for val in trials[epoch_start:epoch_stop]:
Hyperopt.print_results_explanation(val, total_epochs, not only_best, print_colorized)
Hyperopt.print_results_explanation(val, total_epochs,
not filteroptions['only_best'], print_colorized)
except KeyboardInterrupt:
print('User interrupted..')
@@ -63,8 +75,18 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
only_best = config.get('hyperopt_list_best', False)
only_profitable = config.get('hyperopt_list_profitable', False)
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] /
@@ -74,7 +96,7 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
trials = _hyperopt_filter_trials(trials, filteroptions)
trials_epochs = len(trials)
n = config.get('hyperopt_show_index', -1)
@@ -97,18 +119,66 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
header_str="Epoch details")
def _hyperopt_filter_trials(trials: List, only_best: bool, only_profitable: bool) -> List:
def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
"""
if only_best:
if filteroptions['only_best']:
trials = [x for x in trials if x['is_best']]
if only_profitable:
if filteroptions['only_profitable']:
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
if filteroptions['filter_min_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
if filteroptions['filter_max_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
if filteroptions['filter_min_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
if filteroptions['filter_min_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
> filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
< filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
logger.info(f"{len(trials)} " +
("best " if only_best else "") +
("profitable " if only_profitable else "") +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
return trials

View File

@@ -3,13 +3,15 @@ import logging
import sys
from collections import OrderedDict
from pathlib import Path
from typing import Any, Dict
from typing import Any, Dict, List
from colorama import init as colorama_init
from colorama import Fore, Style
import rapidjson
from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_STRATEGY
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
market_is_active, symbol_is_pair)
@@ -36,22 +38,63 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}")
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
if print_colorized:
colorama_init(autoreset=True)
red = Fore.RED
yellow = Fore.YELLOW
reset = Style.RESET_ALL
else:
red = ''
yellow = ''
reset = ''
names = [s['name'] for s in objs]
objss_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].name,
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
} for s in objs]
print(tabulate(objss_to_print, headers='keys', tablefmt='pipe'))
def start_list_strategies(args: Dict[str, Any]) -> None:
"""
Print Strategies available in a directory
Print files with Strategy custom classes available in the directory
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGY))
strategies = StrategyResolver.search_all_objects(directory)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
strategies = sorted(strategies, key=lambda x: x['name'])
strats_to_print = [{'name': s['name'], 'location': s['location'].name} for s in strategies]
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategies]))
print('\n'.join([s['name'] for s in strategy_objs]))
else:
print(tabulate(strats_to_print, headers='keys', tablefmt='pipe'))
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_hyperopts(args: Dict[str, Any]) -> None:
"""
Print files with HyperOpt custom classes available in the directory
"""
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('hyperopt_path', config['user_data_dir'] / USERPATH_HYPEROPTS))
hyperopt_objs = HyperOptResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
hyperopt_objs = sorted(hyperopt_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in hyperopt_objs]))
else:
_print_objs_tabular(hyperopt_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None:

View File

@@ -310,6 +310,30 @@ class Configuration:
self._args_to_config(config, argname='hyperopt_list_profitable',
logstring='Parameter --profitable detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_trades',
logstring='Parameter --min-trades detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_trades',
logstring='Parameter --max-trades detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_avg_time',
logstring='Parameter --min-avg-time detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_avg_time',
logstring='Parameter --max-avg-time detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_avg_profit',
logstring='Parameter --min-avg-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_avg_profit',
logstring='Parameter --max-avg-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_total_profit',
logstring='Parameter --min-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_total_profit',
logstring='Parameter --max-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_no_details',
logstring='Parameter --no-details detected: {}')
@@ -340,9 +364,16 @@ class Configuration:
self._args_to_config(config, argname='days',
logstring='Detected --days: {}')
self._args_to_config(config, argname='download_trades',
logstring='Detected --dl-trades: {}')
self._args_to_config(config, argname='dataformat_ohlcv',
logstring='Using "{}" to store OHLCV data.')
self._args_to_config(config, argname='dataformat_trades',
logstring='Using "{}" to store trades data.')
def _process_runmode(self, config: Dict[str, Any]) -> None:
if not self.runmode:

View File

@@ -19,19 +19,22 @@ ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'PrecisionFilter', 'PriceFilter', 'SpreadFilter']
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
DRY_RUN_WALLET = 1000
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGY = 'strategies'
USERPATH_STRATEGIES = 'strategies'
USERPATH_NOTEBOOKS = 'notebooks'
# Soure files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGY,
'sample_strategy.py': USERPATH_STRATEGIES,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': 'notebooks',
'strategy_analysis_example.ipynb': USERPATH_NOTEBOOKS,
}
SUPPORTED_FIAT = [
@@ -77,7 +80,7 @@ CONF_SCHEMA = {
'amend_last_stake_amount': {'type': 'boolean', 'default': False},
'last_stake_amount_min_ratio': {
'type': 'number', 'minimum': 0.0, 'maximum': 1.0, 'default': 0.5
},
},
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'},
'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET},
@@ -190,7 +193,9 @@ CONF_SCHEMA = {
'properties': {
'enabled': {'type': 'boolean'},
'webhookbuy': {'type': 'object'},
'webhookbuycancel': {'type': 'object'},
'webhooksell': {'type': 'object'},
'webhooksellcancel': {'type': 'object'},
'webhookstatus': {'type': 'object'},
},
},
@@ -214,11 +219,22 @@ CONF_SCHEMA = {
'forcebuy_enable': {'type': 'boolean'},
'internals': {
'type': 'object',
'default': {},
'properties': {
'process_throttle_secs': {'type': 'integer'},
'interval': {'type': 'integer'},
'sd_notify': {'type': 'boolean'},
}
},
'dataformat_ohlcv': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
},
'dataformat_trades': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
}
},
'definitions': {
@@ -289,9 +305,14 @@ SCHEMA_TRADE_REQUIRED = [
'unfilledtimeout',
'stoploss',
'minimal_roi',
'internals',
'dataformat_ohlcv',
'dataformat_trades',
]
SCHEMA_MINIMAL_REQUIRED = [
'exchange',
'dry_run',
'dataformat_ohlcv',
'dataformat_trades',
]

View File

@@ -2,10 +2,13 @@
Functions to convert data from one format to another
"""
import logging
from datetime import datetime, timezone
from typing import Any, Dict
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
logger = logging.getLogger(__name__)
@@ -24,7 +27,7 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
cols = DEFAULT_DATAFRAME_COLUMNS
frame = DataFrame(ticker, columns=cols)
frame['date'] = to_datetime(frame['date'],
@@ -37,9 +40,29 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
# and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
@@ -48,13 +71,13 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
})
# eliminate partial candle
if drop_incomplete:
frame.drop(frame.tail(1).index, inplace=True)
data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
if fill_missing:
return ohlcv_fill_up_missing_data(frame, timeframe, pair)
return ohlcv_fill_up_missing_data(data, timeframe, pair)
else:
return frame
return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
@@ -92,8 +115,26 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
return df
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
TODO: This should get a dedicated test
Gets order book list, returns dataframe with below format per suggested by creslin
-------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum
@@ -116,12 +157,13 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
return frame
def trades_to_ohlcv(trades: list, timeframe: str) -> list:
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
"""
Converts trades list to ohlcv list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to
:return: ohlcv timeframe as list (as returned by ccxt.fetch_ohlcv)
:return: ohlcv Dataframe.
"""
from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe)
@@ -131,8 +173,68 @@ def trades_to_ohlcv(trades: list, timeframe: str) -> list:
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new['date'] = df_new.index.astype("int64") // 10 ** 6
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
columns = ["date", "open", "high", "low", "close", "volume"]
return list(zip(*[df_new[x].values.tolist() for x in columns]))
return df_new[DEFAULT_DATAFRAME_COLUMNS]
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert trades from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
if 'pairs' not in config:
config['pairs'] = src.trades_get_pairs(config['datadir'])
logger.info(f"Converting trades for {config['pairs']}")
for pair in config['pairs']:
data = src.trades_load(pair=pair)
logger.info(f"Converting {len(data)} trades for {pair}")
trg.trades_store(pair, data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source Trade data for {pair}.")
src.trades_purge(pair=pair)
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert ohlcv from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('ticker_interval')])
logger.info(f"Converting OHLCV for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
# Check timeframes or fall back to ticker_interval.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting OHLCV for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0)
logger.info(f"Converting {len(data)} candles for {pair}")
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe)

View File

@@ -0,0 +1,14 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
from .history_utils import (convert_trades_to_ohlcv, # noqa: F401
get_timerange, load_data, load_pair_history,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data,
validate_backtest_data)
from .idatahandler import get_datahandler # noqa: F401

View File

@@ -1,138 +1,31 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
import logging
import operator
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple
import arrow
from pandas import DataFrame
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (Exchange, timeframe_to_minutes,
timeframe_to_seconds)
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
"""
Trim tickerlist based on given timerange
"""
if not tickerlist:
return tickerlist
start_index = 0
stop_index = len(tickerlist)
if timerange.starttype == 'date':
while (start_index < len(tickerlist) and
tickerlist[start_index][0] < timerange.startts * 1000):
start_index += 1
if timerange.stoptype == 'date':
while (stop_index > 0 and
tickerlist[stop_index-1][0] > timerange.stopts * 1000):
stop_index -= 1
if start_index > stop_index:
raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect')
return tickerlist[start_index:stop_index]
def trim_dataframe(df: DataFrame, timerange: TimeRange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def load_tickerdata_file(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tickerlist or None if unsuccessful
"""
filename = pair_data_filename(datadir, pair, timeframe)
pairdata = misc.file_load_json(filename)
if not pairdata:
return []
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
return pairdata
def store_tickerdata_file(datadir: Path, pair: str,
timeframe: str, data: list, is_zip: bool = False) -> None:
"""
Stores tickerdata to file
"""
filename = pair_data_filename(datadir, pair, timeframe)
misc.file_dump_json(filename, data, is_zip=is_zip)
def load_trades_file(datadir: Path, pair: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tradelist or empty list if unsuccesful
"""
filename = pair_trades_filename(datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def store_trades_file(datadir: Path, pair: str,
data: list, is_zip: bool = True) -> None:
"""
Stores tickerdata to file
"""
filename = pair_trades_filename(datadir, pair)
misc.file_dump_json(filename, data, is_zip=is_zip)
def _validate_pairdata(pair: str, pairdata: List[Dict], timerange: TimeRange) -> None:
if timerange.starttype == 'date' and pairdata[0][0] > timerange.startts * 1000:
logger.warning('Missing data at start for pair %s, data starts at %s',
pair, arrow.get(pairdata[0][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
if timerange.stoptype == 'date' and pairdata[-1][0] < timerange.stopts * 1000:
logger.warning('Missing data at end for pair %s, data ends at %s',
pair, arrow.get(pairdata[-1][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
def load_pair_history(pair: str,
timeframe: str,
datadir: Path,
datadir: Path, *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
) -> DataFrame:
"""
Load cached ticker history for the given pair.
@@ -140,39 +33,34 @@ def load_pair_history(pair: str,
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param datadir: Path to the data storage location.
:param data_format: Format of the data. Ignored if data_handler is set.
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param data_handler: Initialized data-handler to use.
Will be initialized from data_format if not set
:return: DataFrame with ohlcv data, or empty DataFrame
"""
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
data_handler = get_datahandler(datadir, data_format, data_handler)
pairdata = load_tickerdata_file(datadir, pair, timeframe, timerange=timerange_startup)
if pairdata:
if timerange_startup:
_validate_pairdata(pair, pairdata, timerange_startup)
return parse_ticker_dataframe(pairdata, timeframe, pair=pair,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete)
else:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return DataFrame()
return data_handler.ohlcv_load(pair=pair,
timeframe=timeframe,
timerange=timerange,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
)
def load_data(datadir: Path,
timeframe: str,
pairs: List[str],
pairs: List[str], *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False
fail_without_data: bool = False,
data_format: str = 'json',
) -> Dict[str, DataFrame]:
"""
Load ticker history data for a list of pairs.
@@ -184,17 +72,22 @@ def load_data(datadir: Path,
:param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
:param data_format: Data format which should be used. Defaults to json
:return: dict(<pair>:<Dataframe>)
"""
result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...')
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles)
startup_candles=startup_candles,
data_handler=data_handler
)
if not hist.empty:
result[pair] = hist
@@ -207,6 +100,7 @@ def refresh_data(datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: str = None,
timerange: Optional[TimeRange] = None,
) -> None:
"""
@@ -218,70 +112,50 @@ def refresh_data(datadir: Path,
:param exchange: Exchange object
:param timerange: Limit data to be loaded to this timerange
"""
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
_download_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
exchange=exchange)
exchange=exchange, data_handler=data_handler)
def pair_data_filename(datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-{timeframe}.json')
return filename
def pair_trades_filename(datadir: Path, pair: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-trades.json.gz')
return filename
def _load_cached_data_for_updating(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]:
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
data_handler: IDataHandler) -> Tuple[DataFrame, Optional[int]]:
"""
Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be
downloaded.
If that's the case then what's available should be completely overwritten.
Only used by download_pair_history().
Otherwise downloads always start at the end of the available data to avoid data gaps.
Note: Only used by download_pair_history().
"""
since_ms = None
# user sets timerange, so find the start time
start = None
if timerange:
if timerange.starttype == 'date':
since_ms = timerange.startts * 1000
elif timerange.stoptype == 'line':
num_minutes = timerange.stopts * timeframe_to_minutes(timeframe)
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# TODO: convert to date for conversion
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
# read the cached file
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = load_tickerdata_file(datadir, pair, timeframe)
# remove the last item, could be incomplete candle
if data:
data.pop()
else:
data = []
if data:
if since_ms and since_ms < data[0][0]:
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
timerange=None, fill_missing=False,
drop_incomplete=True, warn_no_data=False)
if not data.empty:
if start and start < data.iloc[0]['date']:
# Earlier data than existing data requested, redownload all
data = []
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else:
# a part of the data was already downloaded, so download unexist data only
since_ms = data[-1][0] + 1
start = data.iloc[-1]['date']
return (data, since_ms)
start_ms = int(start.timestamp() * 1000) if start else None
return data, start_ms
def _download_pair_history(datadir: Path,
exchange: Exchange,
pair: str,
pair: str, *,
timeframe: str = '5m',
timerange: Optional[TimeRange] = None) -> bool:
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler = None) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
@@ -295,16 +169,22 @@ def _download_pair_history(datadir: Path,
:param timerange: range of time to download
:return: bool with success state
"""
data_handler = get_datahandler(datadir, data_handler=data_handler)
try:
logger.info(
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'and store in {datadir}.'
)
data, since_ms = _load_cached_data_for_updating(datadir, pair, timeframe, timerange)
# data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
data_handler=data_handler)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair,
@@ -313,12 +193,20 @@ def _download_pair_history(datadir: Path,
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000
)
data.extend(new_data)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
if data.empty:
data = new_dataframe
else:
data = data.append(new_dataframe)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
store_tickerdata_file(datadir, pair, timeframe, data=data)
data_handler.ohlcv_store(pair, timeframe, data=data)
return True
except Exception as e:
@@ -331,13 +219,14 @@ def _download_pair_history(datadir: Path,
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
datadir: Path, timerange: Optional[TimeRange] = None,
erase: bool = False) -> List[str]:
erase: bool = False, data_format: str = None) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
@@ -345,23 +234,23 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
continue
for timeframe in timeframes:
dl_file = pair_data_filename(datadir, pair, timeframe)
if erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
dl_file.unlink()
if erase:
if data_handler.ohlcv_purge(pair, timeframe):
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
_download_pair_history(datadir=datadir, exchange=exchange,
pair=pair, timeframe=str(timeframe),
timerange=timerange)
timerange=timerange, data_handler=data_handler)
return pairs_not_available
def _download_trades_history(datadir: Path,
exchange: Exchange,
pair: str,
timerange: Optional[TimeRange] = None) -> bool:
def _download_trades_history(exchange: Exchange,
pair: str, *,
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler
) -> bool:
"""
Download trade history from the exchange.
Appends to previously downloaded trades data.
@@ -370,7 +259,7 @@ def _download_trades_history(datadir: Path,
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
trades = load_trades_file(datadir, pair)
trades = data_handler.trades_load(pair)
from_id = trades[-1]['id'] if trades else None
@@ -385,7 +274,7 @@ def _download_trades_history(datadir: Path,
from_id=from_id,
)
trades.extend(new_trades[1])
store_trades_file(datadir, pair, trades)
data_handler.trades_store(pair, data=trades)
logger.debug("New Start: %s", trades[0]['datetime'])
logger.debug("New End: %s", trades[-1]['datetime'])
@@ -401,47 +290,52 @@ def _download_trades_history(datadir: Path,
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, erase: bool = False) -> List[str]:
timerange: TimeRange, erase: bool = False,
data_format: str = 'jsongz') -> List[str]:
"""
Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format=data_format)
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
dl_file = pair_trades_filename(datadir, pair)
if erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}.')
dl_file.unlink()
if erase:
if data_handler.trades_purge(pair):
logger.info(f'Deleting existing data for pair {pair}.')
logger.info(f'Downloading trades for pair {pair}.')
_download_trades_history(datadir=datadir, exchange=exchange,
_download_trades_history(exchange=exchange,
pair=pair,
timerange=timerange)
timerange=timerange,
data_handler=data_handler)
return pairs_not_available
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
datadir: Path, timerange: TimeRange, erase: bool = False) -> None:
datadir: Path, timerange: TimeRange, erase: bool = False,
data_format_ohlcv: str = 'json',
data_format_trades: str = 'jsongz') -> None:
"""
Convert stored trades data to ohlcv data
"""
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
for pair in pairs:
trades = load_trades_file(datadir, pair)
trades = data_handler_trades.trades_load(pair)
for timeframe in timeframes:
ohlcv_file = pair_data_filename(datadir, pair, timeframe)
if erase and ohlcv_file.exists():
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
ohlcv_file.unlink()
if erase:
if data_handler_ohlcv.ohlcv_purge(pair, timeframe):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv
store_tickerdata_file(datadir, pair, timeframe, data=ohlcv)
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv)
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:

View File

@@ -0,0 +1,220 @@
"""
Abstract datahandler interface.
It's subclasses handle and storing data from disk.
"""
import logging
from abc import ABC, abstractclassmethod, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, List, Optional, Type
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
from freqtrade.exchange import timeframe_to_seconds
logger = logging.getLogger(__name__)
class IDataHandler(ABC):
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@abstractclassmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
@abstractmethod
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
@abstractmethod
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
@abstractmethod
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
@abstractmethod
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
@abstractclassmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
@abstractmethod
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
@abstractmethod
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
def ohlcv_load(self, pair, timeframe: str,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
warn_no_data: bool = True
) -> DataFrame:
"""
Load cached ticker history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange
:param fill_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param warn_no_data: Log a warning message when no data is found
:return: DataFrame with ohlcv data, or empty DataFrame
"""
# Fix startup period
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(pair, timeframe,
timerange=timerange_startup)
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
if timerange_startup:
self._validate_pairdata(pair, pairdf, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
# incomplete candles should only be dropped if we didn't trim the end beforehand.
return clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
:param timerange: Timerange specified for start and end dates
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
logger.warning(f"Missing data at start for pair {pair}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
logger.warning(f"Missing data at end for pair {pair}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
"""
Get datahandler class.
Could be done using Resolvers, but since this may be called often and resolvers
are rather expensive, doing this directly should improve performance.
:param datatype: datatype to use.
:return: Datahandler class
"""
if datatype == 'json':
from .jsondatahandler import JsonDataHandler
return JsonDataHandler
elif datatype == 'jsongz':
from .jsondatahandler import JsonGzDataHandler
return JsonGzDataHandler
else:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
"""
:param datadir: Folder to save data
:data_format: dataformat to use
:data_handler: returns this datahandler if it exists or initializes a new one
"""
if not data_handler:
HandlerClass = get_datahandlerclass(data_format or 'json')
data_handler = HandlerClass(datadir)
return data_handler

View File

@@ -0,0 +1,177 @@
import re
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
from pandas import DataFrame, read_json, to_datetime
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from .idatahandler import IDataHandler
class JsonDataHandler(IDataHandler):
_use_zip = False
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.json)', p.name)
for p in datadir.glob(f"*{timeframe}.{cls._get_file_extension()}")]
# Check if regex found something and only return these results
return [match[0].replace('_', '/') for match in _tmp if match]
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
# Reset index, select only appropriate columns and save as json
_data.reset_index(drop=True).loc[:, self._columns].to_json(
filename, orient="values",
compression='gzip' if self._use_zip else None)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if not filename.exists():
return DataFrame(columns=self._columns)
pairdata = read_json(filename, orient='values')
pairdata.columns = self._columns
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if filename.exists():
filename.unlink()
return True
return False
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
raise NotImplementedError()
@classmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
# Check if regex found something and only return these results to avoid exceptions.
return [match[0].replace('_', '/') for match in _tmp if match]
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
filename = self._pair_trades_filename(self._datadir, pair)
misc.file_dump_json(filename, data, is_zip=self._use_zip)
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
raise NotImplementedError()
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
# TODO: respect timerange ...
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
filename = self._pair_trades_filename(self._datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_trades_filename(self._datadir, pair)
if filename.exists():
filename.unlink()
return True
return False
@classmethod
def _pair_data_filename(cls, datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-{timeframe}.{cls._get_file_extension()}')
return filename
@classmethod
def _get_file_extension(cls):
return "json.gz" if cls._use_zip else "json"
@classmethod
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
return filename
class JsonGzDataHandler(JsonDataHandler):
_use_zip = True

View File

@@ -110,6 +110,7 @@ class Edge:
timeframe=self.strategy.ticker_interval,
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
if not data:

View File

@@ -1,18 +1,20 @@
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS # noqa: F401
from freqtrade.exchange.exchange import Exchange # noqa: F401
from freqtrade.exchange.exchange import (get_exchange_bad_reason, # noqa: F401
# flake8: noqa: F401
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
from freqtrade.exchange.exchange import (get_exchange_bad_reason,
is_exchange_bad,
is_exchange_known_ccxt,
is_exchange_officially_supported,
ccxt_exchanges,
available_exchanges)
from freqtrade.exchange.exchange import (timeframe_to_seconds, # noqa: F401
from freqtrade.exchange.exchange import (timeframe_to_seconds,
timeframe_to_minutes,
timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date)
from freqtrade.exchange.exchange import (market_is_active, # noqa: F401
from freqtrade.exchange.exchange import (market_is_active,
symbol_is_pair)
from freqtrade.exchange.kraken import Kraken # noqa: F401
from freqtrade.exchange.binance import Binance # noqa: F401
from freqtrade.exchange.bibox import Bibox # noqa: F401
from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.ftx import Ftx

14
freqtrade/exchange/ftx.py Normal file
View File

@@ -0,0 +1,14 @@
""" FTX exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Ftx(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1500,
}

View File

@@ -235,7 +235,7 @@ class FreqtradeBot:
return trades_created
def get_buy_rate(self, pair: str, tick: Dict = None) -> float:
def get_buy_rate(self, pair: str, refresh: bool, tick: Dict = None) -> float:
"""
Calculates bid target between current ask price and last price
:return: float: Price
@@ -254,7 +254,7 @@ class FreqtradeBot:
else:
if not tick:
logger.info('Using Last Ask / Last Price')
ticker = self.exchange.fetch_ticker(pair)
ticker = self.exchange.fetch_ticker(pair, refresh)
else:
ticker = tick
if ticker['ask'] < ticker['last']:
@@ -405,7 +405,7 @@ class FreqtradeBot:
stake_amount = self.get_trade_stake_amount(pair)
if not stake_amount:
logger.debug("Stake amount is 0, ignoring possible trade for {pair}.")
logger.debug(f"Stake amount is 0, ignoring possible trade for {pair}.")
return False
logger.info(f"Buy signal found: about create a new trade with stake_amount: "
@@ -415,10 +415,12 @@ class FreqtradeBot:
if ((bid_check_dom.get('enabled', False)) and
(bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
if self._check_depth_of_market_buy(pair, bid_check_dom):
logger.info(f'Executing Buy for {pair}.')
return self.execute_buy(pair, stake_amount)
else:
return False
logger.info(f'Executing Buy for {pair}')
return self.execute_buy(pair, stake_amount)
else:
return False
@@ -451,7 +453,7 @@ class FreqtradeBot:
"""
Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY
:return: None
:return: True if a buy order is created, false if it fails.
"""
time_in_force = self.strategy.order_time_in_force['buy']
@@ -459,7 +461,7 @@ class FreqtradeBot:
buy_limit_requested = price
else:
# Calculate price
buy_limit_requested = self.get_buy_rate(pair)
buy_limit_requested = self.get_buy_rate(pair, True)
min_stake_amount = self._get_min_pair_stake_amount(pair, buy_limit_requested)
if min_stake_amount is not None and min_stake_amount > stake_amount:
@@ -526,8 +528,6 @@ class FreqtradeBot:
ticker_interval=timeframe_to_minutes(self.config['ticker_interval'])
)
self._notify_buy(trade, order_type)
# Update fees if order is closed
if order_status == 'closed':
self.update_trade_state(trade, order)
@@ -538,6 +538,8 @@ class FreqtradeBot:
# Updating wallets
self.wallets.update()
self._notify_buy(trade, order_type)
return True
def _notify_buy(self, trade: Trade, order_type: str) -> None:
@@ -553,6 +555,32 @@ class FreqtradeBot:
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': trade.amount,
'open_date': trade.open_date or datetime.utcnow(),
'current_rate': trade.open_rate_requested,
}
# Send the message
self.rpc.send_msg(msg)
def _notify_buy_cancel(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a buy cancel occured.
"""
current_rate = self.get_buy_rate(trade.pair, True)
msg = {
'type': RPCMessageType.BUY_CANCEL_NOTIFICATION,
'exchange': self.exchange.name.capitalize(),
'pair': trade.pair,
'limit': trade.open_rate,
'order_type': order_type,
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'amount': trade.amount,
'open_date': trade.open_date,
'current_rate': current_rate,
}
# Send the message
@@ -752,7 +780,7 @@ class FreqtradeBot:
update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60)
if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() >= update_beat:
# cancelling the current stoploss on exchange first
logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s})'
logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s}) '
'in order to add another one ...', order['id'])
try:
self.exchange.cancel_order(order['id'], trade.pair)
@@ -777,8 +805,8 @@ class FreqtradeBot:
)
if should_sell.sell_flag:
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}')
self.execute_sell(trade, sell_rate, should_sell.sell_type)
logger.info('executed sell, reason: %s', should_sell.sell_type)
return True
return False
@@ -828,42 +856,39 @@ class FreqtradeBot:
self.handle_timedout_limit_buy(trade, order)
self.wallets.update()
order_type = self.strategy.order_types['buy']
self._notify_buy_cancel(trade, order_type)
elif ((order['side'] == 'sell' and order['status'] == 'canceled')
or (self._check_timed_out('sell', order))
or self._check_timed_out('sell', order)
or strategy_safe_wrapper(self.strategy.check_sell_timeout,
default_retval=False)(pair=trade.pair,
trade=trade,
order=order)):
self.handle_timedout_limit_sell(trade, order)
self.wallets.update()
def handle_buy_order_full_cancel(self, trade: Trade, reason: str) -> None:
"""Close trade in database and send message"""
Trade.session.delete(trade)
Trade.session.flush()
logger.info('Buy order %s for %s.', reason, trade)
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Unfilled buy order for {trade.pair} {reason}'
})
order_type = self.strategy.order_types['sell']
self._notify_sell_cancel(trade, order_type)
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
"""
Buy timeout - cancel order
:return: True if order was fully cancelled
"""
reason = "cancelled due to timeout"
if order['status'] != 'canceled':
reason = "cancelled due to timeout"
corder = self.exchange.cancel_order(trade.open_order_id, trade.pair)
logger.info('Buy order %s for %s.', reason, trade)
else:
# Order was cancelled already, so we can reuse the existing dict
corder = order
reason = "canceled on Exchange"
reason = "cancelled on exchange"
logger.info('Buy order %s for %s.', reason, trade)
if corder.get('remaining', order['remaining']) == order['amount']:
# if trade is not partially completed, just delete the trade
self.handle_buy_order_full_cancel(trade, reason)
Trade.session.delete(trade)
Trade.session.flush()
return True
# if trade is partially complete, edit the stake details for the trade
@@ -898,24 +923,22 @@ class FreqtradeBot:
Sell timeout - cancel order and update trade
:return: True if order was fully cancelled
"""
# if trade is not partially completed, just cancel the trade
if order['remaining'] == order['amount']:
# if trade is not partially completed, just cancel the trade
if order["status"] != "canceled":
reason = "due to timeout"
reason = "cancelled due to timeout"
# if trade is not partially completed, just delete the trade
self.exchange.cancel_order(trade.open_order_id, trade.pair)
logger.info('Sell order timeout for %s.', trade)
logger.info('Sell order %s for %s.', reason, trade)
else:
reason = "on exchange"
logger.info('Sell order canceled on exchange for %s.', trade)
reason = "cancelled on exchange"
logger.info('Sell order %s for %s.', reason, trade)
trade.close_rate = None
trade.close_profit = None
trade.close_date = None
trade.is_open = True
trade.open_order_id = None
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': f'Unfilled sell order for {trade.pair} cancelled {reason}'
})
return True
@@ -947,13 +970,13 @@ class FreqtradeBot:
raise DependencyException(
f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}")
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None:
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> bool:
"""
Executes a limit sell for the given trade and limit
:param trade: Trade instance
:param limit: limit rate for the sell order
:param sellreason: Reason the sell was triggered
:return: None
:return: True if it succeeds (supported) False (not supported)
"""
sell_type = 'sell'
if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
@@ -974,7 +997,7 @@ class FreqtradeBot:
order_type = self.strategy.order_types[sell_type]
if sell_reason == SellType.EMERGENCY_SELL:
# Emergencysells (default to market!)
# Emergency sells (default to market!)
order_type = self.strategy.order_types.get("emergencysell", "market")
amount = self._safe_sell_amount(trade.pair, trade.amount)
@@ -999,6 +1022,8 @@ class FreqtradeBot:
self._notify_sell(trade, order_type)
return True
def _notify_sell(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a sell occured.
@@ -1015,7 +1040,7 @@ class FreqtradeBot:
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'gain': gain,
'limit': trade.close_rate_requested,
'limit': profit_rate,
'order_type': order_type,
'amount': trade.amount,
'open_rate': trade.open_rate,
@@ -1026,6 +1051,44 @@ class FreqtradeBot:
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
}
if 'fiat_display_currency' in self.config:
msg.update({
'fiat_currency': self.config['fiat_display_currency'],
})
# Send the message
self.rpc.send_msg(msg)
def _notify_sell_cancel(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a sell cancel occured.
"""
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
profit_trade = trade.calc_profit(rate=profit_rate)
current_rate = self.get_sell_rate(trade.pair, True)
profit_percent = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_percent > 0 else "loss"
msg = {
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'gain': gain,
'limit': profit_rate,
'order_type': order_type,
'amount': trade.amount,
'open_rate': trade.open_rate,
'current_rate': current_rate,
'profit_amount': profit_trade,
'profit_percent': profit_percent,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
}
if 'fiat_display_currency' in self.config:

View File

@@ -38,8 +38,8 @@ def main(sysargv: List[str] = None) -> None:
# No subcommand was issued.
raise OperationalException(
"Usage of Freqtrade requires a subcommand to be specified.\n"
"To have the previous behavior (bot executing trades in live/dry-run modes, "
"depending on the value of the `dry_run` setting in the config), run freqtrade "
"To have the bot executing trades in live/dry-run modes, "
"depending on the value of the `dry_run` setting in the config, run Freqtrade "
"as `freqtrade trade [options...]`.\n"
"To see the full list of options available, please use "
"`freqtrade --help` or `freqtrade <command> --help`."

View File

@@ -48,14 +48,16 @@ def file_dump_json(filename: Path, data: Any, is_zip: bool = False) -> None:
:param data: JSON Data to save
:return:
"""
logger.info(f'dumping json to "{filename}"')
if is_zip:
if filename.suffix != '.gz':
filename = filename.with_suffix('.gz')
logger.info(f'dumping json to "{filename}"')
with gzip.open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
else:
logger.info(f'dumping json to "{filename}"')
with open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
@@ -91,6 +93,12 @@ def file_load_json(file):
return pairdata
def pair_to_filename(pair: str) -> str:
for ch in ['/', '-', ' ', '.', '@', '$', '+', ':']:
pair = pair.replace(ch, '_')
return pair
def format_ms_time(date: int) -> str:
"""
convert MS date to readable format.
@@ -139,5 +147,4 @@ def render_template(templatefile: str, arguments: dict = {}) -> str:
autoescape=select_autoescape(['html', 'xml'])
)
template = env.get_template(templatefile)
return template.render(**arguments)

View File

@@ -15,6 +15,7 @@ from pandas import DataFrame
from freqtrade.configuration import (TimeRange, remove_credentials,
validate_config_consistency)
from freqtrade.data import history
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
@@ -118,6 +119,7 @@ class Backtesting:
timerange=timerange,
startup_candles=self.required_startup,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
min_date, max_date = history.get_timerange(data)
@@ -397,7 +399,7 @@ class Backtesting:
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = history.trim_dataframe(df, timerange)
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = history.get_timerange(preprocessed)
logger.info(
@@ -441,7 +443,7 @@ class Backtesting:
print()
if len(all_results) > 1:
# Print Strategy summary table
print(' Strategy Summary '.center(133, '='))
print(' STRATEGY SUMMARY '.center(133, '='))
print(generate_text_table_strategy(self.config['stake_currency'],
self.config['max_open_trades'],
all_results=all_results))

View File

@@ -22,7 +22,8 @@ from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame
from freqtrade.data.history import get_timerange, trim_dataframe
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting

View File

@@ -207,7 +207,7 @@ class IHyperOpt(ABC):
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# # This is similar to the hyperspace dimensions used for constructing the ROI tables.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),

View File

@@ -0,0 +1,62 @@
"""
SharpeHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SharpeHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
annual_risk_free_rate = 0.0
risk_free_rate = annual_risk_free_rate / days_in_year
# apply slippage per trade to profit_percent
results.loc[:, 'profit_percent_after_slippage'] = \
results['profit_percent'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
expected_returns_mean = total_profit.mean()
up_stdev = total_profit.std()
if (up_stdev != 0.):
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -21,13 +21,14 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
tabular_data = []
headers = [
'Pair',
'Buy Count',
'Buys',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
'Avg Duration',
'Wins',
'Draws',
'Losses'
]
for pair in data:
@@ -45,6 +46,7 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs == 0]),
len(result[result.profit_abs < 0])
])
@@ -59,6 +61,7 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
@@ -78,8 +81,9 @@ def generate_text_table_sell_reason(
tabular_data = []
headers = [
"Sell Reason",
"Sell Count",
"Sells",
"Wins",
"Draws",
"Losses",
"Avg Profit %",
"Cum Profit %",
@@ -88,7 +92,8 @@ def generate_text_table_sell_reason(
]
for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason]
profit = len(result[result['profit_abs'] >= 0])
wins = len(result[result['profit_abs'] > 0])
draws = len(result[result['profit_abs'] == 0])
loss = len(result[result['profit_abs'] < 0])
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
@@ -98,7 +103,8 @@ def generate_text_table_sell_reason(
[
reason.value,
count,
profit,
wins,
draws,
loss,
profit_mean,
profit_sum,
@@ -121,9 +127,9 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
f'tot profit {stake_currency}', 'tot profit %', 'avg duration',
'profit', 'loss']
headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Wins', 'Draws', 'Losses']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
@@ -135,6 +141,7 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
@@ -146,9 +153,9 @@ def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
tabular_data = []
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio',
'required risk reward', 'expectancy', 'total number of trades',
'average duration (min)']
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
'Average Duration (min)']
for result in results.items():
if result[1].nb_trades > 0:

View File

@@ -318,10 +318,10 @@ class Trade(_DECL_BASE):
elif order_type in ('market', 'limit') and order['side'] == 'sell':
self.close(order['price'])
logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self)
elif order_type == 'stop_loss_limit':
elif order_type in ('stop_loss_limit', 'stop-loss'):
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
logger.info('STOP_LOSS_LIMIT is hit for %s.', self)
logger.info('%s is hit for %s.', order_type.upper(), self)
self.close(order['average'])
else:
raise ValueError(f'Unknown order type: {order_type}')

View File

@@ -3,11 +3,14 @@ from pathlib import Path
from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
create_cum_profit,
extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import load_data
from freqtrade.misc import pair_to_filename
from freqtrade.resolvers import StrategyResolver
logger = logging.getLogger(__name__)
@@ -36,18 +39,19 @@ def init_plotscript(config):
# Set timerange to use
timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = history.load_data(
tickers = load_data(
datadir=config.get("datadir"),
pairs=pairs,
timeframe=config.get('ticker_interval', '5m'),
timerange=timerange,
data_format=config.get('dataformat_ohlcv', 'json'),
)
trades = load_trades(config['trade_source'],
db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'),
)
trades = history.trim_dataframe(trades, timerange, 'open_time')
trades = trim_dataframe(trades, timerange, 'open_time')
return {"tickers": tickers,
"trades": trades,
"pairs": pairs,
@@ -374,8 +378,8 @@ def generate_plot_filename(pair: str, timeframe: str) -> str:
"""
Generate filenames per pair/timeframe to be used for storing plots
"""
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + timeframe + '.html'
pair_s = pair_to_filename(pair)
file_name = 'freqtrade-plot-' + pair_s + '-' + timeframe + '.html'
logger.info('Generate plot file for %s', pair)

View File

@@ -7,7 +7,7 @@ import importlib.util
import inspect
import logging
from pathlib import Path
from typing import Any, Dict, Generator, List, Optional, Tuple, Type, Union
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
from freqtrade.exceptions import OperationalException
@@ -22,13 +22,15 @@ class IResolver:
object_type: Type[Any]
object_type_str: str
user_subdir: Optional[str] = None
initial_search_path: Path
initial_search_path: Optional[Path]
@classmethod
def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,
extra_dir: Optional[str] = None) -> List[Path]:
abs_paths: List[Path] = [cls.initial_search_path]
abs_paths: List[Path] = []
if cls.initial_search_path:
abs_paths.append(cls.initial_search_path)
if user_subdir:
abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))
@@ -40,12 +42,14 @@ class IResolver:
return abs_paths
@classmethod
def _get_valid_object(cls, module_path: Path,
object_name: Optional[str]) -> Generator[Any, None, None]:
def _get_valid_object(cls, module_path: Path, object_name: Optional[str],
enum_failed: bool = False) -> Iterator[Any]:
"""
Generator returning objects with matching object_type and object_name in the path given.
:param module_path: absolute path to the module
:param object_name: Class name of the object
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:return: generator containing matching objects
"""
@@ -58,10 +62,13 @@ class IResolver:
except (ModuleNotFoundError, SyntaxError) as err:
# Catch errors in case a specific module is not installed
logger.warning(f"Could not import {module_path} due to '{err}'")
if enum_failed:
return iter([None])
valid_objects_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass)
if (object_name is None or object_name == name) and cls.object_type in obj.__bases__
if ((object_name is None or object_name == name) and
issubclass(obj, cls.object_type) and obj is not cls.object_type)
)
return valid_objects_gen
@@ -135,10 +142,13 @@ class IResolver:
)
@classmethod
def search_all_objects(cls, directory: Path) -> List[Dict[str, Any]]:
def search_all_objects(cls, directory: Path,
enum_failed: bool) -> List[Dict[str, Any]]:
"""
Searches a directory for valid objects
:param directory: Path to search
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:return: List of dicts containing 'name', 'class' and 'location' entires
"""
logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'")
@@ -150,9 +160,10 @@ class IResolver:
continue
module_path = entry.resolve()
logger.debug(f"Path {module_path}")
for obj in cls._get_valid_object(module_path, object_name=None):
for obj in cls._get_valid_object(module_path, object_name=None,
enum_failed=enum_failed):
objects.append(
{'name': obj.__name__,
{'name': obj.__name__ if obj is not None else '',
'class': obj,
'location': entry,
})

View File

@@ -12,7 +12,7 @@ from pathlib import Path
from typing import Any, Dict, Optional
from freqtrade.constants import (REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES,
USERPATH_STRATEGY)
USERPATH_STRATEGIES)
from freqtrade.exceptions import OperationalException
from freqtrade.resolvers import IResolver
from freqtrade.strategy.interface import IStrategy
@@ -26,8 +26,8 @@ class StrategyResolver(IResolver):
"""
object_type = IStrategy
object_type_str = "Strategy"
user_subdir = USERPATH_STRATEGY
initial_search_path = Path(__file__).parent.parent.joinpath('strategy').resolve()
user_subdir = USERPATH_STRATEGIES
initial_search_path = None
@staticmethod
def load_strategy(config: Dict[str, Any] = None) -> IStrategy:
@@ -141,7 +141,7 @@ class StrategyResolver(IResolver):
"""
abs_paths = StrategyResolver.build_search_paths(config,
user_subdir=USERPATH_STRATEGY,
user_subdir=USERPATH_STRATEGIES,
extra_dir=extra_dir)
if ":" in strategy_name:

View File

@@ -26,7 +26,9 @@ class RPCMessageType(Enum):
WARNING_NOTIFICATION = 'warning'
CUSTOM_NOTIFICATION = 'custom'
BUY_NOTIFICATION = 'buy'
BUY_CANCEL_NOTIFICATION = 'buy_cancel'
SELL_NOTIFICATION = 'sell'
SELL_CANCEL_NOTIFICATION = 'sell_cancel'
def __repr__(self):
return self.value
@@ -39,6 +41,7 @@ class RPCException(Exception):
raise RPCException('*Status:* `no active trade`')
"""
def __init__(self, message: str) -> None:
super().__init__(self)
self.message = message
@@ -157,15 +160,17 @@ class RPC:
profit_str = f'{trade_perc:.2f}%'
if self._fiat_converter:
fiat_profit = self._fiat_converter.convert_amount(
trade_profit,
stake_currency,
fiat_display_currency
)
trade_profit,
stake_currency,
fiat_display_currency
)
if fiat_profit and not isnan(fiat_profit):
profit_str += f" ({fiat_profit:.2f})"
trades_list.append([
trade.id,
trade.pair,
trade.pair + ('*' if (trade.open_order_id is not None
and trade.close_rate_requested is None) else '')
+ ('**' if (trade.close_rate_requested is not None) else ''),
shorten_date(arrow.get(trade.open_date).humanize(only_distance=True)),
profit_str
])

View File

@@ -134,13 +134,18 @@ class Telegram(RPC):
msg['stake_amount_fiat'] = 0
message = ("*{exchange}:* Buying {pair}\n"
"at rate `{limit:.8f}\n"
"({stake_amount:.6f} {stake_currency}").format(**msg)
"*Amount:* `{amount:.8f}`\n"
"*Open Rate:* `{limit:.8f}`\n"
"*Current Rate:* `{current_rate:.8f}`\n"
"*Total:* `({stake_amount:.6f} {stake_currency}").format(**msg)
if msg.get('fiat_currency', None):
message += ",{stake_amount_fiat:.3f} {fiat_currency}".format(**msg)
message += ", {stake_amount_fiat:.3f} {fiat_currency}".format(**msg)
message += ")`"
elif msg['type'] == RPCMessageType.BUY_CANCEL_NOTIFICATION:
message = "*{exchange}:* Cancelling Open Buy Order for {pair}".format(**msg)
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
msg['amount'] = round(msg['amount'], 8)
msg['profit_percent'] = round(msg['profit_percent'] * 100, 2)
@@ -149,10 +154,10 @@ class Telegram(RPC):
msg['duration_min'] = msg['duration'].total_seconds() / 60
message = ("*{exchange}:* Selling {pair}\n"
"*Rate:* `{limit:.8f}`\n"
"*Amount:* `{amount:.8f}`\n"
"*Open Rate:* `{open_rate:.8f}`\n"
"*Current Rate:* `{current_rate:.8f}`\n"
"*Close Rate:* `{limit:.8f}`\n"
"*Sell Reason:* `{sell_reason}`\n"
"*Duration:* `{duration} ({duration_min:.1f} min)`\n"
"*Profit:* `{profit_percent:.2f}%`").format(**msg)
@@ -163,8 +168,11 @@ class Telegram(RPC):
and self._fiat_converter):
msg['profit_fiat'] = self._fiat_converter.convert_amount(
msg['profit_amount'], msg['stake_currency'], msg['fiat_currency'])
message += ('` ({gain}: {profit_amount:.8f} {stake_currency}`'
'` / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
message += (' `({gain}: {profit_amount:.8f} {stake_currency}'
' / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
message = "*{exchange}:* Cancelling Open Sell Order for {pair}".format(**msg)
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
message = '*Status:* `{status}`'.format(**msg)
@@ -553,6 +561,8 @@ class Telegram(RPC):
"*/stop:* `Stops the trader`\n" \
"*/status [table]:* `Lists all open trades`\n" \
" *table :* `will display trades in a table`\n" \
" `pending buy orders are marked with an asterisk (*)`\n" \
" `pending sell orders are marked with a double asterisk (**)`\n" \
"*/profit:* `Lists cumulative profit from all finished trades`\n" \
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, " \
"regardless of profit`\n" \

View File

@@ -41,8 +41,12 @@ class Webhook(RPC):
if msg['type'] == RPCMessageType.BUY_NOTIFICATION:
valuedict = self._config['webhook'].get('webhookbuy', None)
elif msg['type'] == RPCMessageType.BUY_CANCEL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhookbuycancel', None)
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhooksell', None)
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
valuedict = self._config['webhook'].get('webhooksellcancel', None)
elif msg['type'] in(RPCMessageType.STATUS_NOTIFICATION,
RPCMessageType.CUSTOM_NOTIFICATION,
RPCMessageType.WARNING_NOTIFICATION):

View File

@@ -1,156 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy.interface import IStrategy
class DefaultStrategy(IStrategy):
"""
Default Strategy provided by freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.
Please look at the SampleStrategy in the user_data/strategy directory
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal ticker interval for the strategy
ticker_interval = '5m'
# Optional order type mapping
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
}
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional time in force for orders
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc',
}
def informative_pairs(self):
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# Minus Directional Indicator / Movement
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['rsi'] < 35) &
(dataframe['fastd'] < 35) &
(dataframe['adx'] > 30) &
(dataframe['plus_di'] > 0.5)
) |
(
(dataframe['adx'] > 65) &
(dataframe['plus_di'] > 0.5)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with buy column
"""
dataframe.loc[
(
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) |
(qtpylib.crossed_above(dataframe['fastd'], 70))
) &
(dataframe['adx'] > 10) &
(dataframe['minus_di'] > 0)
) |
(
(dataframe['adx'] > 70) &
(dataframe['minus_di'] > 0.5)
),
'sell'] = 1
return dataframe

View File

@@ -468,7 +468,7 @@ class IStrategy(ABC):
else:
return current_profit > roi
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
def tickerdata_to_dataframe(self, tickerdata: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
"""
Creates a dataframe and populates indicators for given ticker data
Used by optimize operations only, not during dry / live runs.

View File

@@ -0,0 +1,58 @@
{
"max_open_trades": {{ max_open_trades }},
"stake_currency": "{{ stake_currency }}",
"stake_amount": {{ stake_amount }},
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "{{ fiat_display_currency }}",
"ticker_interval": "{{ ticker_interval }}",
"dry_run": {{ dry_run | lower }},
"unfilledtimeout": {
"buy": 10,
"sell": 30
},
"bid_strategy": {
"ask_last_balance": 0.0,
"use_order_book": false,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"ask_strategy": {
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9,
"use_sell_signal": true,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false
},
{{ exchange | indent(4) }},
"pairlists": [
{"method": "StaticPairList"}
],
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"telegram": {
"enabled": {{ telegram | lower }},
"token": "{{ telegram_token }}",
"chat_id": "{{ telegram_chat_id }}"
},
"initial_state": "running",
"forcebuy_enable": false,
"internals": {
"process_throttle_secs": 5
}
}

View File

@@ -230,7 +230,7 @@ class AdvancedSampleHyperOpt(IHyperOpt):
'stoploss' optimization hyperspace.
"""
return [
Real(-0.5, -0.02, name='stoploss'),
Real(-0.35, -0.02, name='stoploss'),
]
@staticmethod
@@ -249,8 +249,15 @@ class AdvancedSampleHyperOpt(IHyperOpt):
# other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'),
Real(0.02, 0.35, name='trailing_stop_positive'),
Real(0.01, 0.1, name='trailing_stop_positive_offset'),
Real(0.01, 0.35, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]

View File

@@ -6,7 +6,8 @@
"source": [
"# Strategy analysis example\n",
"\n",
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
"Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n",
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location."
]
},
{
@@ -23,18 +24,21 @@
"outputs": [],
"source": [
"from pathlib import Path\n",
"from freqtrade.configuration import Configuration\n",
"\n",
"# Customize these according to your needs.\n",
"\n",
"# Initialize empty configuration object\n",
"config = Configuration.from_files([])\n",
"# Optionally, use existing configuration file\n",
"# config = Configuration.from_files([\"config.json\"])\n",
"\n",
"# Define some constants\n",
"timeframe = \"5m\"\n",
"config[\"ticker_interval\"] = \"5m\"\n",
"# Name of the strategy class\n",
"strategy_name = 'SampleStrategy'\n",
"# Path to user data\n",
"user_data_dir = Path('user_data')\n",
"# Location of the strategy\n",
"strategy_location = user_data_dir / 'strategies'\n",
"config[\"strategy\"] = \"SampleStrategy\"\n",
"# Location of the data\n",
"data_location = Path(user_data_dir, 'data', 'binance')\n",
"data_location = Path(config['user_data_dir'], 'data', 'binance')\n",
"# Pair to analyze - Only use one pair here\n",
"pair = \"BTC_USDT\""
]
@@ -49,7 +53,7 @@
"from freqtrade.data.history import load_pair_history\n",
"\n",
"candles = load_pair_history(datadir=data_location,\n",
" timeframe=timeframe,\n",
" timeframe=config[\"ticker_interval\"],\n",
" pair=pair)\n",
"\n",
"# Confirm success\n",
@@ -73,9 +77,7 @@
"source": [
"# Load strategy using values set above\n",
"from freqtrade.resolvers import StrategyResolver\n",
"strategy = StrategyResolver.load_strategy({'strategy': strategy_name,\n",
" 'user_data_dir': user_data_dir,\n",
" 'strategy_path': strategy_location})\n",
"strategy = StrategyResolver.load_strategy(config)\n",
"\n",
"# Generate buy/sell signals using strategy\n",
"df = strategy.analyze_ticker(candles, {'pair': pair})\n",
@@ -137,7 +139,7 @@
"from freqtrade.data.btanalysis import load_backtest_data\n",
"\n",
"# Load backtest results\n",
"trades = load_backtest_data(user_data_dir / \"backtest_results/backtest-result.json\")\n",
"trades = load_backtest_data(config[\"user_data_dir\"] / \"backtest_results/backtest-result.json\")\n",
"\n",
"# Show value-counts per pair\n",
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"

View File

@@ -0,0 +1,41 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 200
},
"pair_whitelist": [
"ALGO/BTC",
"ATOM/BTC",
"BAT/BTC",
"BCH/BTC",
"BRD/BTC",
"EOS/BTC",
"ETH/BTC",
"IOTA/BTC",
"LINK/BTC",
"LTC/BTC",
"NEO/BTC",
"NXS/BTC",
"XMR/BTC",
"XRP/BTC",
"XTZ/BTC"
],
"pair_blacklist": [
"BNB/BTC",
"BNB/BUSD",
"BNB/ETH",
"BNB/EUR",
"BNB/NGN",
"BNB/PAX",
"BNB/RUB",
"BNB/TRY",
"BNB/TUSD",
"BNB/USDC",
"BNB/USDS",
"BNB/USDT",
]
}

View File

@@ -0,0 +1,31 @@
"order_types": {
"buy": "limit",
"sell": "limit",
"emergencysell": "limit",
"stoploss": "limit",
"stoploss_on_exchange": false
},
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 500
},
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"XRP/BTC",
"TRX/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
]
}

View File

@@ -0,0 +1,15 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true
},
"pair_whitelist": [
],
"pair_blacklist": [
]
}

View File

@@ -0,0 +1,36 @@
"download_trades": true,
"exchange": {
"name": "kraken",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 1000
},
"pair_whitelist": [
"ADA/EUR",
"ATOM/EUR",
"BAT/EUR",
"BCH/EUR",
"BTC/EUR",
"DAI/EUR",
"DASH/EUR",
"EOS/EUR",
"ETC/EUR",
"ETH/EUR",
"LINK/EUR",
"LTC/EUR",
"QTUM/EUR",
"REP/EUR",
"WAVES/EUR",
"XLM/EUR",
"XMR/EUR",
"XRP/EUR",
"XTZ/EUR",
"ZEC/EUR"
],
"pair_blacklist": [
]
}