fix monitor bug, set default values in case user doesnt set params
This commit is contained in:
parent
c0cee5df07
commit
bd870e2331
@ -42,7 +42,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
||||
self.eval_callback: EvalCallback = None
|
||||
self.model_type = self.freqai_info['rl_config']['model_type']
|
||||
self.rl_config = self.freqai_info['rl_config']
|
||||
self.continual_retraining = self.rl_config['continual_retraining']
|
||||
self.continual_retraining = self.rl_config.get('continual_retraining', False)
|
||||
if self.model_type in SB3_MODELS:
|
||||
import_str = 'stable_baselines3'
|
||||
elif self.model_type in SB3_CONTRIB_MODELS:
|
||||
@ -289,7 +289,7 @@ class MyRLEnv(Base5ActionRLEnv):
|
||||
return 0.
|
||||
|
||||
pnl = self.get_unrealized_profit()
|
||||
max_trade_duration = self.rl_config['max_trade_duration_candles']
|
||||
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 100)
|
||||
trade_duration = self._current_tick - self._last_trade_tick
|
||||
|
||||
factor = 1
|
||||
|
@ -32,6 +32,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
|
||||
logger.info('Continual training activated - starting training from previously '
|
||||
'trained agent.')
|
||||
model = self.dd.model_dictionary[dk.pair]
|
||||
model.tensorboard_log = Path(dk.data_path / "tensorboard")
|
||||
model.set_env(self.train_env)
|
||||
|
||||
model.learn(
|
||||
@ -61,7 +62,7 @@ class MyRLEnv(Base5ActionRLEnv):
|
||||
return 0.
|
||||
|
||||
pnl = self.get_unrealized_profit()
|
||||
max_trade_duration = self.rl_config['max_trade_duration_candles']
|
||||
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 100)
|
||||
trade_duration = self._current_tick - self._last_trade_tick
|
||||
|
||||
factor = 1
|
||||
|
@ -26,10 +26,10 @@ class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
|
||||
|
||||
# model arch
|
||||
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
||||
net_arch=[512, 512, 512])
|
||||
net_arch=[512, 512, 256])
|
||||
|
||||
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
||||
tensorboard_log=Path(dk.data_path / "tensorboard"),
|
||||
tensorboard_log=Path(dk.full_path / "tensorboard"),
|
||||
**self.freqai_info['model_training_parameters']
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user