add pytorch data convertor
This commit is contained in:
@@ -9,11 +9,13 @@ import torch.nn as nn
|
||||
from torch.optim import Optimizer
|
||||
from torch.utils.data import DataLoader, TensorDataset
|
||||
|
||||
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
|
||||
from freqtrade.freqai.torch.PyTorchTrainerInterface import PyTorchTrainerInterface
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PyTorchModelTrainer:
|
||||
class PyTorchModelTrainer(PyTorchTrainerInterface):
|
||||
def __init__(
|
||||
self,
|
||||
model: nn.Module,
|
||||
@@ -21,8 +23,7 @@ class PyTorchModelTrainer:
|
||||
criterion: nn.Module,
|
||||
device: str,
|
||||
init_model: Dict,
|
||||
target_tensor_type: torch.dtype,
|
||||
squeeze_target_tensor: bool = False,
|
||||
data_convertor: PyTorchDataConvertor,
|
||||
model_meta_data: Dict[str, Any] = {},
|
||||
**kwargs
|
||||
):
|
||||
@@ -33,11 +34,7 @@ class PyTorchModelTrainer:
|
||||
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
||||
:param init_model: A dictionary containing the initial model/optimizer
|
||||
state_dict and model_meta_data saved by self.save() method.
|
||||
:param target_tensor_type: type of target tensor, for classification usually
|
||||
torch.long, for regressor usually torch.float.
|
||||
:param model_meta_data: Additional metadata about the model (optional).
|
||||
:param squeeze_target_tensor: controls the target shape, used for loss functions
|
||||
that requires 0D or 1D.
|
||||
:param max_iters: The number of training iterations to run.
|
||||
iteration here refers to the number of times we call
|
||||
self.optimizer.step(). used to calculate n_epochs.
|
||||
@@ -49,11 +46,10 @@ class PyTorchModelTrainer:
|
||||
self.criterion = criterion
|
||||
self.model_meta_data = model_meta_data
|
||||
self.device = device
|
||||
self.target_tensor_type = target_tensor_type
|
||||
self.max_iters: int = kwargs.get("max_iters", 100)
|
||||
self.batch_size: int = kwargs.get("batch_size", 64)
|
||||
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
|
||||
self.squeeze_target_tensor = squeeze_target_tensor
|
||||
self.data_convertor = data_convertor
|
||||
if init_model:
|
||||
self.load_from_checkpoint(init_model)
|
||||
|
||||
@@ -81,9 +77,12 @@ class PyTorchModelTrainer:
|
||||
# training
|
||||
losses = []
|
||||
for i, batch_data in enumerate(data_loaders_dictionary["train"]):
|
||||
xb, yb = batch_data
|
||||
xb = xb.to(self.device)
|
||||
yb = yb.to(self.device)
|
||||
|
||||
for tensor in batch_data:
|
||||
tensor.to(self.device)
|
||||
|
||||
xb = batch_data[:-1]
|
||||
yb = batch_data[-1]
|
||||
yb_pred = self.model(xb)
|
||||
loss = self.criterion(yb_pred, yb)
|
||||
|
||||
@@ -115,14 +114,16 @@ class PyTorchModelTrainer:
|
||||
self.model.eval()
|
||||
n_batches = 0
|
||||
losses = []
|
||||
for i, batch in enumerate(data_loader_dictionary[split]):
|
||||
for i, batch_data in enumerate(data_loader_dictionary[split]):
|
||||
if max_n_eval_batches and i > max_n_eval_batches:
|
||||
n_batches += 1
|
||||
break
|
||||
|
||||
xb, yb = batch
|
||||
xb = xb.to(self.device)
|
||||
yb = yb.to(self.device)
|
||||
for tensor in batch_data:
|
||||
tensor.to(self.device)
|
||||
|
||||
xb = batch_data[:-1]
|
||||
yb = batch_data[-1]
|
||||
yb_pred = self.model(xb)
|
||||
loss = self.criterion(yb_pred, yb)
|
||||
losses.append(loss.item())
|
||||
@@ -140,14 +141,9 @@ class PyTorchModelTrainer:
|
||||
"""
|
||||
data_loader_dictionary = {}
|
||||
for split in splits:
|
||||
x = torch.from_numpy(data_dictionary[f"{split}_features"].values).float()
|
||||
y = torch.from_numpy(data_dictionary[f"{split}_labels"].values)\
|
||||
.to(self.target_tensor_type)
|
||||
|
||||
if self.squeeze_target_tensor:
|
||||
y = y.squeeze()
|
||||
|
||||
dataset = TensorDataset(x, y)
|
||||
x = self.data_convertor.convert_x(data_dictionary[f"{split}_features"])
|
||||
y = self.data_convertor.convert_y(data_dictionary[f"{split}_labels"])
|
||||
dataset = TensorDataset(*x, *y)
|
||||
data_loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=self.batch_size,
|
||||
@@ -186,7 +182,7 @@ class PyTorchModelTrainer:
|
||||
"model_meta_data": self.model_meta_data,
|
||||
}, path)
|
||||
|
||||
def load_from_file(self, path: Path):
|
||||
def load(self, path: Path):
|
||||
checkpoint = torch.load(path)
|
||||
return self.load_from_checkpoint(checkpoint)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user