add pytorch data convertor
This commit is contained in:
@@ -4,6 +4,8 @@ import torch
|
||||
|
||||
from freqtrade.freqai.base_models.BasePyTorchClassifier import BasePyTorchClassifier
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.torch import PyTorchDataConvertor
|
||||
from freqtrade.freqai.torch.PyTorchDataConvertor import DefaultPyTorchDataConvertor
|
||||
from freqtrade.freqai.torch.PyTorchMLPModel import PyTorchMLPModel
|
||||
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchModelTrainer
|
||||
|
||||
@@ -38,6 +40,10 @@ class PyTorchMLPClassifier(BasePyTorchClassifier):
|
||||
}
|
||||
"""
|
||||
|
||||
@property
|
||||
def data_convertor(self) -> PyTorchDataConvertor:
|
||||
return DefaultPyTorchDataConvertor(target_tensor_type=torch.long, squeeze_target_tensor=True)
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
config = self.freqai_info.get("model_training_parameters", {})
|
||||
@@ -72,8 +78,7 @@ class PyTorchMLPClassifier(BasePyTorchClassifier):
|
||||
model_meta_data={"class_names": class_names},
|
||||
device=self.device,
|
||||
init_model=init_model,
|
||||
target_tensor_type=torch.long,
|
||||
squeeze_target_tensor=True,
|
||||
data_convertor=self.data_convertor,
|
||||
**self.trainer_kwargs,
|
||||
)
|
||||
trainer.fit(data_dictionary, self.splits)
|
||||
|
@@ -4,6 +4,8 @@ import torch
|
||||
|
||||
from freqtrade.freqai.base_models.BasePyTorchRegressor import BasePyTorchRegressor
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.torch import PyTorchDataConvertor
|
||||
from freqtrade.freqai.torch.PyTorchDataConvertor import DefaultPyTorchDataConvertor
|
||||
from freqtrade.freqai.torch.PyTorchMLPModel import PyTorchMLPModel
|
||||
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchModelTrainer
|
||||
|
||||
@@ -39,6 +41,10 @@ class PyTorchMLPRegressor(BasePyTorchRegressor):
|
||||
}
|
||||
"""
|
||||
|
||||
@property
|
||||
def data_convertor(self) -> PyTorchDataConvertor:
|
||||
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
config = self.freqai_info.get("model_training_parameters", {})
|
||||
@@ -69,7 +75,7 @@ class PyTorchMLPRegressor(BasePyTorchRegressor):
|
||||
criterion=criterion,
|
||||
device=self.device,
|
||||
init_model=init_model,
|
||||
target_tensor_type=torch.float,
|
||||
data_convertor=self.data_convertor,
|
||||
**self.trainer_kwargs,
|
||||
)
|
||||
trainer.fit(data_dictionary, self.splits)
|
||||
|
Reference in New Issue
Block a user