Add --analyze-per-epoch - moving populate_analysis to the epoch process
This commit is contained in:
@@ -24,13 +24,15 @@ from pandas import DataFrame
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
|
||||
from freqtrade.optimize.hyperopt_tools import (HyperoptStateContainer, HyperoptTools,
|
||||
hyperopt_serializer)
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
|
||||
@@ -74,10 +76,14 @@ class Hyperopt:
|
||||
self.dimensions: List[Dimension] = []
|
||||
|
||||
self.config = config
|
||||
self.min_date: datetime
|
||||
self.max_date: datetime
|
||||
|
||||
self.backtesting = Backtesting(self.config)
|
||||
self.pairlist = self.backtesting.pairlists.whitelist
|
||||
self.custom_hyperopt: HyperOptAuto
|
||||
self.analyze_per_epoch = self.config.get('analyze_per_epoch', False)
|
||||
HyperoptStateContainer.set_state(HyperoptState.STARTUP)
|
||||
|
||||
if not self.config.get('hyperopt'):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
@@ -290,6 +296,7 @@ class Hyperopt:
|
||||
Called once per epoch to optimize whatever is configured.
|
||||
Keep this function as optimized as possible!
|
||||
"""
|
||||
HyperoptStateContainer.set_state(HyperoptState.OPTIMIZE)
|
||||
backtest_start_time = datetime.now(timezone.utc)
|
||||
params_dict = self._get_params_dict(self.dimensions, raw_params)
|
||||
|
||||
@@ -321,6 +328,10 @@ class Hyperopt:
|
||||
|
||||
with self.data_pickle_file.open('rb') as f:
|
||||
processed = load(f, mmap_mode='r')
|
||||
if self.analyze_per_epoch:
|
||||
# Data is not yet analyzed, rerun populate_indicators.
|
||||
processed = self.advise_and_trim(processed)
|
||||
|
||||
bt_results = self.backtesting.backtest(
|
||||
processed=processed,
|
||||
start_date=self.min_date,
|
||||
@@ -415,19 +426,24 @@ class Hyperopt:
|
||||
return processed
|
||||
|
||||
def prepare_hyperopt_data(self) -> None:
|
||||
data, timerange = self.backtesting.load_bt_data()
|
||||
HyperoptStateContainer.set_state(HyperoptState.DATALOAD)
|
||||
data, self.timerange = self.backtesting.load_bt_data()
|
||||
self.backtesting.load_bt_data_detail()
|
||||
logger.info("Dataload complete. Calculating indicators")
|
||||
|
||||
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
|
||||
if not self.analyze_per_epoch:
|
||||
HyperoptStateContainer.set_state(HyperoptState.INDICATORS)
|
||||
|
||||
preprocessed = self.advise_and_trim(data)
|
||||
preprocessed = self.advise_and_trim(data)
|
||||
|
||||
logger.info(f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(self.max_date - self.min_date).days} days)..')
|
||||
# Store non-trimmed data - will be trimmed after signal generation.
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
logger.info(f'Hyperopting with data from '
|
||||
f'{self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(self.max_date - self.min_date).days} days)..')
|
||||
# Store non-trimmed data - will be trimmed after signal generation.
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
else:
|
||||
dump(data, self.data_pickle_file)
|
||||
|
||||
def get_asked_points(self, n_points: int) -> Tuple[List[List[Any]], List[bool]]:
|
||||
"""
|
||||
|
Reference in New Issue
Block a user