[SQUASH] Address PR comments.
* Split Parameter into IntParameter/FloatParameter/CategoricalParameter. * Rename IHyperStrategy to HyperStrategyMixin and use it as mixin. * --hyperopt parameter is now optional if strategy uses HyperStrategyMixin. * Use OperationalException() instead of asserts.
This commit is contained in:
parent
0a205f52b0
commit
bb89e44e19
@ -195,6 +195,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
'--hyperopt',
|
||||
help='Specify hyperopt class name which will be used by the bot.',
|
||||
metavar='NAME',
|
||||
required=False,
|
||||
),
|
||||
"hyperopt_path": Arg(
|
||||
'--hyperopt-path',
|
||||
|
@ -23,6 +23,7 @@ from pandas import DataFrame
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import file_dump_json, plural
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
@ -68,7 +69,11 @@ class Hyperopt:
|
||||
|
||||
self.backtesting = Backtesting(self.config)
|
||||
|
||||
if self.config['hyperopt'] == 'HyperOptAuto':
|
||||
if not self.config.get('hyperopt'):
|
||||
if not getattr(self.backtesting.strategy, 'HYPER_STRATEGY', False):
|
||||
raise OperationalException('Strategy is not auto-hyperoptable. Specify --hyperopt '
|
||||
'parameter or add HyperStrategyMixin mixin to your '
|
||||
'strategy class.')
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
else:
|
||||
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
HyperOptAuto class.
|
||||
This module implements a convenience auto-hyperopt class, which can be used together with strategies that implement
|
||||
IHyperStrategy interface.
|
||||
This module implements a convenience auto-hyperopt class, which can be used together with strategies
|
||||
that implement IHyperStrategy interface.
|
||||
"""
|
||||
from typing import Any, Callable, Dict, List
|
||||
from pandas import DataFrame
|
||||
@ -13,26 +13,31 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
# noinspection PyUnresolvedReferences
|
||||
class HyperOptAuto(IHyperOpt):
|
||||
"""
|
||||
This class delegates functionality to Strategy(IHyperStrategy) and Strategy.HyperOpt classes. Most of the time
|
||||
Strategy.HyperOpt class would only implement indicator_space and sell_indicator_space methods, but other hyperopt
|
||||
methods can be overridden as well.
|
||||
This class delegates functionality to Strategy(IHyperStrategy) and Strategy.HyperOpt classes.
|
||||
Most of the time Strategy.HyperOpt class would only implement indicator_space and
|
||||
sell_indicator_space methods, but other hyperopt methods can be overridden as well.
|
||||
"""
|
||||
|
||||
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
assert hasattr(self.strategy, 'enumerate_parameters'), 'Strategy must inherit from IHyperStrategy.'
|
||||
if not getattr(self.strategy, 'HYPER_STRATEGY', False):
|
||||
raise OperationalException('Strategy must inherit from IHyperStrategy.')
|
||||
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
|
||||
for attr_name, attr in self.strategy.enumerate_parameters('buy'):
|
||||
attr.value = params[attr_name]
|
||||
return self.strategy.populate_buy_trend(dataframe, metadata)
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
assert hasattr(self.strategy, 'enumerate_parameters'), 'Strategy must inherit from IHyperStrategy.'
|
||||
if not getattr(self.strategy, 'HYPER_STRATEGY', False):
|
||||
raise OperationalException('Strategy must inherit from IHyperStrategy.')
|
||||
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
|
||||
for attr_name, attr in self.strategy.enumerate_parameters('sell'):
|
||||
attr.value = params[attr_name]
|
||||
return self.strategy.populate_sell_trend(dataframe, metadata)
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
def _get_func(self, name) -> Callable:
|
||||
@ -49,7 +54,8 @@ class HyperOptAuto(IHyperOpt):
|
||||
return default_func
|
||||
|
||||
def _generate_indicator_space(self, category):
|
||||
assert hasattr(self.strategy, 'enumerate_parameters'), 'Strategy must inherit from IHyperStrategy.'
|
||||
if not getattr(self.strategy, 'HYPER_STRATEGY', False):
|
||||
raise OperationalException('Strategy must inherit from IHyperStrategy.')
|
||||
|
||||
for attr_name, attr in self.strategy.enumerate_parameters(category):
|
||||
yield attr.get_space(attr_name)
|
||||
|
@ -5,15 +5,14 @@ This module defines the interface to apply for hyperopt
|
||||
import logging
|
||||
import math
|
||||
from abc import ABC
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Any, Callable, Dict, List, Union
|
||||
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.misc import round_dict
|
||||
from freqtrade.strategy import IStrategy
|
||||
|
||||
from freqtrade.strategy import IStrategy, HyperStrategyMixin
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -35,7 +34,7 @@ class IHyperOpt(ABC):
|
||||
"""
|
||||
ticker_interval: str # DEPRECATED
|
||||
timeframe: str
|
||||
strategy: IStrategy
|
||||
strategy: Union[IStrategy, HyperStrategyMixin]
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
self.config = config
|
||||
|
@ -2,5 +2,6 @@
|
||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
|
||||
timeframe_to_prev_date, timeframe_to_seconds)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.hyper import IHyperStrategy, Parameter
|
||||
from freqtrade.strategy.hyper import HyperStrategyMixin, IntParameter, FloatParameter,\
|
||||
CategoricalParameter
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
|
||||
|
@ -2,83 +2,158 @@
|
||||
IHyperStrategy interface, hyperoptable Parameter class.
|
||||
This module defines a base class for auto-hyperoptable strategies.
|
||||
"""
|
||||
from abc import ABC
|
||||
from typing import Union, List, Iterator, Tuple
|
||||
from typing import Iterator, Tuple, Any, Optional, Sequence
|
||||
|
||||
from skopt.space import Integer, Real, Categorical
|
||||
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
class Parameter(object):
|
||||
class BaseParameter(object):
|
||||
"""
|
||||
Defines a parameter that can be optimized by hyperopt.
|
||||
"""
|
||||
default: Union[int, float, str, bool]
|
||||
space: List[Union[int, float, str, bool]]
|
||||
category: str
|
||||
category: Optional[str]
|
||||
default: Any
|
||||
value: Any
|
||||
space: Sequence[Any]
|
||||
|
||||
def __init__(self, *, space: List[Union[int, float, str, bool]], default: Union[int, float, str, bool] = None,
|
||||
category: str = None, **kwargs):
|
||||
def __init__(self, *, space: Sequence[Any], default: Any, category: Optional[str] = None,
|
||||
**kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: Optimization space. [min, max] for ints and floats or a list of strings for categorial parameters.
|
||||
:param default: A default value. Required for ints and floats, optional for categorial parameters (first item
|
||||
from the space will be used). Type of default value determines skopt space used for optimization.
|
||||
:param category: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param kwargs: Extra parameters to skopt.space.(Integer|Real|Categorical).
|
||||
"""
|
||||
assert 'name' not in kwargs, 'Name is determined by parameter field name and can not be specified manually.'
|
||||
self.value = default
|
||||
self.space = space
|
||||
if 'name' in kwargs:
|
||||
raise OperationalException(
|
||||
'Name is determined by parameter field name and can not be specified manually.')
|
||||
self.category = category
|
||||
self._space_params = kwargs
|
||||
if default is None:
|
||||
assert len(space) > 0
|
||||
self.value = space[0]
|
||||
self.value = default
|
||||
self.space = space
|
||||
|
||||
def get_space(self, name: str) -> Union[Integer, Real, Categorical, None]:
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({self.value})'
|
||||
|
||||
|
||||
class IntParameter(BaseParameter):
|
||||
default: int
|
||||
value: int
|
||||
space: Sequence[int]
|
||||
|
||||
def __init__(self, *, space: Sequence[int], default: int, category: Optional[str] = None,
|
||||
**kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: Optimization space, [min, max].
|
||||
:param default: A default value.
|
||||
:param category: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param kwargs: Extra parameters to skopt.space.Integer.
|
||||
"""
|
||||
if len(space) != 2:
|
||||
raise OperationalException('IntParameter space must be [min, max]')
|
||||
super().__init__(space=space, default=default, category=category, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> Integer:
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
:return: skopt space of this parameter, or None if parameter is not optimizable (i.e. space is set to None)
|
||||
"""
|
||||
if not self.space:
|
||||
return None
|
||||
if isinstance(self.value, int):
|
||||
assert len(self.space) == 2
|
||||
return Integer(*self.space, name=name, **self._space_params)
|
||||
if isinstance(self.value, float):
|
||||
assert len(self.space) == 2
|
||||
|
||||
|
||||
class FloatParameter(BaseParameter):
|
||||
default: float
|
||||
value: float
|
||||
space: Sequence[float]
|
||||
|
||||
def __init__(self, *, space: Sequence[float], default: float, category: Optional[str] = None,
|
||||
**kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: Optimization space, [min, max].
|
||||
:param default: A default value.
|
||||
:param category: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param kwargs: Extra parameters to skopt.space.Real.
|
||||
"""
|
||||
if len(space) != 2:
|
||||
raise OperationalException('IntParameter space must be [min, max]')
|
||||
super().__init__(space=space, default=default, category=category, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> Real:
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Real(*self.space, name=name, **self._space_params)
|
||||
|
||||
assert len(self.space) > 0
|
||||
|
||||
class CategoricalParameter(BaseParameter):
|
||||
default: Any
|
||||
value: Any
|
||||
space: Sequence[Any]
|
||||
|
||||
def __init__(self, *, space: Sequence[Any], default: Optional[Any] = None,
|
||||
category: Optional[str] = None,
|
||||
**kwargs):
|
||||
"""
|
||||
Initialize hyperopt-optimizable parameter.
|
||||
:param space: Optimization space, [a, b, ...].
|
||||
:param default: A default value. If not specified, first item from specified space will be
|
||||
used.
|
||||
:param category: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
|
||||
parameter field
|
||||
name is prefixed with 'buy_' or 'sell_'.
|
||||
:param kwargs: Extra parameters to skopt.space.Categorical.
|
||||
"""
|
||||
if len(space) < 2:
|
||||
raise OperationalException(
|
||||
'IntParameter space must be [a, b, ...] (at least two parameters)')
|
||||
super().__init__(space=space, default=default, category=category, **kwargs)
|
||||
|
||||
def get_space(self, name: str) -> Categorical:
|
||||
"""
|
||||
Create skopt optimization space.
|
||||
:param name: A name of parameter field.
|
||||
"""
|
||||
return Categorical(self.space, name=name, **self._space_params)
|
||||
|
||||
|
||||
class IHyperStrategy(IStrategy, ABC):
|
||||
class HyperStrategyMixin(object):
|
||||
"""
|
||||
A helper base class which allows HyperOptAuto class to reuse implementations of of buy/sell strategy logic.
|
||||
A helper base class which allows HyperOptAuto class to reuse implementations of of buy/sell
|
||||
strategy logic.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
# Hint that class can be used with HyperOptAuto.
|
||||
HYPER_STRATEGY = 1
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialize hyperoptable strategy mixin.
|
||||
:param config:
|
||||
"""
|
||||
self._load_params(getattr(self, 'buy_params', None))
|
||||
self._load_params(getattr(self, 'sell_params', None))
|
||||
|
||||
def enumerate_parameters(self, category: str = None) -> Iterator[Tuple[str, Parameter]]:
|
||||
def enumerate_parameters(self, category: str = None) -> Iterator[Tuple[str, BaseParameter]]:
|
||||
"""
|
||||
Find all optimizeable parameters and return (name, attr) iterator.
|
||||
:param category:
|
||||
:return:
|
||||
"""
|
||||
assert category in ('buy', 'sell', None)
|
||||
if category not in ('buy', 'sell', None):
|
||||
raise OperationalException('Category must be one of: "buy", "sell", None.')
|
||||
for attr_name in dir(self):
|
||||
if not attr_name.startswith('__'): # Ignore internals, not strictly necessary.
|
||||
attr = getattr(self, attr_name)
|
||||
if isinstance(attr, Parameter):
|
||||
if category is None or category == attr.category or attr_name.startswith(category + '_'):
|
||||
if issubclass(attr.__class__, BaseParameter):
|
||||
if category is None or category == attr.category or \
|
||||
attr_name.startswith(category + '_'):
|
||||
yield attr_name, attr
|
||||
|
||||
def _load_params(self, params: dict) -> None:
|
||||
|
Loading…
Reference in New Issue
Block a user