Refactor tests, implement @creslinux's data
This commit is contained in:
parent
e0fda7a5dd
commit
b8f78cb187
@ -1,55 +1,177 @@
|
|||||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||||
import logging
|
import logging
|
||||||
from unittest.mock import MagicMock
|
from unittest.mock import MagicMock
|
||||||
|
from typing import NamedTuple
|
||||||
|
|
||||||
import pandas as pd
|
from pandas import DataFrame
|
||||||
import pytest
|
import pytest
|
||||||
from arrow import get as getdate
|
from arrow import get as getdate
|
||||||
|
|
||||||
|
|
||||||
from freqtrade.optimize.backtesting import Backtesting
|
from freqtrade.optimize.backtesting import Backtesting
|
||||||
from freqtrade.tests.conftest import patch_exchange, log_has
|
from freqtrade.tests.conftest import patch_exchange, log_has
|
||||||
|
|
||||||
|
|
||||||
|
class BTContainer(NamedTuple):
|
||||||
|
"""
|
||||||
|
NamedTuple Defining BacktestResults inputs.
|
||||||
|
"""
|
||||||
|
data: DataFrame
|
||||||
|
stop_loss: float
|
||||||
|
roi: float
|
||||||
|
trades: int
|
||||||
|
profit_perc: float
|
||||||
|
sl: float
|
||||||
|
|
||||||
|
|
||||||
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
||||||
data_profit = pd.DataFrame([[getdate('2018-07-08 18:00:00').datetime,
|
data_profit = DataFrame([
|
||||||
0.0009910, 0.001011, 0.00098618, 0.001000, 47027.0, 1, 0],
|
[getdate('2018-07-08 18:00:00').datetime, 0.0009910,
|
||||||
[getdate('2018-07-08 19:00:00').datetime,
|
0.001011, 0.00098618, 0.001000, 12345, 1, 0],
|
||||||
0.001000, 0.001010, 0.0009900, 0.0009900, 87116.0, 0, 0],
|
[getdate('2018-07-08 19:00:00').datetime, 0.001000,
|
||||||
[getdate('2018-07-08 20:00:00').datetime,
|
0.001010, 0.0009900, 0.0009900, 12345, 0, 0],
|
||||||
0.0009900, 0.001011, 0.00091618, 0.0009900, 58539.0, 0, 0],
|
[getdate('2018-07-08 20:00:00').datetime, 0.0009900,
|
||||||
[getdate('2018-07-08 21:00:00').datetime,
|
0.001011, 0.00091618, 0.0009900, 12345, 0, 0],
|
||||||
0.001000, 0.001011, 0.00098618, 0.001100, 37498.0, 0, 1],
|
[getdate('2018-07-08 21:00:00').datetime, 0.001000,
|
||||||
[getdate('2018-07-08 22:00:00').datetime,
|
0.001011, 0.00098618, 0.001100, 12345, 0, 1],
|
||||||
0.001000, 0.001011, 0.00098618, 0.0009900, 59792.0, 0, 0]],
|
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
|
||||||
columns=columns)
|
0.001011, 0.00098618, 0.0009900, 12345, 0, 0]
|
||||||
|
], columns=columns)
|
||||||
|
|
||||||
data_loss = pd.DataFrame([[getdate('2018-07-08 18:00:00').datetime,
|
tc_profit1 = BTContainer(data=data_profit, stop_loss=-0.01, roi=1, trades=1,
|
||||||
0.0009910, 0.001011, 0.00098618, 0.001000, 47027.0, 1, 0],
|
profit_perc=0.10557, sl=False) # should be stoploss - drops 8%
|
||||||
[getdate('2018-07-08 19:00:00').datetime,
|
tc_profit2 = BTContainer(data=data_profit, stop_loss=-0.10, roi=1,
|
||||||
0.001000, 0.001010, 0.0009900, 0.001000, 87116.0, 0, 0],
|
trades=1, profit_perc=0.10557, sl=True)
|
||||||
[getdate('2018-07-08 20:00:00').datetime,
|
|
||||||
0.001000, 0.001011, 0.0010618, 0.00091618, 58539.0, 0, 0],
|
|
||||||
[getdate('2018-07-08 21:00:00').datetime,
|
|
||||||
0.001000, 0.001011, 0.00098618, 0.00091618, 37498.0, 0, 0],
|
|
||||||
[getdate('2018-07-08 22:00:00').datetime,
|
|
||||||
0.001000, 0.001011, 0.00098618, 0.00091618, 59792.0, 0, 0]],
|
|
||||||
columns=columns)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("data, stoploss, tradecount, profit_perc, sl", [
|
tc_loss0 = BTContainer(data=DataFrame([
|
||||||
(data_profit, -0.01, 1, 0.10557, False), # should be stoploss - drops 8%
|
[getdate('2018-07-08 18:00:00').datetime, 0.0009910,
|
||||||
# (data_profit, -0.10, 1, 0.10557, True), # win
|
0.001011, 0.00098618, 0.001000, 12345, 1, 0],
|
||||||
(data_loss, -0.05, 1, -0.08839, True), # Stoploss ...
|
[getdate('2018-07-08 19:00:00').datetime, 0.001000,
|
||||||
])
|
0.001010, 0.0009900, 0.001000, 12345, 0, 0],
|
||||||
def test_backtest_results(default_conf, fee, mocker, caplog,
|
[getdate('2018-07-08 20:00:00').datetime, 0.001000,
|
||||||
data, stoploss, tradecount, profit_perc, sl) -> None:
|
0.001011, 0.0010618, 0.00091618, 12345, 0, 0],
|
||||||
|
[getdate('2018-07-08 21:00:00').datetime, 0.001000,
|
||||||
|
0.001011, 0.00098618, 0.00091618, 12345, 0, 0],
|
||||||
|
[getdate('2018-07-08 22:00:00').datetime, 0.001000,
|
||||||
|
0.001011, 0.00098618, 0.00091618, 12345, 0, 0]
|
||||||
|
], columns=columns),
|
||||||
|
stop_loss=-0.05, roi=1, trades=1, profit_perc=-0.08839, sl=True)
|
||||||
|
|
||||||
|
|
||||||
|
# Test 1 Minus 8% Close
|
||||||
|
# Candle Data for test 1 – close at -8% (9200)
|
||||||
|
# Test with Stop-loss at 1%
|
||||||
|
tc1 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9960, 9955, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9955, 9975, 9955, 9990, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9990, 9990, 9200, 9200, 12345, 0, 0]
|
||||||
|
], columns=columns),
|
||||||
|
stop_loss=-0.01, roi=1, trades=1, profit_perc=-0.07999, sl=True)
|
||||||
|
|
||||||
|
# Test 2 Minus 4% Low, minus 1% close
|
||||||
|
# Candle Data for test 2
|
||||||
|
# Test with Stop-Loss at 3%
|
||||||
|
tc2 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9925, 9950, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9600, 9925, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||||||
|
], columns=columns), stop_loss=-0.03, roi=1, trades=1, profit_perc=-0.00999, sl=False) #
|
||||||
|
|
||||||
|
|
||||||
|
# Test 3 Candle drops 4%, Recovers 1%.
|
||||||
|
# Entry Criteria Met
|
||||||
|
# Candle drops 20%
|
||||||
|
# Candle Data for test 3
|
||||||
|
# Test with Stop-Loss at 2%
|
||||||
|
tc3 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 10025, 9600, 9950, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 8000, 8000, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9950, 9900, 12345, 0, 0]
|
||||||
|
], columns=columns), stop_loss=-0.02, roi=1, trades=1, profit_perc=-0.19999, sl=True) #
|
||||||
|
|
||||||
|
|
||||||
|
# Test 4 Minus 3% / recovery +15%
|
||||||
|
# Candle Data for test 4 – Candle drops 3% Closed 15% up
|
||||||
|
# Test with Stop-loss at 2% ROI 6%
|
||||||
|
|
||||||
|
tc4 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 11500, 9700, 11500, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9875, 9900, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||||||
|
], columns=columns),
|
||||||
|
stop_loss=-0.02, roi=0.06, trades=1, profit_perc=-0.141, sl=True)
|
||||||
|
|
||||||
|
# Test 5 / Drops 0.5% Closes +20%
|
||||||
|
# Candle Data for test 5
|
||||||
|
# Set stop-loss at 1% ROI 3%
|
||||||
|
tc5 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 12000, 9950, 12000, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||||||
|
], columns=columns),
|
||||||
|
stop_loss=-0.01, roi=0.03, trades=1, profit_perc=-0.177, sl=True)
|
||||||
|
|
||||||
|
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
|
||||||
|
# Candle Data for test 6
|
||||||
|
# Set stop-loss at 2% ROI at 5%
|
||||||
|
tc6 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9700, 10100, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||||||
|
], columns=columns), stop_loss=-0.02, roi=0.05,
|
||||||
|
trades=1, profit_perc=-0.025, sl=False)
|
||||||
|
|
||||||
|
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
|
||||||
|
# Candle Data for test 7
|
||||||
|
# Set stop-loss at 2% ROI at 3%
|
||||||
|
|
||||||
|
tc7 = BTContainer(data=DataFrame([
|
||||||
|
[getdate('2018-06-10 08:00:00').datetime, 10000, 10050, 9950, 9975, 12345, 1, 0],
|
||||||
|
[getdate('2018-06-10 09:00:00').datetime, 9975, 10600, 9900, 10100, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 10:00:00').datetime, 9950, 10000, 9900, 9925, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 11:00:00').datetime, 9925, 9975, 9945, 9900, 12345, 0, 0],
|
||||||
|
[getdate('2018-06-10 12:00:00').datetime, 9900, 9950, 9850, 9900, 12345, 0, 0]
|
||||||
|
], columns=columns), stop_loss=-0.02, roi=0.03,
|
||||||
|
trades=1, profit_perc=-0.025, sl=False)
|
||||||
|
|
||||||
|
TESTS = [
|
||||||
|
# tc_profit1,
|
||||||
|
# tc_profit2,
|
||||||
|
tc_loss0,
|
||||||
|
tc1,
|
||||||
|
tc2,
|
||||||
|
tc3,
|
||||||
|
tc4,
|
||||||
|
tc5,
|
||||||
|
tc6,
|
||||||
|
tc7,
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("data", TESTS)
|
||||||
|
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
|
||||||
"""
|
"""
|
||||||
run functional tests
|
run functional tests
|
||||||
"""
|
"""
|
||||||
default_conf["stoploss"] = stoploss
|
default_conf["stoploss"] = data.stop_loss
|
||||||
|
default_conf["minimal_roi"] = {"0": data.roi}
|
||||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||||
mocker.patch('freqtrade.analyze.Analyze.populate_sell_trend', MagicMock(return_value=data))
|
mocker.patch.multiple('freqtrade.analyze.Analyze',
|
||||||
mocker.patch('freqtrade.analyze.Analyze.populate_buy_trend', MagicMock(return_value=data))
|
populate_sell_trend=MagicMock(return_value=data.data),
|
||||||
|
populate_buy_trend=MagicMock(return_value=data.data))
|
||||||
patch_exchange(mocker)
|
patch_exchange(mocker)
|
||||||
|
|
||||||
backtesting = Backtesting(default_conf)
|
backtesting = Backtesting(default_conf)
|
||||||
@ -57,7 +179,7 @@ def test_backtest_results(default_conf, fee, mocker, caplog,
|
|||||||
|
|
||||||
pair = 'UNITTEST/BTC'
|
pair = 'UNITTEST/BTC'
|
||||||
# Dummy data as we mock the analyze functions
|
# Dummy data as we mock the analyze functions
|
||||||
data_processed = {pair: pd.DataFrame()}
|
data_processed = {pair: DataFrame()}
|
||||||
results = backtesting.backtest(
|
results = backtesting.backtest(
|
||||||
{
|
{
|
||||||
'stake_amount': default_conf['stake_amount'],
|
'stake_amount': default_conf['stake_amount'],
|
||||||
@ -68,9 +190,9 @@ def test_backtest_results(default_conf, fee, mocker, caplog,
|
|||||||
)
|
)
|
||||||
print(results.T)
|
print(results.T)
|
||||||
|
|
||||||
assert len(results) == tradecount
|
assert len(results) == data.trades
|
||||||
assert round(results["profit_percent"].sum(), 5) == profit_perc
|
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
|
||||||
if sl:
|
if data.sl:
|
||||||
assert log_has("Stop loss hit.", caplog.record_tuples)
|
assert log_has("Stop loss hit.", caplog.record_tuples)
|
||||||
else:
|
else:
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user