Allow user to go live and start from pretrained models (after a completed backtest) by simply reusing the identifier config parameter while dry/live.

This commit is contained in:
robcaulk 2022-05-25 14:40:32 +02:00
parent 7486d9d9e2
commit b79d4e8876
5 changed files with 33 additions and 39 deletions

View File

@ -55,10 +55,9 @@
"15m" "15m"
], ],
"train_period": 30, "train_period": 30,
"backtest_period": 7, "backtest_period": 10,
"identifier": "example", "identifier": "example",
"live_trained_timerange": "", "live_trained_timestamp": 0,
"live_full_backtestrange": "",
"corr_pairlist": [ "corr_pairlist": [
"BTC/USDT", "BTC/USDT",
"ETH/USDT", "ETH/USDT",

View File

@ -158,7 +158,7 @@ a specific pair or timeframe, they should use the following structure inside `po
if pair == metadata['pair'] and tf == self.timeframe: if pair == metadata['pair'] and tf == self.timeframe:
df['%-day_of_week'] = (df["date"].dt.dayofweek + 1) / 7 df['%-day_of_week'] = (df["date"].dt.dayofweek + 1) / 7
df['%-hour_of_day'] = (df['date'].dt.hour + 1) / 25 df['%-hour_of_day'] = (df['date'].dt.hour + 1) / 25
```
(Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`) (Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`)
@ -270,27 +270,22 @@ freqtrade trade --strategy FreqaiExampleStrategy --config config_freqai.example.
By default, Freqai will not find find any existing models and will start by training a new one By default, Freqai will not find find any existing models and will start by training a new one
given the user configuration settings. Following training, it will use that model to predict for the given the user configuration settings. Following training, it will use that model to predict for the
duration of `backtest_period`. After a full `backtest_period` has elapsed, Freqai will auto retrain duration of `backtest_period`. After a full `backtest_period` has elapsed, Freqai will auto retrain
a new model, and begin making predictions with the updated model. a new model, and begin making predictions with the updated model. FreqAI in live mode permits
the user to use fractional days (i.e. 0.1) in the `backtest_period`, which enables more frequent
retraining.
If the user wishes to start dry/live from a saved model, the following configuration If the user wishes to start dry/live from a backtested saved model, the user only needs to reuse
parameters need to be set: the same `identifier` parameter
```json ```json
"freqai": { "freqai": {
"identifier": "example", "identifier": "example",
"live_trained_timerange": "20220330-20220429",
"live_full_backtestrange": "20220302-20220501"
} }
``` ```
Where the `identifier` is the same identifier which was set during the backtesting/training. Meanwhile, In this case, although Freqai will initiate with a
the `live_trained_timerange` is the sub-trained timerange (the training window) which was set pre-trained model, it will still check to see how much time has elapsed since the model was trained,
during backtesting/training. These are available to the user inside `user_data/models/*/sub-train-*`. and if a full `backtest_period` has elapsed since the end of the loaded model, FreqAI will self retrain.
`live_full_backtestrange` was the full data range associated with the backtest/training (the full time
window that the training window and backtesting windows slide through). These values can be located
inside the `user_data/models/` directory. In this case, although Freqai will initiate with a
pre-trained model, if a full `backtest_period` has elapsed since the end of the user set
`live_trained_timerange`, it will self retrain.
## Data anylsis techniques ## Data anylsis techniques

View File

@ -440,15 +440,13 @@ CONF_SCHEMA = {
"train_period": {"type": "integer", "default": 0}, "train_period": {"type": "integer", "default": 0},
"backtest_period": {"type": "float", "default": 7}, "backtest_period": {"type": "float", "default": 7},
"identifier": {"type": "str", "default": "example"}, "identifier": {"type": "str", "default": "example"},
"live_trained_timerange": {"type": "str"},
"live_full_backtestrange": {"type": "str"},
"corr_pairlist": {"type": "list"}, "corr_pairlist": {"type": "list"},
"feature_parameters": { "feature_parameters": {
"type": "object", "type": "object",
"properties": { "properties": {
"period": {"type": "integer"}, "period": {"type": "integer"},
"shift": {"type": "integer", "default": 0}, "shift": {"type": "integer", "default": 0},
"DI_threshold": {"type": "integer", "default": 0}, "DI_threshold": {"type": "float", "default": 0},
"weight_factor": {"type": "number", "default": 0}, "weight_factor": {"type": "number", "default": 0},
"principal_component_analysis": {"type": "boolean", "default": False}, "principal_component_analysis": {"type": "boolean", "default": False},
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False}, "use_SVM_to_remove_outliers": {"type": "boolean", "default": False},

View File

@ -74,8 +74,7 @@ class FreqaiDataKitchen:
def set_paths(self, metadata: dict, trained_timestamp: int = None,) -> None: def set_paths(self, metadata: dict, trained_timestamp: int = None,) -> None:
self.full_path = Path(self.config['user_data_dir'] / self.full_path = Path(self.config['user_data_dir'] /
"models" / "models" /
str(self.freqai_config.get('live_full_backtestrange') + str(self.freqai_config.get('identifier')))
self.freqai_config.get('identifier')))
self.data_path = Path(self.full_path / str("sub-train" + "-" + self.data_path = Path(self.full_path / str("sub-train" + "-" +
metadata['pair'].split("/")[0] + metadata['pair'].split("/")[0] +
@ -114,7 +113,7 @@ class FreqaiDataKitchen:
save_path / str(self.model_filename + "_trained_df.pkl") save_path / str(self.model_filename + "_trained_df.pkl")
) )
if self.live: # if self.live:
self.data_drawer.model_dictionary[self.model_filename] = model self.data_drawer.model_dictionary[self.model_filename] = model
self.data_drawer.pair_dict[coin]['model_filename'] = self.model_filename self.data_drawer.pair_dict[coin]['model_filename'] = self.model_filename
self.data_drawer.pair_dict[coin]['data_path'] = str(self.data_path) self.data_drawer.pair_dict[coin]['data_path'] = str(self.data_path)
@ -142,7 +141,7 @@ class FreqaiDataKitchen:
:model: User trained model which can be inferenced for new predictions :model: User trained model which can be inferenced for new predictions
""" """
if self.live: # if self.live:
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename'] self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path']) self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
@ -696,7 +695,7 @@ class FreqaiDataKitchen:
self.full_path = Path( self.full_path = Path(
self.config["user_data_dir"] self.config["user_data_dir"]
/ "models" / "models"
/ str(full_timerange + self.freqai_config.get("identifier")) / str(self.freqai_config.get("identifier"))
) )
config_path = Path(self.config["config_files"][0]) config_path = Path(self.config["config_files"][0])
@ -750,10 +749,10 @@ class FreqaiDataKitchen:
str(int(trained_timerange.stopts)))) str(int(trained_timerange.stopts))))
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts)) self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
# this is not persistent at the moment TODO
self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts)) # self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
# enables persistence, but not fully implemented into save/load data yer # enables persistence, but not fully implemented into save/load data yer
self.data['live_trained_timerange'] = str(int(trained_timerange.stopts)) # self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict) -> None: def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict) -> None:

View File

@ -77,13 +77,13 @@ class IFreqaiModel(ABC):
""" """
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE) self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.data_drawer.set_pair_dict_info(metadata)
# For live, we may be training new models on a separate thread while other pairs still need # For live, we may be training new models on a separate thread while other pairs still need
# to inference their historical models. Here we use a training queue system to handle this # to inference their historical models. Here we use a training queue system to handle this
# and we keep the flag self.training_on_separate_threaad in the current object to help # and we keep the flag self.training_on_separate_threaad in the current object to help
# determine what the current pair will do # determine what the current pair will do
if self.live: if self.live:
self.data_drawer.set_pair_dict_info(metadata)
if (not self.training_on_separate_thread and if (not self.training_on_separate_thread and
self.data_drawer.training_queue == 1): self.data_drawer.training_queue == 1):
@ -137,6 +137,7 @@ class IFreqaiModel(ABC):
for tr_train, tr_backtest in zip( for tr_train, tr_backtest in zip(
dh.training_timeranges, dh.backtesting_timeranges dh.training_timeranges, dh.backtesting_timeranges
): ):
(_, _, _) = self.data_drawer.get_pair_dict_info(metadata)
gc.collect() gc.collect()
dh.data = {} # clean the pair specific data between training window sliding dh.data = {} # clean the pair specific data between training window sliding
self.training_timerange = tr_train self.training_timerange = tr_train
@ -150,9 +151,12 @@ class IFreqaiModel(ABC):
if not self.model_exists(metadata["pair"], dh, if not self.model_exists(metadata["pair"], dh,
trained_timestamp=trained_timestamp.stopts): trained_timestamp=trained_timestamp.stopts):
self.model = self.train(dataframe_train, metadata, dh) self.model = self.train(dataframe_train, metadata, dh)
dh.save_data(self.model) self.data_drawer.pair_dict[metadata['pair']][
'trained_timestamp'] = trained_timestamp.stopts
dh.set_new_model_names(metadata, trained_timestamp)
dh.save_data(self.model, metadata['pair'])
else: else:
self.model = dh.load_data() self.model = dh.load_data(metadata['pair'])
# strategy_provided_features = self.dh.find_features(dataframe_train) # strategy_provided_features = self.dh.find_features(dataframe_train)
# # FIXME doesnt work with PCA # # FIXME doesnt work with PCA
@ -295,8 +299,7 @@ class IFreqaiModel(ABC):
def set_full_path(self) -> None: def set_full_path(self) -> None:
self.full_path = Path(self.config['user_data_dir'] / self.full_path = Path(self.config['user_data_dir'] /
"models" / "models" /
str(self.freqai_info.get('live_full_backtestrange') + str(self.freqai_info.get('identifier')))
self.freqai_info.get('identifier')))
@threaded @threaded
def retrain_model_on_separate_thread(self, new_trained_timerange: TimeRange, metadata: dict, def retrain_model_on_separate_thread(self, new_trained_timerange: TimeRange, metadata: dict,