Allow user to go live and start from pretrained models (after a completed backtest) by simply reusing the identifier config parameter while dry/live.

This commit is contained in:
robcaulk
2022-05-25 14:40:32 +02:00
parent 7486d9d9e2
commit b79d4e8876
5 changed files with 33 additions and 39 deletions

View File

@@ -74,8 +74,7 @@ class FreqaiDataKitchen:
def set_paths(self, metadata: dict, trained_timestamp: int = None,) -> None:
self.full_path = Path(self.config['user_data_dir'] /
"models" /
str(self.freqai_config.get('live_full_backtestrange') +
self.freqai_config.get('identifier')))
str(self.freqai_config.get('identifier')))
self.data_path = Path(self.full_path / str("sub-train" + "-" +
metadata['pair'].split("/")[0] +
@@ -114,11 +113,11 @@ class FreqaiDataKitchen:
save_path / str(self.model_filename + "_trained_df.pkl")
)
if self.live:
self.data_drawer.model_dictionary[self.model_filename] = model
self.data_drawer.pair_dict[coin]['model_filename'] = self.model_filename
self.data_drawer.pair_dict[coin]['data_path'] = str(self.data_path)
self.data_drawer.save_drawer_to_disk()
# if self.live:
self.data_drawer.model_dictionary[self.model_filename] = model
self.data_drawer.pair_dict[coin]['model_filename'] = self.model_filename
self.data_drawer.pair_dict[coin]['data_path'] = str(self.data_path)
self.data_drawer.save_drawer_to_disk()
# TODO add a helper function to let user save/load any data they are custom adding. We
# do not want them having to edit the default save/load methods here. Below is an example
@@ -142,9 +141,9 @@ class FreqaiDataKitchen:
:model: User trained model which can be inferenced for new predictions
"""
if self.live:
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
# if self.live:
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
with open(self.data_path / str(self.model_filename + "_metadata.json"), "r") as fp:
self.data = json.load(fp)
@@ -696,7 +695,7 @@ class FreqaiDataKitchen:
self.full_path = Path(
self.config["user_data_dir"]
/ "models"
/ str(full_timerange + self.freqai_config.get("identifier"))
/ str(self.freqai_config.get("identifier"))
)
config_path = Path(self.config["config_files"][0])
@@ -750,10 +749,10 @@ class FreqaiDataKitchen:
str(int(trained_timerange.stopts))))
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
# this is not persistent at the moment TODO
self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
# self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
# enables persistence, but not fully implemented into save/load data yer
self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
# self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict) -> None:

View File

@@ -77,13 +77,13 @@ class IFreqaiModel(ABC):
"""
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.data_drawer.set_pair_dict_info(metadata)
# For live, we may be training new models on a separate thread while other pairs still need
# to inference their historical models. Here we use a training queue system to handle this
# and we keep the flag self.training_on_separate_threaad in the current object to help
# determine what the current pair will do
if self.live:
self.data_drawer.set_pair_dict_info(metadata)
if (not self.training_on_separate_thread and
self.data_drawer.training_queue == 1):
@@ -137,6 +137,7 @@ class IFreqaiModel(ABC):
for tr_train, tr_backtest in zip(
dh.training_timeranges, dh.backtesting_timeranges
):
(_, _, _) = self.data_drawer.get_pair_dict_info(metadata)
gc.collect()
dh.data = {} # clean the pair specific data between training window sliding
self.training_timerange = tr_train
@@ -150,9 +151,12 @@ class IFreqaiModel(ABC):
if not self.model_exists(metadata["pair"], dh,
trained_timestamp=trained_timestamp.stopts):
self.model = self.train(dataframe_train, metadata, dh)
dh.save_data(self.model)
self.data_drawer.pair_dict[metadata['pair']][
'trained_timestamp'] = trained_timestamp.stopts
dh.set_new_model_names(metadata, trained_timestamp)
dh.save_data(self.model, metadata['pair'])
else:
self.model = dh.load_data()
self.model = dh.load_data(metadata['pair'])
# strategy_provided_features = self.dh.find_features(dataframe_train)
# # FIXME doesnt work with PCA
@@ -295,8 +299,7 @@ class IFreqaiModel(ABC):
def set_full_path(self) -> None:
self.full_path = Path(self.config['user_data_dir'] /
"models" /
str(self.freqai_info.get('live_full_backtestrange') +
self.freqai_info.get('identifier')))
str(self.freqai_info.get('identifier')))
@threaded
def retrain_model_on_separate_thread(self, new_trained_timerange: TimeRange, metadata: dict,