Merge pull request #5491 from freqtrade/new_release

New release 2021.8
This commit is contained in:
Matthias 2021-08-28 11:45:59 +02:00 committed by GitHub
commit b4d869e8c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
129 changed files with 2891 additions and 1906 deletions

View File

@ -26,8 +26,8 @@ hesitate to read the source code and understand the mechanism of this bot.
Please read the [exchange specific notes](docs/exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#binance-blacklist))
- [X] [Bittrex](https://bittrex.com/)
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#blacklists))
- [X] [Kraken](https://kraken.com/)
- [X] [FTX](https://ftx.com)
- [ ] [potentially many others](https://github.com/ccxt/ccxt/). _(We cannot guarantee they will work)_
@ -37,7 +37,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
Exchanges confirmed working by the community:
- [X] [Bitvavo](https://bitvavo.com/)
- [X] [Kukoin](https://www.kucoin.com/)
- [X] [Kucoin](https://www.kucoin.com/)
## Documentation

View File

@ -37,12 +37,12 @@ fi
# Tag image for upload and next build step
docker tag freqtrade:$TAG_ARM ${CACHE_IMAGE}:$TAG_ARM
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG_ARM} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG_ARM} -t freqtrade:${TAG_PLOT_ARM} -f docker/Dockerfile.plot .
docker tag freqtrade:$TAG_PLOT_ARM ${CACHE_IMAGE}:$TAG_PLOT_ARM
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy DefaultStrategy
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG_ARM} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV2
if [ $? -ne 0 ]; then
echo "failed running backtest"
@ -63,18 +63,16 @@ echo "create manifests"
docker manifest create --amend ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:${TAG}
docker manifest create --amend ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM} ${CACHE_IMAGE}:${TAG_PLOT}
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM} ${CACHE_IMAGE}:${TAG_PLOT}
docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
Tag as latest for develop builds
# Tag as latest for develop builds
if [ "${TAG}" = "develop" ]; then
docker tag ${IMAGE_NAME}:develop ${IMAGE_NAME}:latest
docker push ${IMAGE_NAME}:latest
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
docker manifest push -p ${IMAGE_NAME}:latest
fi
docker images
if [ $? -ne 0 ]; then
echo "failed building image"
return 1
fi
# Cleanup old images from arm64 node.
docker image prune -a --force --filter "until=24h"

View File

@ -48,12 +48,12 @@ fi
# Tag image for upload and next build step
docker tag freqtrade:$TAG ${CACHE_IMAGE}:$TAG
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker build --cache-from freqtrade:${TAG} --build-arg sourceimage=${CACHE_IMAGE} --build-arg sourcetag=${TAG} -t freqtrade:${TAG_PLOT} -f docker/Dockerfile.plot .
docker tag freqtrade:$TAG_PLOT ${CACHE_IMAGE}:$TAG_PLOT
# Run backtest
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy DefaultStrategy
docker run --rm -v $(pwd)/config_examples/config_bittrex.example.json:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy StrategyTestV2
if [ $? -ne 0 ]; then
echo "failed running backtest"

View File

@ -78,33 +78,6 @@
"refresh_period": 1440
}
],
"protections": [
{
"method": "StoplossGuard",
"lookback_period_candles": 60,
"trade_limit": 4,
"stop_duration_candles": 60,
"only_per_pair": false
},
{
"method": "CooldownPeriod",
"stop_duration_candles": 20
},
{
"method": "MaxDrawdown",
"lookback_period_candles": 200,
"trade_limit": 20,
"stop_duration_candles": 10,
"max_allowed_drawdown": 0.2
},
{
"method": "LowProfitPairs",
"lookback_period_candles": 360,
"trade_limit": 1,
"stop_duration_candles": 2,
"required_profit": 0.02
}
],
"exchange": {
"name": "binance",
"sandbox": false,
@ -201,7 +174,7 @@
"heartbeat_interval": 60
},
"disable_dataframe_checks": false,
"strategy": "DefaultStrategy",
"strategy": "SampleStrategy",
"strategy_path": "user_data/strategies/",
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"

View File

@ -1,5 +1,6 @@
ARG sourceimage=develop
FROM freqtradeorg/freqtrade:${sourceimage}
ARG sourceimage=freqtradeorg/freqtrade
ARG sourcetag=develop
FROM ${sourceimage}:${sourcetag}
# Install dependencies
COPY requirements-plot.txt /freqtrade/

View File

@ -62,7 +62,7 @@ optional arguments:
this together with `--export trades`, the strategy-
name is injected into the filename (so `backtest-
data.json` becomes `backtest-data-
DefaultStrategy.json`
SampleStrategy.json`
--export {none,trades}
Export backtest results (default: trades).
--export-filename PATH

View File

@ -35,12 +35,13 @@ By default, loop runs every few seconds (`internals.process_throttle_secs`) and
* Calls `check_buy_timeout()` strategy callback for open buy orders.
* Calls `check_sell_timeout()` strategy callback for open sell orders.
* Verifies existing positions and eventually places sell orders.
* Considers stoploss, ROI and sell-signal.
* Determine sell-price based on `ask_strategy` configuration setting.
* Considers stoploss, ROI and sell-signal, `custom_sell()` and `custom_stoploss()`.
* Determine sell-price based on `ask_strategy` configuration setting or by using the `custom_exit_price()` callback.
* Before a sell order is placed, `confirm_trade_exit()` strategy callback is called.
* Check if trade-slots are still available (if `max_open_trades` is reached).
* Verifies buy signal trying to enter new positions.
* Determine buy-price based on `bid_strategy` configuration setting.
* Determine buy-price based on `bid_strategy` configuration setting, or by using the `custom_entry_price()` callback.
* Determine stake size by calling the `custom_stake_amount()` callback.
* Before a buy order is placed, `confirm_trade_entry()` strategy callback is called.
This loop will be repeated again and again until the bot is stopped.
@ -52,9 +53,10 @@ This loop will be repeated again and again until the bot is stopped.
* Load historic data for configured pairlist.
* Calls `bot_loop_start()` once.
* Calculate indicators (calls `populate_indicators()` once per pair).
* Calculate buy / sell signals (calls `populate_buy_trend()` and `populate_sell_trend()` once per pair)
* Confirm trade buy / sell (calls `confirm_trade_entry()` and `confirm_trade_exit()` if implemented in the strategy)
* Calculate buy / sell signals (calls `populate_buy_trend()` and `populate_sell_trend()` once per pair).
* Loops per candle simulating entry and exit points.
* Confirm trade buy / sell (calls `confirm_trade_entry()` and `confirm_trade_exit()` if implemented in the strategy).
* Call `custom_stoploss()` and `custom_sell()` to find custom exit points.
* Generate backtest report output
!!! Note

View File

@ -11,6 +11,37 @@ Per default, the bot loads the configuration from the `config.json` file, locate
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
If you used the [Quick start](installation.md/#quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
The Freqtrade configuration file is to be written in JSON format.
Additionally to the standard JSON syntax, you may use one-line `// ...` and multi-line `/* ... */` comments in your configuration files and trailing commas in the lists of parameters.
Do not worry if you are not familiar with JSON format -- simply open the configuration file with an editor of your choice, make some changes to the parameters you need, save your changes and, finally, restart the bot or, if it was previously stopped, run it again with the changes you made to the configuration. The bot validates the syntax of the configuration file at startup and will warn you if you made any errors editing it, pointing out problematic lines.
### Environment variables
Set options in the Freqtrade configuration via environment variables.
This takes priority over the corresponding value in configuration or strategy.
Environment variables must be prefixed with `FREQTRADE__` to be loaded to the freqtrade configuration.
`__` serves as level separator, so the format used should correspond to `FREQTRADE__{section}__{key}`.
As such - an environment variable defined as `export FREQTRADE__STAKE_AMOUNT=200` would result in `{stake_amount: 200}`.
A more complex example might be `export FREQTRADE__EXCHANGE__KEY=<yourExchangeKey>` to keep your exchange key secret. This will move the value to the `exchange.key` section of the configuration.
Using this scheme, all configuration settings will also be available as environment variables.
Please note that Environment variables will overwrite corresponding settings in your configuration, but command line Arguments will always win.
!!! Note
Environment variables detected are logged at startup - so if you can't find why a value is not what you think it should be based on the configuration, make sure it's not loaded from an environment variable.
### Multiple configuration files
Multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
!!! Tip "Use multiple configuration files to keep secrets secret"
@ -22,17 +53,6 @@ Multiple configuration files can be specified and used by the bot or the bot can
The 2nd file should only specify what you intend to override.
If a key is in more than one of the configurations, then the "last specified configuration" wins (in the above example, `config-private.json`).
If you used the [Quick start](installation.md/#quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If the default configuration file is not created we recommend you to use `freqtrade new-config --config config.json` to generate a basic configuration file.
The Freqtrade configuration file is to be written in JSON format.
Additionally to the standard JSON syntax, you may use one-line `// ...` and multi-line `/* ... */` comments in your configuration files and trailing commas in the lists of parameters.
Do not worry if you are not familiar with JSON format -- simply open the configuration file with an editor of your choice, make some changes to the parameters you need, save your changes and, finally, restart the bot or, if it was previously stopped, run it again with the changes you made to the configuration. The bot validates the syntax of the configuration file at startup and will warn you if you made any errors editing it, pointing out problematic lines.
## Configuration parameters
The table below will list all configuration parameters available.
@ -41,6 +61,7 @@ Freqtrade can also load many options via command line (CLI) arguments (check out
The prevalence for all Options is as follows:
- CLI arguments override any other option
- [Environment Variables](#environment-variables)
- Configuration files are used in sequence (the last file wins) and override Strategy configurations.
- Strategy configurations are only used if they are not set via configuration or command-line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
@ -84,11 +105,12 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `ask_strategy.order_book_top` | Bot will use the top N rate in Order Book "price_side" to sell. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Asks](#sell-price-with-orderbook-enabled)<br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `sell_profit_only` | Wait until the bot reaches `sell_profit_offset` before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `sell_profit_offset` | Sell-signal is only active above this value. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `sell_profit_offset` | Sell-signal is only active above this value. Only active in combination with `sell_profit_only=True`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0`.* <br> **Datatype:** Float (as ratio)
| `ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ignore_buying_expired_candle_after` | Specifies the number of seconds until a buy signal is no longer used. <br> **Datatype:** Integer
| `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price. <br>*Defaults to `0.02` 2%).*<br> **Datatype:** Positive float
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
@ -526,9 +548,10 @@ Once you will be happy with your bot performance running in the Dry-run mode, yo
## Switch to production mode
In production mode, the bot will engage your money. Be careful, since a wrong
strategy can lose all your money. Be aware of what you are doing when
you run it in production mode.
In production mode, the bot will engage your money. Be careful, since a wrong strategy can lose all your money.
Be aware of what you are doing when you run it in production mode.
When switching to Production mode, please make sure to use a different / fresh database to avoid dry-run trades messing with your exchange money and eventually tainting your statistics.
### Setup your exchange account

View File

@ -240,11 +240,18 @@ The `IProtection` parent class provides a helper method for this in `calculate_l
!!! Note
This section is a Work in Progress and is not a complete guide on how to test a new exchange with Freqtrade.
!!! Note
Make sure to use an up-to-date version of CCXT before running any of the below tests.
You can get the latest version of ccxt by running `pip install -U ccxt` with activated virtual environment.
Native docker is not supported for these tests, however the available dev-container will support all required actions and eventually necessary changes.
Most exchanges supported by CCXT should work out of the box.
To quickly test the public endpoints of an exchange, add a configuration for your exchange to `test_ccxt_compat.py` and run these tests with `pytest --longrun tests/exchange/test_ccxt_compat.py`.
Completing these tests successfully a good basis point (it's a requirement, actually), however these won't guarantee correct exchange functioning, as this only tests public endpoints, but no private endpoint (like generate order or similar).
Also try to use `freqtrade download-data` for an extended timerange and verify that the data downloaded correctly (no holes, the specified timerange was actually downloaded).
### Stoploss On Exchange
Check if the new exchange supports Stoploss on Exchange orders through their API.

View File

@ -105,7 +105,7 @@ To use subaccounts with FTX, you need to edit the configuration and add the foll
## Kucoin
Kucoin requries a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
Kucoin requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows:
```json
"exchange": {

View File

@ -48,7 +48,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--hyperopt-path PATH] [--eps] [--dmmp]
[--enable-protections]
[--dry-run-wallet DRY_RUN_WALLET] [-e INT]
[--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]]
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]]
[--print-all] [--no-color] [--print-json] [-j JOBS]
[--random-state INT] [--min-trades INT]
[--hyperopt-loss NAME] [--disable-param-export]
@ -92,7 +92,7 @@ optional arguments:
Starting balance, used for backtesting / hyperopt and
dry-runs.
-e INT, --epochs INT Specify number of epochs (default: 100).
--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]
--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]
Specify which parameters to hyperopt. Space-separated
list.
--print-all Print all results, not only the best ones.
@ -253,7 +253,7 @@ We continue to define hyperoptable parameters:
class MyAwesomeStrategy(IStrategy):
buy_adx = DecimalParameter(20, 40, decimals=1, default=30.1, space="buy")
buy_rsi = IntParameter(20, 40, default=30, space="buy")
buy_adx_enabled = CategoricalParameter([True, False], default=True, space="buy")
buy_adx_enabled = BooleanParameter(default=True, space="buy")
buy_rsi_enabled = CategoricalParameter([True, False], default=False, space="buy")
buy_trigger = CategoricalParameter(["bb_lower", "macd_cross_signal"], default="bb_lower", space="buy")
```
@ -316,6 +316,7 @@ There are four parameter types each suited for different purposes.
* `DecimalParameter` - defines a floating point parameter with a limited number of decimals (default 3). Should be preferred instead of `RealParameter` in most cases.
* `RealParameter` - defines a floating point parameter with upper and lower boundaries and no precision limit. Rarely used as it creates a space with a near infinite number of possibilities.
* `CategoricalParameter` - defines a parameter with a predetermined number of choices.
* `BooleanParameter` - Shorthand for `CategoricalParameter([True, False])` - great for "enable" parameters.
!!! Tip "Disabling parameter optimization"
Each parameter takes two boolean parameters:
@ -326,7 +327,7 @@ There are four parameter types each suited for different purposes.
!!! Warning
Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case.
### Optimizing an indicator parameter
## Optimizing an indicator parameter
Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy.
@ -336,8 +337,8 @@ from functools import reduce
import talib.abstract as ta
from freqtrade.strategy import IStrategy
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyAwesomeStrategy(IStrategy):
@ -413,6 +414,98 @@ While this strategy is most likely too simple to provide consistent profit, it s
While this may slow down the hyperopt startup speed, the overall performance will increase as the Hyperopt execution itself may pick the same value for multiple epochs (changing other values).
You should however try to use space ranges as small as possible. Every new column will require more memory, and every possibility hyperopt can try will increase the search space.
## Optimizing protections
Freqtrade can also optimize protections. How you optimize protections is up to you, and the following should be considered as example only.
The strategy will simply need to define the "protections" entry as property returning a list of protection configurations.
``` python
from pandas import DataFrame
from functools import reduce
import talib.abstract as ta
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
import freqtrade.vendor.qtpylib.indicators as qtpylib
class MyAwesomeStrategy(IStrategy):
stoploss = -0.05
timeframe = '15m'
# Define the parameter spaces
cooldown_lookback = IntParameter(2, 48, default=5, space="protection", optimize=True)
stop_duration = IntParameter(12, 200, default=5, space="protection", optimize=True)
use_stop_protection = BooleanParameter(default=True, space="protection", optimize=True)
@property
def protections(self):
prot = []
prot.append({
"method": "CooldownPeriod",
"stop_duration_candles": self.cooldown_lookback.value
})
if self.use_stop_protection.value:
prot.append({
"method": "StoplossGuard",
"lookback_period_candles": 24 * 3,
"trade_limit": 4,
"stop_duration_candles": self.stop_duration.value,
"only_per_pair": False
})
return protection
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# ...
```
You can then run hyperopt as follows:
`freqtrade hyperopt --hyperopt-loss SharpeHyperOptLossDaily --strategy MyAwesomeStrategy --spaces protection`
!!! Note
The protection space is not part of the default space, and is only available with the Parameters Hyperopt interface, not with the legacy hyperopt interface (which required separate hyperopt files).
Freqtrade will also automatically change the "--enable-protections" flag if the protection space is selected.
!!! Warning
If protections are defined as property, entries from the configuration will be ignored.
It is therefore recommended to not define protections in the configuration.
### Migrating from previous property setups
A migration from a previous setup is pretty simple, and can be accomplished by converting the protections entry to a property.
In simple terms, the following configuration will be converted to the below.
``` python
class MyAwesomeStrategy(IStrategy):
protections = [
{
"method": "CooldownPeriod",
"stop_duration_candles": 4
}
]
```
Result
``` python
class MyAwesomeStrategy(IStrategy):
@property
def protections(self):
return [
{
"method": "CooldownPeriod",
"stop_duration_candles": 4
}
]
```
You will then obviously also change potential interesting entries to parameters to allow hyper-optimization.
## Loss-functions
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
@ -483,7 +576,8 @@ Legal values are:
* `roi`: just optimize the minimal profit table for your strategy
* `stoploss`: search for the best stoploss value
* `trailing`: search for the best trailing stop values
* `default`: `all` except `trailing`
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
* `default`: `all` except `trailing` and `protection`
* space-separated list of any of the above values for example `--spaces roi stoploss`
The default Hyperopt Search Space, used when no `--space` command line option is specified, does not include the `trailing` hyperspace. We recommend you to run optimization for the `trailing` hyperspace separately, when the best parameters for other hyperspaces were found, validated and pasted into your custom strategy.

View File

@ -58,7 +58,7 @@ This option must be configured along with `exchange.skip_pair_validation` in the
When used in the chain of Pairlist Handlers in a non-leading position (after StaticPairList and other Pairlist Filters), `VolumePairList` considers outputs of previous Pairlist Handlers, adding its sorting/selection of the pairs by the trading volume.
When used on the leading position of the chain of Pairlist Handlers, it does not consider `pair_whitelist` configuration setting, but selects the top assets from all available markets (with matching stake-currency) on the exchange.
When used in the leading position of the chain of Pairlist Handlers, the `pair_whitelist` configuration setting is ignored. Instead, `VolumePairList` selects the top assets from all available markets with matching stake-currency on the exchange.
The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
The pairlist cache (`refresh_period`) on `VolumePairList` is only applicable to generating pairlists.
@ -74,11 +74,14 @@ Filtering instances (not the first position in the list) will not apply any cach
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"min_value": 0,
"refresh_period": 1800
}
],
```
You can define a minimum volume with `min_value` - which will filter out pairs with a volume lower than the specified value in the specified timerange.
`VolumePairList` can also operate in an advanced mode to build volume over a given timerange of specified candle size. It utilizes exchange historical candle data, builds a typical price (calculated by (open+high+low)/3) and multiplies the typical price with every candle's volume. The sum is the `quoteVolume` over the given range. This allows different scenarios, for a more smoothened volume, when using longer ranges with larger candle sizes, or the opposite when using a short range with small candles.
For convenience `lookback_days` can be specified, which will imply that 1d candles will be used for the lookback. In the example below the pairlist would be created based on the last 7 days:
@ -89,6 +92,7 @@ For convenience `lookback_days` can be specified, which will imply that 1d candl
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"min_value": 0,
"refresh_period": 86400,
"lookback_days": 7
}
@ -109,6 +113,7 @@ More sophisticated approach can be used, by using `lookback_timeframe` for candl
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"min_value": 0,
"refresh_period": 3600,
"lookback_timeframe": "1h",
"lookback_period": 72
@ -221,10 +226,10 @@ If `DOGE/BTC` maximum bid is 0.00000026 and minimum ask is 0.00000027, the ratio
#### RangeStabilityFilter
Removes pairs where the difference between lowest low and highest high over `lookback_days` days is below `min_rate_of_change`. Since this is a filter that requires additional data, the results are cached for `refresh_period`.
Removes pairs where the difference between lowest low and highest high over `lookback_days` days is below `min_rate_of_change` or above `max_rate_of_change`. Since this is a filter that requires additional data, the results are cached for `refresh_period`.
In the below example:
If the trading range over the last 10 days is <1%, remove the pair from the whitelist.
If the trading range over the last 10 days is <1% or >99%, remove the pair from the whitelist.
```json
"pairlists": [
@ -232,6 +237,7 @@ If the trading range over the last 10 days is <1%, remove the pair from the whit
"method": "RangeStabilityFilter",
"lookback_days": 10,
"min_rate_of_change": 0.01,
"max_rate_of_change": 0.99,
"refresh_period": 1440
}
]
@ -239,6 +245,7 @@ If the trading range over the last 10 days is <1%, remove the pair from the whit
!!! Tip
This Filter can be used to automatically remove stable coin pairs, which have a very low trading range, and are therefore extremely difficult to trade with profit.
Additionally, it can also be used to automatically remove pairs with extreme high/low variance over a given amount of time.
#### VolatilityFilter

View File

@ -15,6 +15,10 @@ All protection end times are rounded up to the next candle to avoid sudden, unex
!!! Note "Backtesting"
Protections are supported by backtesting and hyperopt, but must be explicitly enabled by using the `--enable-protections` flag.
!!! Warning "Setting protections from the configuration"
Setting protections from the configuration via `"protections": [],` key should be considered deprecated and will be removed in a future version.
It is also no longer guaranteed that your protections apply to the strategy in cases where the strategy defines [protections as property](hyperopt.md#optimizing-protections).
### Available Protections
* [`StoplossGuard`](#stoploss-guard) Stop trading if a certain amount of stoploss occurred within a certain time window.
@ -47,7 +51,9 @@ This applies across all pairs, unless `only_per_pair` is set to true, which will
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
``` python
protections = [
@property
def protections(self):
return [
{
"method": "StoplossGuard",
"lookback_period_candles": 24,
@ -69,7 +75,9 @@ protections = [
The below sample stops trading for 12 candles if max-drawdown is > 20% considering all pairs - with a minimum of `trade_limit` trades - within the last 48 candles. If desired, `lookback_period` and/or `stop_duration` can be used.
``` python
protections = [
@property
def protections(self):
return [
{
"method": "MaxDrawdown",
"lookback_period_candles": 48,
@ -88,7 +96,9 @@ If that ratio is below `required_profit`, that pair will be locked for `stop_dur
The below example will stop trading a pair for 60 minutes if the pair does not have a required profit of 2% (and a minimum of 2 trades) within the last 6 candles.
``` python
protections = [
@property
def protections(self):
return [
{
"method": "LowProfitPairs",
"lookback_period_candles": 6,
@ -106,7 +116,9 @@ protections = [
The below example will stop trading a pair for 2 candles after closing a trade, allowing this pair to "cool down".
``` python
protections = [
@property
def protections(self):
return [
{
"method": "CooldownPeriod",
"stop_duration_candles": 2
@ -136,7 +148,10 @@ from freqtrade.strategy import IStrategy
class AwesomeStrategy(IStrategy)
timeframe = '1h'
protections = [
@property
def protections(self):
return [
{
"method": "CooldownPeriod",
"stop_duration_candles": 5

View File

@ -36,7 +36,7 @@ Freqtrade is a crypto-currency algorithmic trading software developed in python
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](exchanges.md#blacklists))
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#binance-blacklist))
- [X] [Bittrex](https://bittrex.com/)
- [X] [FTX](https://ftx.com)
- [X] [Kraken](https://kraken.com/)
@ -47,7 +47,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
Exchanges confirmed working by the community:
- [X] [Bitvavo](https://bitvavo.com/)
- [X] [Kukoin](https://www.kucoin.com/)
- [X] [Kucoin](https://www.kucoin.com/)
## Requirements

View File

@ -1,4 +1,4 @@
mkdocs==1.2.2
mkdocs-material==7.2.1
mkdocs-material==7.2.4
mdx_truly_sane_lists==1.2
pymdown-extensions==8.2

View File

@ -110,7 +110,7 @@ DELETE FROM trades WHERE id = 31;
Freqtrade supports PostgreSQL by using SQLAlchemy, which supports multiple different database systems.
Installation:
`pip install psycopg2`
`pip install psycopg2-binary`
Usage:
`... --db-url postgresql+psycopg2://<username>:<password>@localhost:5432/<database>`

View File

@ -114,6 +114,36 @@ class AwesomeStrategy(IStrategy):
See [Dataframe access](#dataframe-access) for more information about dataframe use in strategy callbacks.
## Buy Tag
When your strategy has multiple buy signals, you can name the signal that triggered.
Then you can access you buy signal on `custom_sell`
```python
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(dataframe['rsi'] < 35) &
(dataframe['volume'] > 0)
),
['buy', 'buy_tag']] = (1, 'buy_signal_rsi')
return dataframe
def custom_sell(self, pair: str, trade: Trade, current_time: datetime, current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
if trade.buy_tag == 'buy_signal_rsi' and last_candle['rsi'] > 80:
return 'sell_signal_rsi'
return None
```
!!! Note
`buy_tag` is limited to 100 characters, remaining data will be truncated.
## Custom stoploss
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss.
@ -327,6 +357,55 @@ See [Dataframe access](#dataframe-access) for more information about dataframe u
---
## Custom order price rules
By default, freqtrade use the orderbook to automatically set an order price([Relevant documentation](configuration.md#prices-used-for-orders)), you also have the option to create custom order prices based on your strategy.
You can use this feature by creating a `custom_entry_price()` function in your strategy file to customize entry prices and `custom_exit_price()` for exits.
!!! Note
If your custom pricing function return None or an invalid value, price will fall back to `proposed_rate`, which is based on the regular pricing configuration.
### Custom order entry and exit price example
``` python
from datetime import datetime, timedelta, timezone
from freqtrade.persistence import Trade
class AwesomeStrategy(IStrategy):
# ... populate_* methods
def custom_entry_price(self, pair: str, current_time: datetime,
proposed_rate, **kwargs) -> float:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
new_entryprice = dataframe['bollinger_10_lowerband'].iat[-1]
return new_entryprice
def custom_exit_price(self, pair: str, trade: Trade,
current_time: datetime, proposed_rate: float,
current_profit: float, **kwargs) -> float:
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
new_exitprice = dataframe['bollinger_10_upperband'].iat[-1]
return new_exitprice
```
!!! Warning
Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter.
!!! Example
If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98.
!!! Warning "No backtesting support"
Custom entry-prices are currently not supported during backtesting.
## Custom order timeout rules
Simple, time-based order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.

View File

@ -228,7 +228,7 @@ graph = generate_candlestick_graph(pair=pair,
# Show graph inline
# graph.show()
# Render graph in a seperate window
# Render graph in a separate window
graph.show(renderer="browser")
```

View File

@ -627,7 +627,7 @@ FreqUI will also show the backtesting results.
```
usage: freqtrade webserver [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--userdir PATH] [-s NAME] [--strategy-path PATH]
[--userdir PATH]
optional arguments:
-h, --help show this help message and exit
@ -648,12 +648,6 @@ Common arguments:
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
```
## List Hyperopt results

View File

@ -83,6 +83,7 @@ Possible parameters are:
* `fiat_currency`
* `order_type`
* `current_rate`
* `buy_tag`
### Webhookbuycancel
@ -100,6 +101,7 @@ Possible parameters are:
* `fiat_currency`
* `order_type`
* `current_rate`
* `buy_tag`
### Webhookbuyfill
@ -115,6 +117,7 @@ Possible parameters are:
* `stake_amount`
* `stake_currency`
* `fiat_currency`
* `buy_tag`
### Webhooksell

View File

@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2021.7'
__version__ = '2021.8'
if __version__ == 'develop':

View File

@ -162,7 +162,7 @@ AVAILABLE_CLI_OPTIONS = {
'Please note that ticker-interval needs to be set either in config '
'or via command line. When using this together with `--export trades`, '
'the strategy-name is injected into the filename '
'(so `backtest-data.json` becomes `backtest-data-DefaultStrategy.json`',
'(so `backtest-data.json` becomes `backtest-data-SampleStrategy.json`',
nargs='+',
),
"export": Arg(
@ -218,7 +218,7 @@ AVAILABLE_CLI_OPTIONS = {
"spaces": Arg(
'--spaces',
help='Specify which parameters to hyperopt. Space-separated list.',
choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'default'],
choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'protection', 'default'],
nargs='+',
default='default',
),

View File

@ -74,8 +74,6 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "strategy" in args and args["strategy"]:
if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args['strategy'] + '.py')
@ -128,8 +126,6 @@ def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if 'hyperopt' in args and args['hyperopt']:
if args['hyperopt'] == 'DefaultHyperopt':
raise OperationalException("DefaultHyperopt is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args['hyperopt'] + '.py')

View File

@ -1,6 +1,6 @@
import logging
from operator import itemgetter
from typing import Any, Dict, List
from typing import Any, Dict
from colorama import init as colorama_init
@ -28,30 +28,12 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
no_details = config.get('hyperopt_list_no_details', False)
no_header = False
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
}
results_file = get_latest_hyperopt_file(
config['user_data_dir'] / 'hyperopt_results',
config.get('hyperoptexportfilename'))
# Previous evaluations
epochs = HyperoptTools.load_previous_results(results_file)
total_epochs = len(epochs)
epochs = hyperopt_filter_epochs(epochs, filteroptions)
epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config)
if print_colorized:
colorama_init(autoreset=True)
@ -59,7 +41,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if not export_csv:
try:
print(HyperoptTools.get_result_table(config, epochs, total_epochs,
not filteroptions['only_best'],
not config.get('hyperopt_list_best', False),
print_colorized, 0))
except KeyboardInterrupt:
print('User interrupted..')
@ -71,7 +53,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if epochs and export_csv:
HyperoptTools.export_csv_file(
config, epochs, total_epochs, not filteroptions['only_best'], export_csv
config, epochs, total_epochs, not config.get('hyperopt_list_best', False), export_csv
)
@ -91,26 +73,9 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
n = config.get('hyperopt_show_index', -1)
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None)
}
# Previous evaluations
epochs = HyperoptTools.load_previous_results(results_file)
total_epochs = len(epochs)
epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config)
epochs = hyperopt_filter_epochs(epochs, filteroptions)
filtered_epochs = len(epochs)
if n > filtered_epochs:
@ -137,138 +102,3 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
TODO: after 2021.5 remove all "legacy" mode queries.
"""
if filteroptions['only_best']:
epochs = [x for x in epochs if x['is_best']]
if filteroptions['only_profitable']:
epochs = [x for x in epochs if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total', 0)) > 0]
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
logger.info(f"{len(epochs)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
return epochs
def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int):
"""
Filter epochs with trade-counts > trades
"""
return [
x for x in epochs
if x['results_metrics'].get(
'trade_count', x['results_metrics'].get('total_trades', 0)
) > trade_count
]
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_trades'] > 0:
epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades'])
if filteroptions['filter_max_trades'] > 0:
epochs = [
x for x in epochs
if x['results_metrics'].get(
'trade_count', x['results_metrics'].get('total_trades')
) < filteroptions['filter_max_trades']
]
return epochs
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
def get_duration_value(x):
# Duration in minutes ...
if 'duration' in x['results_metrics']:
return x['results_metrics']['duration']
else:
# New mode
if 'holding_avg_s' in x['results_metrics']:
avg = x['results_metrics']['holding_avg_s']
return avg // 60
raise OperationalException(
"Holding-average not available. Please omit the filter on average time, "
"or rerun hyperopt with this version")
if filteroptions['filter_min_avg_time'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if get_duration_value(x) > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if get_duration_value(x) < filteroptions['filter_max_avg_time']
]
return epochs
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_avg_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get(
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
) > filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get(
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
) < filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total_abs', 0)
) > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get(
'profit', x['results_metrics'].get('profit_total_abs', 0)
) < filteroptions['filter_max_total_profit']
]
return epochs
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_objective'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
if filteroptions['filter_max_objective'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
return epochs

View File

@ -11,6 +11,7 @@ from freqtrade import constants
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
from freqtrade.configuration.environment_vars import enironment_vars_to_dict
from freqtrade.configuration.load_config import load_config_file, load_file
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, RunMode
from freqtrade.exceptions import OperationalException
@ -71,6 +72,11 @@ class Configuration:
# Merge config options, overwriting old values
config = deep_merge_dicts(load_config_file(path), config)
# Load environment variables
env_data = enironment_vars_to_dict()
config = deep_merge_dicts(env_data, config)
config['config_files'] = files
# Normalize config
if 'internals' not in config:

View File

@ -110,3 +110,6 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
"Please remove 'ticker_interval' from your configuration to continue operating."
)
config['timeframe'] = config['ticker_interval']
if 'protections' in config:
logger.warning("DEPRECATED: Setting 'protections' in the configuration is deprecated.")

View File

@ -0,0 +1,54 @@
import logging
import os
from typing import Any, Dict
from freqtrade.constants import ENV_VAR_PREFIX
from freqtrade.misc import deep_merge_dicts
logger = logging.getLogger(__name__)
def get_var_typed(val):
try:
return int(val)
except ValueError:
try:
return float(val)
except ValueError:
if val.lower() in ('t', 'true'):
return True
elif val.lower() in ('f', 'false'):
return False
# keep as string
return val
def flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str, Any]:
"""
Environment variables must be prefixed with FREQTRADE.
FREQTRADE__{section}__{key}
:param env_dict: Dictionary to validate - usually os.environ
:param prefix: Prefix to consider (usually FREQTRADE__)
:return: Nested dict based on available and relevant variables.
"""
relevant_vars: Dict[str, Any] = {}
for env_var, val in sorted(env_dict.items()):
if env_var.startswith(prefix):
logger.info(f"Loading variable '{env_var}'")
key = env_var.replace(prefix, '')
for k in reversed(key.split('__')):
val = {k.lower(): get_var_typed(val) if type(val) != dict else val}
relevant_vars = deep_merge_dicts(val, relevant_vars)
return relevant_vars
def enironment_vars_to_dict() -> Dict[str, Any]:
"""
Read environment variables and return a nested dict for relevant variables
Relevant variables must follow the FREQTRADE__{section}__{key} pattern
:return: Nested dict based on available and relevant variables.
"""
return flat_vars_to_nested_dict(os.environ.copy(), ENV_VAR_PREFIX)

View File

@ -47,6 +47,9 @@ USERPATH_STRATEGIES = 'strategies'
USERPATH_NOTEBOOKS = 'notebooks'
TELEGRAM_SETTING_OPTIONS = ['on', 'off', 'silent']
ENV_VAR_PREFIX = 'FREQTRADE__'
NON_OPEN_EXCHANGE_STATES = ('cancelled', 'canceled', 'closed', 'expired')
# Define decimals per coin for outputs
@ -190,6 +193,9 @@ CONF_SCHEMA = {
},
'required': ['price_side']
},
'custom_price_max_distance_ratio': {
'type': 'number', 'minimum': 0.0
},
'order_types': {
'type': 'object',
'properties': {

View File

@ -19,7 +19,7 @@ logger = logging.getLogger(__name__)
BT_DATA_COLUMNS_OLD = ["pair", "profit_percent", "open_date", "close_date", "index",
"trade_duration", "open_rate", "close_rate", "open_at_end", "sell_reason"]
# Mid-term format, crated by BacktestResult Named Tuple
# Mid-term format, created by BacktestResult Named Tuple
BT_DATA_COLUMNS_MID = ['pair', 'profit_percent', 'open_date', 'close_date', 'trade_duration',
'open_rate', 'close_rate', 'open_at_end', 'sell_reason', 'fee_open',
'fee_close', 'amount', 'profit_abs', 'profit_ratio']
@ -30,7 +30,7 @@ BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
'fee_open', 'fee_close', 'trade_duration',
'profit_ratio', 'profit_abs', 'sell_reason',
'initial_stop_loss_abs', 'initial_stop_loss_ratio', 'stop_loss_abs',
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', ]
'stop_loss_ratio', 'min_rate', 'max_rate', 'is_open', 'buy_tag']
def get_latest_optimize_filename(directory: Union[Path, str], variant: str) -> str:

View File

@ -242,7 +242,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
:param erase: Erase source data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
@ -267,7 +267,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
:param erase: Erase source data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)

View File

@ -10,11 +10,12 @@ from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
from freqtrade.data.history import load_pair_history
from freqtrade.enums import RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange
from freqtrade.exchange import Exchange, timeframe_to_seconds
logger = logging.getLogger(__name__)
@ -31,6 +32,7 @@ class DataProvider:
self._pairlists = pairlists
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
self.__slice_index: Optional[int] = None
self.__cached_pairs_backtesting: Dict[PairWithTimeframe, DataFrame] = {}
def _set_dataframe_max_index(self, limit_index: int):
"""
@ -62,11 +64,22 @@ class DataProvider:
:param pair: pair to get the data for
:param timeframe: timeframe to get data for
"""
return load_pair_history(pair=pair,
saved_pair = (pair, str(timeframe))
if saved_pair not in self.__cached_pairs_backtesting:
timerange = TimeRange.parse_timerange(None if self._config.get(
'timerange') is None else str(self._config.get('timerange')))
# Move informative start time respecting startup_candle_count
timerange.subtract_start(
timeframe_to_seconds(str(timeframe)) * self._config.get('startup_candle_count', 0)
)
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
pair=pair,
timeframe=timeframe or self._config['timeframe'],
datadir=self._config['datadir'],
timerange=timerange,
data_format=self._config.get('dataformat_ohlcv', 'json')
)
return self.__cached_pairs_backtesting[saved_pair].copy()
def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:
"""

View File

@ -117,10 +117,11 @@ def refresh_data(datadir: Path,
:param timerange: Limit data to be loaded to this timerange
"""
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
_download_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
exchange=exchange, data_handler=data_handler)
for idx, pair in enumerate(pairs):
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
timeframe=timeframe, datadir=datadir,
timerange=timerange, exchange=exchange, data_handler=data_handler)
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
@ -153,13 +154,14 @@ def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optiona
return data, start_ms
def _download_pair_history(datadir: Path,
def _download_pair_history(pair: str, *,
datadir: Path,
exchange: Exchange,
pair: str, *,
new_pairs_days: int = 30,
timeframe: str = '5m',
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler = None) -> bool:
process: str = '',
new_pairs_days: int = 30,
data_handler: IDataHandler = None,
timerange: Optional[TimeRange] = None) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
@ -177,7 +179,7 @@ def _download_pair_history(datadir: Path,
try:
logger.info(
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe} '
f'and store in {datadir}.'
)
@ -234,7 +236,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
for idx, pair in enumerate(pairs, start=1):
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
@ -247,10 +249,11 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
f'Deleting existing data for pair {pair}, interval {timeframe}.')
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
_download_pair_history(datadir=datadir, exchange=exchange,
pair=pair, timeframe=str(timeframe),
new_pairs_days=new_pairs_days,
timerange=timerange, data_handler=data_handler)
process = f'{idx}/{len(pairs)}'
_download_pair_history(pair=pair, process=process,
datadir=datadir, exchange=exchange,
timerange=timerange, data_handler=data_handler,
timeframe=str(timeframe), new_pairs_days=new_pairs_days)
return pairs_not_available

View File

@ -62,7 +62,7 @@ class JsonDataHandler(IDataHandler):
filename = self._pair_data_filename(self._datadir, pair, timeframe)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
_data['date'] = _data['date'].view(np.int64) // 1000 // 1000
# Reset index, select only appropriate columns and save as json
_data.reset_index(drop=True).loc[:, self._columns].to_json(

View File

@ -151,7 +151,7 @@ class Edge:
# Fake run-mode to Edge
prior_rm = self.config['runmode']
self.config['runmode'] = RunMode.EDGE
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
preprocessed = self.strategy.advise_all_indicators(data)
self.config['runmode'] = prior_rm
# Print timeframe

View File

@ -3,5 +3,5 @@ from freqtrade.enums.backteststate import BacktestState
from freqtrade.enums.rpcmessagetype import RPCMessageType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.selltype import SellType
from freqtrade.enums.signaltype import SignalType
from freqtrade.enums.signaltype import SignalTagType, SignalType
from freqtrade.enums.state import State

View File

@ -7,3 +7,10 @@ class SignalType(Enum):
"""
BUY = "buy"
SELL = "sell"
class SignalTagType(Enum):
"""
Enum for signal columns
"""
BUY_TAG = "buy_tag"

View File

@ -15,6 +15,7 @@ from freqtrade.exchange.exchange import (available_exchanges, ccxt_exchanges,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.ftx import Ftx
from freqtrade.exchange.gateio import Gateio
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.kucoin import Kucoin

View File

@ -19,7 +19,8 @@ from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE, TRU
decimal_to_precision)
from pandas import DataFrame
from freqtrade.constants import DEFAULT_AMOUNT_RESERVE_PERCENT, ListPairsWithTimeframes
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES,
ListPairsWithTimeframes)
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
InvalidOrderException, OperationalException, PricingError,
@ -618,6 +619,8 @@ class Exchange:
if self.exchange_has('fetchL2OrderBook'):
ob = self.fetch_l2_order_book(pair, 20)
ob_type = 'asks' if side == 'buy' else 'bids'
slippage = 0.05
max_slippage_val = rate * ((1 + slippage) if side == 'buy' else (1 - slippage))
remaining_amount = amount
filled_amount = 0
@ -626,7 +629,9 @@ class Exchange:
book_entry_coin_volume = book_entry[1]
if remaining_amount > 0:
if remaining_amount < book_entry_coin_volume:
# Orderbook at this slot bigger than remaining amount
filled_amount += remaining_amount * book_entry_price
break
else:
filled_amount += book_entry_coin_volume * book_entry_price
remaining_amount -= book_entry_coin_volume
@ -635,7 +640,14 @@ class Exchange:
else:
# If remaining_amount wasn't consumed completely (break was not called)
filled_amount += remaining_amount * book_entry_price
forecast_avg_filled_price = filled_amount / amount
forecast_avg_filled_price = max(filled_amount, 0) / amount
# Limit max. slippage to specified value
if side == 'buy':
forecast_avg_filled_price = min(forecast_avg_filled_price, max_slippage_val)
else:
forecast_avg_filled_price = max(forecast_avg_filled_price, max_slippage_val)
return self.price_to_precision(pair, forecast_avg_filled_price)
return rate
@ -689,7 +701,16 @@ class Exchange:
# Order handling
def create_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict:
rate: float, time_in_force: str = 'gtc') -> Dict:
if self._config['dry_run']:
dry_order = self.create_dry_run_order(pair, ordertype, side, amount, rate)
return dry_order
params = self._params.copy()
if time_in_force != 'gtc' and ordertype != 'market':
params.update({'timeInForce': time_in_force})
try:
# Set the precision for amount and price(rate) as accepted by the exchange
amount = self.amount_to_precision(pair, amount)
@ -720,32 +741,6 @@ class Exchange:
except ccxt.BaseError as e:
raise OperationalException(e) from e
def buy(self, pair: str, ordertype: str, amount: float,
rate: float, time_in_force: str) -> Dict:
if self._config['dry_run']:
dry_order = self.create_dry_run_order(pair, ordertype, "buy", amount, rate)
return dry_order
params = self._params.copy()
if time_in_force != 'gtc' and ordertype != 'market':
params.update({'timeInForce': time_in_force})
return self.create_order(pair, ordertype, 'buy', amount, rate, params)
def sell(self, pair: str, ordertype: str, amount: float,
rate: float, time_in_force: str = 'gtc') -> Dict:
if self._config['dry_run']:
dry_order = self.create_dry_run_order(pair, ordertype, "sell", amount, rate)
return dry_order
params = self._params.copy()
if time_in_force != 'gtc' and ordertype != 'market':
params.update({'timeInForce': time_in_force})
return self.create_order(pair, ordertype, 'sell', amount, rate, params)
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
@ -810,7 +805,7 @@ class Exchange:
:param order: Order dict as returned from fetch_order()
:return: True if order has been cancelled without being filled, False otherwise.
"""
return (order.get('status') in ('closed', 'canceled', 'cancelled')
return (order.get('status') in NON_OPEN_EXCHANGE_STATES
and order.get('filled') == 0.0)
@retrier
@ -1044,7 +1039,7 @@ class Exchange:
logger.debug(f"Using Last {conf_strategy['price_side'].capitalize()} / Last Price")
ticker = self.fetch_ticker(pair)
ticker_rate = ticker[conf_strategy['price_side']]
if ticker['last']:
if ticker['last'] and ticker_rate:
if side == 'buy' and ticker_rate > ticker['last']:
balance = conf_strategy['ask_last_balance']
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
@ -1259,7 +1254,7 @@ class Exchange:
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
input_coroutines = []
cached_pairs = []
# Gather coroutines to run
for pair, timeframe in set(pair_list):
if (((pair, timeframe) not in self._klines)
@ -1271,6 +1266,7 @@ class Exchange:
"Using cached candle (OHLCV) data for pair %s, timeframe %s ...",
pair, timeframe
)
cached_pairs.append((pair, timeframe))
results = asyncio.get_event_loop().run_until_complete(
asyncio.gather(*input_coroutines, return_exceptions=True))
@ -1293,6 +1289,10 @@ class Exchange:
results_df[(pair, timeframe)] = ohlcv_df
if cache:
self._klines[(pair, timeframe)] = ohlcv_df
# Return cached klines
for pair, timeframe in cached_pairs:
results_df[(pair, timeframe)] = self.klines((pair, timeframe), copy=False)
return results_df
def _now_is_time_to_refresh(self, pair: str, timeframe: str) -> bool:
@ -1503,7 +1503,7 @@ class Exchange:
:returns List of trade data
"""
if not self.exchange_has("fetchTrades"):
raise OperationalException("This exchange does not suport downloading Trades.")
raise OperationalException("This exchange does not support downloading Trades.")
return asyncio.get_event_loop().run_until_complete(
self._async_get_trade_history(pair=pair, since=since,

View File

@ -0,0 +1,23 @@
""" Gate.io exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Gateio(Exchange):
"""
Gate.io exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
}

View File

@ -420,7 +420,11 @@ class FreqtradeBot(LoggingMixin):
return False
# running get_signal on historical data fetched
(buy, sell) = self.strategy.get_signal(pair, self.strategy.timeframe, analyzed_df)
(buy, sell, buy_tag) = self.strategy.get_signal(
pair,
self.strategy.timeframe,
analyzed_df
)
if buy and not sell:
stake_amount = self.wallets.get_trade_stake_amount(pair, self.edge)
@ -429,11 +433,11 @@ class FreqtradeBot(LoggingMixin):
if ((bid_check_dom.get('enabled', False)) and
(bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
if self._check_depth_of_market_buy(pair, bid_check_dom):
return self.execute_buy(pair, stake_amount)
return self.execute_entry(pair, stake_amount, buy_tag=buy_tag)
else:
return False
return self.execute_buy(pair, stake_amount)
return self.execute_entry(pair, stake_amount, buy_tag=buy_tag)
else:
return False
@ -461,8 +465,8 @@ class FreqtradeBot(LoggingMixin):
logger.info(f"Bids to asks delta for {pair} does not satisfy condition.")
return False
def execute_buy(self, pair: str, stake_amount: float, price: Optional[float] = None,
forcebuy: bool = False) -> bool:
def execute_entry(self, pair: str, stake_amount: float, price: Optional[float] = None,
forcebuy: bool = False, buy_tag: Optional[str] = None) -> bool:
"""
Executes a limit buy for the given pair
:param pair: pair for which we want to create a LIMIT_BUY
@ -475,7 +479,13 @@ class FreqtradeBot(LoggingMixin):
buy_limit_requested = price
else:
# Calculate price
buy_limit_requested = self.exchange.get_rate(pair, refresh=True, side="buy")
proposed_buy_rate = self.exchange.get_rate(pair, refresh=True, side="buy")
custom_entry_price = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=proposed_buy_rate)(
pair=pair, current_time=datetime.now(timezone.utc),
proposed_rate=proposed_buy_rate)
buy_limit_requested = self.get_valid_price(custom_entry_price, proposed_buy_rate)
if not buy_limit_requested:
raise PricingError('Could not determine buy price.')
@ -510,7 +520,7 @@ class FreqtradeBot(LoggingMixin):
logger.info(f"User requested abortion of buying {pair}")
return False
amount = self.exchange.amount_to_precision(pair, amount)
order = self.exchange.buy(pair=pair, ordertype=order_type,
order = self.exchange.create_order(pair=pair, ordertype=order_type, side="buy",
amount=amount, rate=buy_limit_requested,
time_in_force=time_in_force)
order_obj = Order.parse_from_ccxt_object(order, pair, 'buy')
@ -565,6 +575,7 @@ class FreqtradeBot(LoggingMixin):
exchange=self.exchange.id,
open_order_id=order_id,
strategy=self.strategy.get_strategy_name(),
buy_tag=buy_tag,
timeframe=timeframe_to_minutes(self.config['timeframe'])
)
trade.orders.append(order_obj)
@ -590,6 +601,7 @@ class FreqtradeBot(LoggingMixin):
msg = {
'trade_id': trade.id,
'type': RPCMessageType.BUY,
'buy_tag': trade.buy_tag,
'exchange': self.exchange.name.capitalize(),
'pair': trade.pair,
'limit': trade.open_rate,
@ -614,6 +626,7 @@ class FreqtradeBot(LoggingMixin):
msg = {
'trade_id': trade.id,
'type': RPCMessageType.BUY_CANCEL,
'buy_tag': trade.buy_tag,
'exchange': self.exchange.name.capitalize(),
'pair': trade.pair,
'limit': trade.open_rate,
@ -634,6 +647,7 @@ class FreqtradeBot(LoggingMixin):
msg = {
'trade_id': trade.id,
'type': RPCMessageType.BUY_FILL,
'buy_tag': trade.buy_tag,
'exchange': self.exchange.name.capitalize(),
'pair': trade.pair,
'open_rate': trade.open_rate,
@ -692,7 +706,11 @@ class FreqtradeBot(LoggingMixin):
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
self.strategy.timeframe)
(buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.timeframe, analyzed_df)
(buy, sell, _) = self.strategy.get_signal(
trade.pair,
self.strategy.timeframe,
analyzed_df
)
logger.debug('checking sell')
sell_rate = self.exchange.get_rate(trade.pair, refresh=True, side="sell")
@ -727,7 +745,7 @@ class FreqtradeBot(LoggingMixin):
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Selling the trade forcefully')
self.execute_sell(trade, trade.stop_loss, sell_reason=SellCheckTuple(
self.execute_trade_exit(trade, trade.stop_loss, sell_reason=SellCheckTuple(
sell_type=SellType.EMERGENCY_SELL))
except ExchangeError:
@ -845,7 +863,7 @@ class FreqtradeBot(LoggingMixin):
if should_sell.sell_flag:
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}')
self.execute_sell(trade, sell_rate, should_sell)
self.execute_trade_exit(trade, sell_rate, should_sell)
return True
return False
@ -927,7 +945,7 @@ class FreqtradeBot(LoggingMixin):
was_trade_fully_canceled = False
# Cancelled orders may have the status of 'canceled' or 'closed'
if order['status'] not in ('cancelled', 'canceled', 'closed'):
if order['status'] not in constants.NON_OPEN_EXCHANGE_STATES:
filled_val = order.get('filled', 0.0) or 0.0
filled_stake = filled_val * trade.open_rate
minstake = self.exchange.get_min_pair_stake_amount(
@ -943,7 +961,7 @@ class FreqtradeBot(LoggingMixin):
# Avoid race condition where the order could not be cancelled coz its already filled.
# Simply bailing here is the only safe way - as this order will then be
# handled in the next iteration.
if corder.get('status') not in ('cancelled', 'canceled', 'closed'):
if corder.get('status') not in constants.NON_OPEN_EXCHANGE_STATES:
logger.warning(f"Order {trade.open_order_id} for {trade.pair} not cancelled.")
return False
else:
@ -965,7 +983,7 @@ class FreqtradeBot(LoggingMixin):
# if trade is partially complete, edit the stake details for the trade
# and close the order
# cancel_order may not contain the full order dict, so we need to fallback
# to the order dict aquired before cancelling.
# to the order dict acquired before cancelling.
# we need to fall back to the values from order if corder does not contain these keys.
trade.amount = filled_amount
trade.stake_amount = trade.amount * trade.open_rate
@ -1046,9 +1064,9 @@ class FreqtradeBot(LoggingMixin):
raise DependencyException(
f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}")
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellCheckTuple) -> bool:
def execute_trade_exit(self, trade: Trade, limit: float, sell_reason: SellCheckTuple) -> bool:
"""
Executes a limit sell for the given trade and limit
Executes a trade exit for the given trade and limit
:param trade: Trade instance
:param limit: limit rate for the sell order
:param sell_reason: Reason the sell was triggered
@ -1064,6 +1082,17 @@ class FreqtradeBot(LoggingMixin):
and self.strategy.order_types['stoploss_on_exchange']:
limit = trade.stop_loss
# set custom_exit_price if available
proposed_limit_rate = limit
current_profit = trade.calc_profit_ratio(limit)
custom_exit_price = strategy_safe_wrapper(self.strategy.custom_exit_price,
default_retval=proposed_limit_rate)(
pair=trade.pair, trade=trade,
current_time=datetime.now(timezone.utc),
proposed_rate=proposed_limit_rate, current_profit=current_profit)
limit = self.get_valid_price(custom_exit_price, proposed_limit_rate)
# First cancelling stoploss on exchange ...
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
try:
@ -1094,8 +1123,8 @@ class FreqtradeBot(LoggingMixin):
try:
# Execute sell and update trade record
order = self.exchange.sell(pair=trade.pair,
ordertype=order_type,
order = self.exchange.create_order(pair=trade.pair,
ordertype=order_type, side="sell",
amount=amount, rate=limit,
time_in_force=time_in_force
)
@ -1113,7 +1142,7 @@ class FreqtradeBot(LoggingMixin):
trade.close_rate_requested = limit
trade.sell_reason = sell_reason.sell_reason
# In case of market sell orders the order can be closed immediately
if order.get('status', 'unknown') == 'closed':
if order.get('status', 'unknown') in ('closed', 'expired'):
self.update_trade_state(trade, trade.open_order_id, order)
Trade.commit()
@ -1352,6 +1381,8 @@ class FreqtradeBot(LoggingMixin):
if fee_currency:
# fee_rate should use mean
fee_rate = sum(fee_rate_array) / float(len(fee_rate_array)) if fee_rate_array else None
if fee_rate is not None and fee_rate < 0.02:
# Only update if fee-rate is < 2%
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
@ -1363,3 +1394,26 @@ class FreqtradeBot(LoggingMixin):
amount=amount, fee_abs=fee_abs)
else:
return amount
def get_valid_price(self, custom_price: float, proposed_price: float) -> float:
"""
Return the valid price.
Check if the custom price is of the good type if not return proposed_price
:return: valid price for the order
"""
if custom_price:
try:
valid_custom_price = float(custom_price)
except ValueError:
valid_custom_price = proposed_price
else:
valid_custom_price = proposed_price
cust_p_max_dist_r = self.config.get('custom_price_max_distance_ratio', 0.02)
min_custom_price_allowed = proposed_price - (proposed_price * cust_p_max_dist_r)
max_custom_price_allowed = proposed_price + (proposed_price * cust_p_max_dist_r)
# Bracket between min_custom_price_allowed and max_custom_price_allowed
return max(
min(valid_custom_price, max_custom_price_allowed),
min_custom_price_allowed)

View File

@ -15,7 +15,7 @@ from freqtrade.configuration import TimeRange, remove_credentials, validate_conf
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.data import history
from freqtrade.data.btanalysis import trade_list_to_dataframe
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.converter import trim_dataframe, trim_dataframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import BacktestState, SellType
from freqtrade.exceptions import DependencyException, OperationalException
@ -43,6 +43,7 @@ CLOSE_IDX = 3
SELL_IDX = 4
LOW_IDX = 5
HIGH_IDX = 6
BUY_TAG_IDX = 7
class Backtesting:
@ -116,14 +117,22 @@ class Backtesting:
self.wallets = Wallets(self.config, self.exchange, log=False)
self.timerange = TimeRange.parse_timerange(
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
# Get maximum required startup period
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
# Add maximum startup candle count to configuration for informative pairs support
self.config['startup_candle_count'] = self.required_startup
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
self.progress = BTProgress()
self.abort = False
def __del__(self):
self.cleanup()
def cleanup(self):
LoggingMixin.show_output = True
PairLocks.use_db = True
Trade.use_db = True
@ -140,6 +149,8 @@ class Backtesting:
# since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False
def _load_protections(self, strategy: IStrategy):
if self.config.get('enable_protections', False):
conf = self.config
if hasattr(strategy, 'protections'):
@ -154,14 +165,11 @@ class Backtesting:
"""
self.progress.init_step(BacktestState.DATALOAD, 1)
timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.timeframe,
timerange=timerange,
timerange=self.timerange,
startup_candles=self.required_startup,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
@ -174,11 +182,11 @@ class Backtesting:
f'({(max_date - min_date).days} days).')
# Adjust startts forward if not enough data is available
timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
self.timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
self.required_startup, min_date)
self.progress.set_new_value(1)
return data, timerange
return data, self.timerange
def prepare_backtest(self, enable_protections):
"""
@ -191,6 +199,7 @@ class Backtesting:
Trade.reset_trades()
self.rejected_trades = 0
self.dataprovider.clear_cache()
self._load_protections(self.strategy)
def check_abort(self):
"""
@ -209,7 +218,7 @@ class Backtesting:
"""
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag']
data: Dict = {}
self.progress.init_step(BacktestState.CONVERT, len(processed))
@ -220,20 +229,27 @@ class Backtesting:
if not pair_data.empty:
pair_data.loc[:, 'buy'] = 0 # cleanup if buy_signal is exist
pair_data.loc[:, 'sell'] = 0 # cleanup if sell_signal is exist
pair_data.loc[:, 'buy_tag'] = None # cleanup if buy_tag is exist
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair}).copy()
# Trim startup period from analyzed dataframe
df_analyzed = trim_dataframe(df_analyzed, self.timerange,
startup_candles=self.required_startup)
# To avoid using data from future, we use buy/sell signals shifted
# from the previous candle
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
df_analyzed.loc[:, 'buy_tag'] = df_analyzed.loc[:, 'buy_tag'].shift(1)
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)
# Update dataprovider cache
self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)
df_analyzed = df_analyzed.drop(df_analyzed.head(1).index)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
data[pair] = df_analyzed.values.tolist()
data[pair] = df_analyzed[headers].values.tolist()
return data
def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: SellCheckTuple,
@ -303,14 +319,14 @@ class Backtesting:
return sell_row[OPEN_IDX]
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
sell_row[DATE_IDX].to_pydatetime(), sell_row[BUY_IDX],
sell_candle_time, sell_row[BUY_IDX],
sell_row[SELL_IDX],
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
if sell.sell_flag:
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
trade.close_date = sell_candle_time
trade.sell_reason = sell.sell_reason
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
@ -322,7 +338,7 @@ class Backtesting:
rate=closerate,
time_in_force=time_in_force,
sell_reason=sell.sell_reason,
current_time=sell_row[DATE_IDX].to_pydatetime()):
current_time=sell_candle_time):
return None
trade.close(closerate, show_msg=False)
@ -358,6 +374,7 @@ class Backtesting:
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
# Enter trade
has_buy_tag = len(row) >= BUY_TAG_IDX + 1
trade = LocalTrade(
pair=pair,
open_rate=row[OPEN_IDX],
@ -367,6 +384,7 @@ class Backtesting:
fee_open=self.fee,
fee_close=self.fee,
is_open=True,
buy_tag=row[BUY_TAG_IDX] if has_buy_tag else None,
exchange='backtesting',
)
return trade
@ -423,10 +441,6 @@ class Backtesting:
trades: List[LocalTrade] = []
self.prepare_backtest(enable_protections)
# Update dataprovider cache
for pair, dataframe in processed.items():
self.dataprovider._set_cached_df(pair, self.timeframe, dataframe)
# Use dict of lists with data for performance
# (looping lists is a lot faster than pandas DataFrames)
data: Dict = self._get_ohlcv_as_lists(processed)
@ -448,6 +462,8 @@ class Backtesting:
for i, pair in enumerate(data):
row_index = indexes[pair]
try:
# Row is treated as "current incomplete candle".
# Buy / sell signals are shifted by 1 to compensate for this.
row = data[pair][row_index]
except IndexError:
# missing Data for one pair at the end.
@ -459,8 +475,8 @@ class Backtesting:
continue
row_index += 1
self.dataprovider._set_dataframe_max_index(row_index)
indexes[pair] = row_index
self.dataprovider._set_dataframe_max_index(row_index)
# without positionstacking, we can only have one open trade per pair.
# max_open_trades must be respected
@ -484,7 +500,7 @@ class Backtesting:
open_trades[pair].append(trade)
LocalTrade.add_bt_trade(trade)
for trade in open_trades[pair]:
for trade in list(open_trades[pair]):
# also check the buying candle for sell conditions.
trade_entry = self._get_sell_trade_entry(trade, row)
# Sell occurred
@ -515,7 +531,8 @@ class Backtesting:
'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']),
}
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange):
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, DataFrame],
timerange: TimeRange):
self.progress.init_step(BacktestState.ANALYZE, 0)
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
@ -534,17 +551,18 @@ class Backtesting:
max_open_trades = 0
# need to reprocess data every time to populate signals
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
preprocessed = self.strategy.advise_all_indicators(data)
# Trim startup period from analyzed dataframe
preprocessed = trim_dataframes(preprocessed, timerange, self.required_startup)
preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)
if not preprocessed:
if not preprocessed_tmp:
raise OperationalException(
"No data left after adjusting for startup candles.")
min_date, max_date = history.get_timerange(preprocessed)
# Use preprocessed_tmp for date generation (the trimmed dataframe).
# Backtesting will re-trim the dataframes after buy/sell signal generation.
min_date, max_date = history.get_timerange(preprocessed_tmp)
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(max_date - min_date).days} days).')

View File

@ -66,6 +66,7 @@ class Hyperopt:
def __init__(self, config: Dict[str, Any]) -> None:
self.buy_space: List[Dimension] = []
self.sell_space: List[Dimension] = []
self.protection_space: List[Dimension] = []
self.roi_space: List[Dimension] = []
self.stoploss_space: List[Dimension] = []
self.trailing_space: List[Dimension] = []
@ -102,15 +103,29 @@ class Hyperopt:
self.num_epochs_saved = 0
self.current_best_epoch: Optional[Dict[str, Any]] = None
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if not self.auto_hyperopt:
# Populate "fallback" functions here
# (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
self.backtesting.strategy.advise_indicators = ( # type: ignore
logger.warning(
"DEPRECATED: Using `populate_indicators()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_indicators = ( # type: ignore
self.custom_hyperopt.populate_indicators) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.backtesting.strategy.advise_buy = ( # type: ignore
logger.warning(
"DEPRECATED: Using `populate_buy_trend()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_buy_trend = ( # type: ignore
self.custom_hyperopt.populate_buy_trend) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.backtesting.strategy.advise_sell = ( # type: ignore
logger.warning(
"DEPRECATED: Using `populate_sell_trend()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_sell_trend = ( # type: ignore
self.custom_hyperopt.populate_sell_trend) # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
@ -189,6 +204,8 @@ class Hyperopt:
result['buy'] = {p.name: params.get(p.name) for p in self.buy_space}
if HyperoptTools.has_space(self.config, 'sell'):
result['sell'] = {p.name: params.get(p.name) for p in self.sell_space}
if HyperoptTools.has_space(self.config, 'protection'):
result['protection'] = {p.name: params.get(p.name) for p in self.protection_space}
if HyperoptTools.has_space(self.config, 'roi'):
result['roi'] = {str(k): v for k, v in
self.custom_hyperopt.generate_roi_table(params).items()}
@ -239,6 +256,12 @@ class Hyperopt:
"""
Assign the dimensions in the hyperoptimization space.
"""
if self.auto_hyperopt and HyperoptTools.has_space(self.config, 'protection'):
# Protections can only be optimized when using the Parameter interface
logger.debug("Hyperopt has 'protection' space")
# Enable Protections if protection space is selected.
self.config['enable_protections'] = True
self.protection_space = self.custom_hyperopt.protection_space()
if HyperoptTools.has_space(self.config, 'buy'):
logger.debug("Hyperopt has 'buy' space")
@ -259,22 +282,19 @@ class Hyperopt:
if HyperoptTools.has_space(self.config, 'trailing'):
logger.debug("Hyperopt has 'trailing' space")
self.trailing_space = self.custom_hyperopt.trailing_space()
self.dimensions = (self.buy_space + self.sell_space + self.roi_space +
self.stoploss_space + self.trailing_space)
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
+ self.roi_space + self.stoploss_space + self.trailing_space)
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
"""
Used Optimize function. Called once per epoch to optimize whatever is configured.
Used Optimize function.
Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
backtest_start_time = datetime.now(timezone.utc)
params_dict = self._get_params_dict(self.dimensions, raw_params)
# Apply parameters
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
self.custom_hyperopt.generate_roi_table(params_dict))
if HyperoptTools.has_space(self.config, 'buy'):
self.backtesting.strategy.advise_buy = ( # type: ignore
self.custom_hyperopt.buy_strategy_generator(params_dict))
@ -283,6 +303,16 @@ class Hyperopt:
self.backtesting.strategy.advise_sell = ( # type: ignore
self.custom_hyperopt.sell_strategy_generator(params_dict))
if HyperoptTools.has_space(self.config, 'protection'):
for attr_name, attr in self.backtesting.strategy.enumerate_parameters('protection'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
self.custom_hyperopt.generate_roi_table(params_dict))
if HyperoptTools.has_space(self.config, 'stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss']
@ -376,18 +406,17 @@ class Hyperopt:
data, timerange = self.backtesting.load_bt_data()
logger.info("Dataload complete. Calculating indicators")
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
# Trim startup period from analyzed dataframe
# Trim startup period from analyzed dataframe to get correct dates for output.
processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup)
self.min_date, self.max_date = get_timerange(processed)
logger.info(f'Hyperopting with data from {self.min_date.strftime(DATETIME_PRINT_FORMAT)} '
f'up to {self.max_date.strftime(DATETIME_PRINT_FORMAT)} '
f'({(self.max_date - self.min_date).days} days)..')
dump(processed, self.data_pickle_file)
# Store non-trimmed data - will be trimmed after signal generation.
dump(preprocessed, self.data_pickle_file)
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))

View File

@ -73,6 +73,9 @@ class HyperOptAuto(IHyperOpt):
def sell_indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('sell', 'sell_indicator_space')
def protection_space(self) -> List['Dimension']:
return self._get_indicator_space('protection', 'protection_space')
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
return self._get_func('generate_roi_table')(params)

View File

@ -0,0 +1,128 @@
import logging
from typing import List
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def hyperopt_filter_epochs(epochs: List, filteroptions: dict, log: bool = True) -> List:
"""
Filter our items from the list of hyperopt results
"""
if filteroptions['only_best']:
epochs = [x for x in epochs if x['is_best']]
if filteroptions['only_profitable']:
epochs = [x for x in epochs
if x['results_metrics'].get('profit_total', 0) > 0]
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
if log:
logger.info(f"{len(epochs)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
return epochs
def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int):
"""
Filter epochs with trade-counts > trades
"""
return [
x for x in epochs if x['results_metrics'].get('total_trades', 0) > trade_count
]
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_trades'] > 0:
epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades'])
if filteroptions['filter_max_trades'] > 0:
epochs = [
x for x in epochs
if x['results_metrics'].get('total_trades') < filteroptions['filter_max_trades']
]
return epochs
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
def get_duration_value(x):
# Duration in minutes ...
if 'holding_avg_s' in x['results_metrics']:
avg = x['results_metrics']['holding_avg_s']
return avg // 60
raise OperationalException(
"Holding-average not available. Please omit the filter on average time, "
"or rerun hyperopt with this version")
if filteroptions['filter_min_avg_time'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if get_duration_value(x) > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if get_duration_value(x) < filteroptions['filter_max_avg_time']
]
return epochs
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_avg_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get('profit_mean', 0) * 100
> filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get('profit_mean', 0) * 100
< filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get('profit_total_abs', 0)
> filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [
x for x in epochs
if x['results_metrics'].get('profit_total_abs', 0)
< filteroptions['filter_max_total_profit']
]
return epochs
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
if filteroptions['filter_min_objective'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
if filteroptions['filter_max_objective'] is not None:
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
return epochs

View File

@ -57,6 +57,13 @@ class IHyperOpt(ABC):
"""
raise OperationalException(_format_exception_message('sell_strategy_generator', 'sell'))
def protection_space(self) -> List[Dimension]:
"""
Create a protection space.
Only supported by the Parameter interface.
"""
raise OperationalException(_format_exception_message('indicator_space', 'protection'))
def indicator_space(self) -> List[Dimension]:
"""
Create an indicator space.

View File

@ -4,7 +4,7 @@ import logging
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Iterator, List, Optional, Tuple
import numpy as np
import rapidjson
@ -15,6 +15,7 @@ from pandas import isna, json_normalize
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
from freqtrade.optimize.hyperopt_epoch_filters import hyperopt_filter_epochs
logger = logging.getLogger(__name__)
@ -82,53 +83,77 @@ class HyperoptTools():
"""
Tell if the space value is contained in the configuration
"""
# The 'trailing' space is not included in the 'default' set of spaces
if space == 'trailing':
# 'trailing' and 'protection spaces are not included in the 'default' set of spaces
if space in ('trailing', 'protection'):
return any(s in config['spaces'] for s in [space, 'all'])
else:
return any(s in config['spaces'] for s in [space, 'all', 'default'])
@staticmethod
def _read_results_pickle(results_file: Path) -> List:
def _read_results(results_file: Path, batch_size: int = 10) -> Iterator[List[Any]]:
"""
Read hyperopt results from pickle file
LEGACY method - new files are written as json and cannot be read with this method.
"""
from joblib import load
logger.info(f"Reading pickled epochs from '{results_file}'")
data = load(results_file)
return data
@staticmethod
def _read_results(results_file: Path) -> List:
"""
Read hyperopt results from file
Stream hyperopt results from file
"""
import rapidjson
logger.info(f"Reading epochs from '{results_file}'")
with results_file.open('r') as f:
data = [rapidjson.loads(line) for line in f]
return data
data = []
for line in f:
data += [rapidjson.loads(line)]
if len(data) >= batch_size:
yield data
data = []
yield data
@staticmethod
def load_previous_results(results_file: Path) -> List:
"""
Load data for epochs from the file if we have one
"""
epochs: List = []
def _test_hyperopt_results_exist(results_file) -> bool:
if results_file.is_file() and results_file.stat().st_size > 0:
if results_file.suffix == '.pickle':
epochs = HyperoptTools._read_results_pickle(results_file)
raise OperationalException(
"Legacy hyperopt results are no longer supported."
"Please rerun hyperopt or use an older version to load this file."
)
return True
else:
epochs = HyperoptTools._read_results(results_file)
# Detection of some old format, without 'is_best' field saved
if epochs[0].get('is_best') is None:
# No file found.
return False
@staticmethod
def load_filtered_results(results_file: Path, config: Dict[str, Any]) -> Tuple[List, int]:
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
}
if not HyperoptTools._test_hyperopt_results_exist(results_file):
# No file found.
return [], 0
epochs = []
total_epochs = 0
for epochs_tmp in HyperoptTools._read_results(results_file):
if total_epochs == 0 and epochs_tmp[0].get('is_best') is None:
raise OperationalException(
"The file with HyperoptTools results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(epochs)} previous evaluations from disk.")
return epochs
total_epochs += len(epochs_tmp)
epochs += hyperopt_filter_epochs(epochs_tmp, filteroptions, log=False)
logger.info(f"Loaded {total_epochs} previous evaluations from disk.")
# Final filter run ...
epochs = hyperopt_filter_epochs(epochs, filteroptions, log=True)
return epochs, total_epochs
@staticmethod
def show_epoch_details(results, total_epochs: int, print_json: bool,
@ -149,7 +174,7 @@ class HyperoptTools():
if print_json:
result_dict: Dict = {}
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
for s in ['buy', 'sell', 'protection', 'roi', 'stoploss', 'trailing']:
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
@ -158,6 +183,8 @@ class HyperoptTools():
non_optimized)
HyperoptTools._params_pretty_print(params, 'sell', "Sell hyperspace params:",
non_optimized)
HyperoptTools._params_pretty_print(params, 'protection',
"Protection hyperspace params:", non_optimized)
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
@ -431,7 +458,6 @@ class HyperoptTools():
trials['Best'] = ''
trials['Stake currency'] = config['stake_currency']
if 'results_metrics.total_trades' in trials:
base_metrics = ['Best', 'current_epoch', 'results_metrics.total_trades',
'results_metrics.profit_mean', 'results_metrics.profit_median',
'results_metrics.profit_total',
@ -439,13 +465,7 @@ class HyperoptTools():
'results_metrics.profit_total_abs', 'results_metrics.holding_avg',
'loss', 'is_initial_point', 'is_best']
perc_multi = 100
else:
perc_multi = 1
base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.avg_profit', 'results_metrics.median_profit',
'results_metrics.total_profit',
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
'loss', 'is_initial_point', 'is_best']
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
trials = trials[base_metrics + param_metrics]
@ -473,11 +493,6 @@ class HyperoptTools():
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: f'{x * perc_multi:,.2f}%' if not isna(x) else ""
)
if perc_multi == 1:
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: f'{x:,.1f} m' if isinstance(
x, float) else f"{x.total_seconds() // 60:,.1f} m" if not isna(x) else ""
)
trials['Objective'] = trials['Objective'].apply(
lambda x: f'{x:,.5f}' if x != 100000 else ""
)

View File

@ -47,6 +47,7 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
min_rate = get_column_def(cols, 'min_rate', 'null')
sell_reason = get_column_def(cols, 'sell_reason', 'null')
strategy = get_column_def(cols, 'strategy', 'null')
buy_tag = get_column_def(cols, 'buy_tag', 'null')
# If ticker-interval existed use that, else null.
if has_column(cols, 'ticker_interval'):
timeframe = get_column_def(cols, 'timeframe', 'ticker_interval')
@ -64,7 +65,8 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
# Schema migration necessary
with engine.begin() as connection:
connection.execute(text(f"alter table trades rename to {table_back_name}"))
# drop indexes on backup table
with engine.begin() as connection:
# drop indexes on backup table in new session
for index in inspector.get_indexes(table_back_name):
connection.execute(text(f"drop index {index['name']}"))
# let SQLAlchemy create the schema as required
@ -75,22 +77,15 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
connection.execute(text(f"""insert into trades
(id, exchange, pair, is_open,
fee_open, fee_open_cost, fee_open_currency,
fee_close, fee_close_cost, fee_open_currency, open_rate,
fee_close, fee_close_cost, fee_close_currency, open_rate,
open_rate_requested, close_rate, close_rate_requested, close_profit,
stake_amount, amount, amount_requested, open_date, close_date, open_order_id,
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, sell_order_status, strategy,
max_rate, min_rate, sell_reason, sell_order_status, strategy, buy_tag,
timeframe, open_trade_value, close_profit_abs
)
select id, lower(exchange),
case
when instr(pair, '_') != 0 then
substr(pair, instr(pair, '_') + 1) || '/' ||
substr(pair, 1, instr(pair, '_') - 1)
else pair
end
pair,
select id, lower(exchange), pair,
is_open, {fee_open} fee_open, {fee_open_cost} fee_open_cost,
{fee_open_currency} fee_open_currency, {fee_close} fee_close,
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
@ -103,7 +98,7 @@ def migrate_trades_table(decl_base, inspector, engine, table_back_name: str, col
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
{sell_order_status} sell_order_status,
{strategy} strategy, {timeframe} timeframe,
{strategy} strategy, {buy_tag} buy_tag, {timeframe} timeframe,
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs
from {table_back_name}
"""))
@ -131,7 +126,9 @@ def migrate_orders_table(decl_base, inspector, engine, table_back_name: str, col
with engine.begin() as connection:
connection.execute(text(f"alter table orders rename to {table_back_name}"))
# drop indexes on backup table
with engine.begin() as connection:
# drop indexes on backup table in new session
for index in inspector.get_indexes(table_back_name):
connection.execute(text(f"drop index {index['name']}"))
@ -160,7 +157,7 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
table_back_name = get_backup_name(tabs, 'trades_bak')
# Check for latest column
if not has_column(cols, 'open_trade_value'):
if not has_column(cols, 'buy_tag'):
logger.info(f'Running database migration for trades - backup: {table_back_name}')
migrate_trades_table(decl_base, inspector, engine, table_back_name, cols)
# Reread columns - the above recreated the table!

View File

@ -13,7 +13,7 @@ from sqlalchemy.orm import Query, declarative_base, relationship, scoped_session
from sqlalchemy.pool import StaticPool
from sqlalchemy.sql.schema import UniqueConstraint
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.constants import DATETIME_PRINT_FORMAT, NON_OPEN_EXCHANGE_STATES
from freqtrade.enums import SellType
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.misc import safe_value_fallback
@ -159,9 +159,9 @@ class Order(_DECL_BASE):
self.order_date = datetime.fromtimestamp(order['timestamp'] / 1000, tz=timezone.utc)
self.ft_is_open = True
if self.status in ('closed', 'canceled', 'cancelled'):
if self.status in NON_OPEN_EXCHANGE_STATES:
self.ft_is_open = False
if order.get('filled', 0) > 0:
if (order.get('filled', 0.0) or 0.0) > 0:
self.order_filled_date = datetime.now(timezone.utc)
self.order_update_date = datetime.now(timezone.utc)
@ -257,6 +257,7 @@ class LocalTrade():
sell_reason: str = ''
sell_order_status: str = ''
strategy: str = ''
buy_tag: Optional[str] = None
timeframe: Optional[int] = None
def __init__(self, **kwargs):
@ -288,6 +289,7 @@ class LocalTrade():
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
'stake_amount': round(self.stake_amount, 8),
'strategy': self.strategy,
'buy_tag': self.buy_tag,
'timeframe': self.timeframe,
'fee_open': self.fee_open,
@ -352,12 +354,12 @@ class LocalTrade():
LocalTrade.trades_open = []
LocalTrade.total_profit = 0
def adjust_min_max_rates(self, current_price: float) -> None:
def adjust_min_max_rates(self, current_price: float, current_price_low: float) -> None:
"""
Adjust the max_rate and min_rate.
"""
self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price, self.min_rate or self.open_rate)
self.min_rate = min(current_price_low, self.min_rate or self.open_rate)
def _set_new_stoploss(self, new_loss: float, stoploss: float):
"""Assign new stop value"""
@ -703,6 +705,7 @@ class Trade(_DECL_BASE, LocalTrade):
sell_reason = Column(String(100), nullable=True)
sell_order_status = Column(String(100), nullable=True)
strategy = Column(String(100), nullable=True)
buy_tag = Column(String(100), nullable=True)
timeframe = Column(Integer, nullable=True)
def __init__(self, **kwargs):

View File

@ -538,7 +538,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
- Initializes plot-script
- Get candle (OHLCV) data
- Generate Dafaframes populated with indicators and signals based on configured strategy
- Load trades excecuted during the selected period
- Load trades executed during the selected period
- Generate Plotly plot objects
- Generate plot files
:return: None

View File

@ -150,18 +150,20 @@ class IPairList(LoggingMixin, ABC):
for pair in pairlist:
# pair is not in the generated dynamic market or has the wrong stake currency
if pair not in markets:
logger.warning(f"Pair {pair} is not compatible with exchange "
f"{self._exchange.name}. Removing it from whitelist..")
self.log_once(f"Pair {pair} is not compatible with exchange "
f"{self._exchange.name}. Removing it from whitelist..",
logger.warning)
continue
if not self._exchange.market_is_tradable(markets[pair]):
logger.warning(f"Pair {pair} is not tradable with Freqtrade."
"Removing it from whitelist..")
self.log_once(f"Pair {pair} is not tradable with Freqtrade."
"Removing it from whitelist..", logger.warning)
continue
if self._exchange.get_pair_quote_currency(pair) != self._config['stake_currency']:
logger.warning(f"Pair {pair} is not compatible with your stake currency "
f"{self._config['stake_currency']}. Removing it from whitelist..")
self.log_once(f"Pair {pair} is not compatible with your stake currency "
f"{self._config['stake_currency']}. Removing it from whitelist..",
logger.warning)
continue
# Check if market is active

View File

@ -4,6 +4,7 @@ Volume PairList provider
Provides dynamic pair list based on trade volumes
"""
import logging
from functools import partial
from typing import Any, Dict, List
import arrow
@ -115,7 +116,7 @@ class VolumePairList(IPairList):
pairlist = self._pair_cache.get('pairlist')
if pairlist:
# Item found - no refresh necessary
return pairlist
return pairlist.copy()
else:
# Use fresh pairlist
# Check if pair quote currency equals to the stake currency.
@ -126,7 +127,7 @@ class VolumePairList(IPairList):
pairlist = [s['symbol'] for s in filtered_tickers]
pairlist = self.filter_pairlist(pairlist, tickers)
self._pair_cache['pairlist'] = pairlist
self._pair_cache['pairlist'] = pairlist.copy()
return pairlist
@ -203,7 +204,7 @@ class VolumePairList(IPairList):
# Validate whitelist to only have active market pairs
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
pairs = self.verify_blacklist(pairs, logger.info)
pairs = self.verify_blacklist(pairs, partial(self.log_once, logmethod=logger.info))
# Limit pairlist to the requested number of pairs
pairs = pairs[:self._number_pairs]

View File

@ -26,6 +26,7 @@ class RangeStabilityFilter(IPairList):
self._days = pairlistconfig.get('lookback_days', 10)
self._min_rate_of_change = pairlistconfig.get('min_rate_of_change', 0.01)
self._max_rate_of_change = pairlistconfig.get('max_rate_of_change', None)
self._refresh_period = pairlistconfig.get('refresh_period', 1440)
self._pair_cache: TTLCache = TTLCache(maxsize=1000, ttl=self._refresh_period)
@ -50,8 +51,12 @@ class RangeStabilityFilter(IPairList):
"""
Short whitelist method description - used for startup-messages
"""
max_rate_desc = ""
if self._max_rate_of_change:
max_rate_desc = (f" and above {self._max_rate_of_change}")
return (f"{self.name} - Filtering pairs with rate of change below "
f"{self._min_rate_of_change} over the last {plural(self._days, 'day')}.")
f"{self._min_rate_of_change}{max_rate_desc} over the "
f"last {plural(self._days, 'day')}.")
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
@ -104,6 +109,17 @@ class RangeStabilityFilter(IPairList):
f"which is below the threshold of {self._min_rate_of_change}.",
logger.info)
result = False
if self._max_rate_of_change:
if pct_change <= self._max_rate_of_change:
result = True
else:
self.log_once(
f"Removed {pair} from whitelist, because rate of change "
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
f"which is above the threshold of {self._max_rate_of_change}.",
logger.info)
result = False
self._pair_cache[pair] = result
else:
self.log_once(f"Removed {pair} from whitelist, no candles found.", logger.info)
return result

View File

@ -25,19 +25,22 @@ class IProtection(LoggingMixin, ABC):
def __init__(self, config: Dict[str, Any], protection_config: Dict[str, Any]) -> None:
self._config = config
self._protection_config = protection_config
self._stop_duration_candles: Optional[int] = None
self._lookback_period_candles: Optional[int] = None
tf_in_min = timeframe_to_minutes(config['timeframe'])
if 'stop_duration_candles' in protection_config:
self._stop_duration_candles = protection_config.get('stop_duration_candles', 1)
self._stop_duration_candles = int(protection_config.get('stop_duration_candles', 1))
self._stop_duration = (tf_in_min * self._stop_duration_candles)
else:
self._stop_duration_candles = None
self._stop_duration = protection_config.get('stop_duration', 60)
if 'lookback_period_candles' in protection_config:
self._lookback_period_candles = protection_config.get('lookback_period_candles', 1)
self._lookback_period_candles = int(protection_config.get('lookback_period_candles', 1))
self._lookback_period = tf_in_min * self._lookback_period_candles
else:
self._lookback_period_candles = None
self._lookback_period = protection_config.get('lookback_period', 60)
self._lookback_period = int(protection_config.get('lookback_period', 60))
LoggingMixin.__init__(self, logger)

View File

@ -8,6 +8,3 @@ from freqtrade.resolvers.exchange_resolver import ExchangeResolver
from freqtrade.resolvers.pairlist_resolver import PairListResolver
from freqtrade.resolvers.protection_resolver import ProtectionResolver
from freqtrade.resolvers.strategy_resolver import StrategyResolver

View File

@ -119,7 +119,7 @@ class StrategyResolver(IResolver):
- default (if not None)
"""
if (attribute in config
and not isinstance(getattr(type(strategy), 'my_property', None), property)):
and not isinstance(getattr(type(strategy), attribute, None), property)):
# Ensure Properties are not overwritten
setattr(strategy, attribute, config[attribute])
logger.info("Override strategy '%s' with value in config file: %s.",

View File

@ -47,15 +47,15 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
not ApiServer._bt
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('dry_run_wallet') != btconfig.get('dry_run_wallet', 0)
or lastconfig.get('timerange') != btconfig['timerange']
):
from freqtrade.optimize.backtesting import Backtesting
ApiServer._bt = Backtesting(btconfig)
# Only reload data if timeframe or timerange changed.
# Only reload data if timeframe changed.
if (
not ApiServer._bt_data
or not ApiServer._bt_timerange
or lastconfig.get('timerange') != btconfig['timerange']
or lastconfig.get('stake_amount') != btconfig.get('stake_amount')
or lastconfig.get('enable_protections') != btconfig.get('enable_protections')
or lastconfig.get('protections') != btconfig.get('protections', [])

View File

@ -151,6 +151,7 @@ class TradeSchema(BaseModel):
amount_requested: float
stake_amount: float
strategy: str
buy_tag: Optional[str]
timeframe: int
fee_open: Optional[float]
fee_open_cost: Optional[float]

View File

@ -223,11 +223,11 @@ def list_strategies(config=Depends(get_config)):
@router.get('/strategy/{strategy}', response_model=StrategyResponse, tags=['strategy'])
def get_strategy(strategy: str, config=Depends(get_config)):
config = deepcopy(config)
config_ = deepcopy(config)
from freqtrade.resolvers.strategy_resolver import StrategyResolver
try:
strategy_obj = StrategyResolver._load_strategy(strategy, config,
extra_dir=config.get('strategy_path'))
strategy_obj = StrategyResolver._load_strategy(strategy, config_,
extra_dir=config_.get('strategy_path'))
except OperationalException:
raise HTTPException(status_code=404, detail='Strategy not found')

View File

@ -32,8 +32,11 @@ class UvicornServer(uvicorn.Server):
asyncio_setup()
else:
asyncio.set_event_loop(uvloop.new_event_loop())
try:
loop = asyncio.get_event_loop()
except RuntimeError:
# When running in a thread, we'll not have an eventloop yet.
loop = asyncio.new_event_loop()
loop.run_until_complete(self.serve(sockets=sockets))
@contextlib.contextmanager

View File

@ -29,6 +29,16 @@ async def ui_version():
}
def is_relative_to(path, base) -> bool:
# Helper function simulating behaviour of is_relative_to, which was only added in python 3.9
try:
path.relative_to(base)
return True
except ValueError:
pass
return False
@router_ui.get('/{rest_of_path:path}', include_in_schema=False)
async def index_html(rest_of_path: str):
"""
@ -37,8 +47,11 @@ async def index_html(rest_of_path: str):
if rest_of_path.startswith('api') or rest_of_path.startswith('.'):
raise HTTPException(status_code=404, detail="Not Found")
uibase = Path(__file__).parent / 'ui/installed/'
if (uibase / rest_of_path).is_file():
return FileResponse(str(uibase / rest_of_path))
filename = uibase / rest_of_path
# It's security relevant to check "relative_to".
# Without this, Directory-traversal is possible.
if filename.is_file() and is_relative_to(filename, uibase):
return FileResponse(str(filename))
index_file = uibase / 'index.html'
if not index_file.is_file():

View File

@ -5,7 +5,7 @@ e.g BTC to USD
import datetime
import logging
from typing import Dict
from typing import Dict, List
from cachetools.ttl import TTLCache
from pycoingecko import CoinGeckoAPI
@ -25,8 +25,7 @@ class CryptoToFiatConverter:
"""
__instance = None
_coingekko: CoinGeckoAPI = None
_cryptomap: Dict = {}
_coinlistings: List[Dict] = []
_backoff: float = 0.0
def __new__(cls):
@ -49,9 +48,8 @@ class CryptoToFiatConverter:
def _load_cryptomap(self) -> None:
try:
coinlistings = self._coingekko.get_coins_list()
# Create mapping table from symbol to coingekko_id
self._cryptomap = {x['symbol']: x['id'] for x in coinlistings}
# Use list-comprehension to ensure we get a list.
self._coinlistings = [x for x in self._coingekko.get_coins_list()]
except RequestException as request_exception:
if "429" in str(request_exception):
logger.warning(
@ -69,6 +67,24 @@ class CryptoToFiatConverter:
logger.error(
f"Could not load FIAT Cryptocurrency map for the following problem: {exception}")
def _get_gekko_id(self, crypto_symbol):
if not self._coinlistings:
if self._backoff <= datetime.datetime.now().timestamp():
self._load_cryptomap()
# Still not loaded.
if not self._coinlistings:
return None
else:
return None
found = [x for x in self._coinlistings if x['symbol'] == crypto_symbol]
if len(found) == 1:
return found[0]['id']
if len(found) > 0:
# Wrong!
logger.warning(f"Found multiple mappings in goingekko for {crypto_symbol}.")
return None
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
"""
Convert an amount of crypto-currency to fiat
@ -143,22 +159,14 @@ class CryptoToFiatConverter:
if crypto_symbol == fiat_symbol:
return 1.0
if self._cryptomap == {}:
if self._backoff <= datetime.datetime.now().timestamp():
self._load_cryptomap()
# return 0.0 if we still don't have data to check, no reason to proceed
if self._cryptomap == {}:
return 0.0
else:
return 0.0
_gekko_id = self._get_gekko_id(crypto_symbol)
if crypto_symbol not in self._cryptomap:
if not _gekko_id:
# return 0 for unsupported stake currencies (fiat-convert should not break the bot)
logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol)
return 0.0
try:
_gekko_id = self._cryptomap[crypto_symbol]
return float(
self._coingekko.get_price(
ids=_gekko_id,

View File

@ -557,7 +557,7 @@ class RPC:
current_rate = self._freqtrade.exchange.get_rate(
trade.pair, refresh=False, side="sell")
sell_reason = SellCheckTuple(sell_type=SellType.FORCE_SELL)
self._freqtrade.execute_sell(trade, current_rate, sell_reason)
self._freqtrade.execute_trade_exit(trade, current_rate, sell_reason)
# ---- EOF def _exec_forcesell ----
if self._freqtrade.state != State.RUNNING:
@ -613,7 +613,7 @@ class RPC:
stakeamount = self._freqtrade.wallets.get_trade_stake_amount(pair)
# execute buy
if self._freqtrade.execute_buy(pair, stakeamount, price, forcebuy=True):
if self._freqtrade.execute_entry(pair, stakeamount, price, forcebuy=True):
Trade.commit()
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
return trade
@ -776,7 +776,7 @@ class RPC:
if has_content:
dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].view(int64) // 1000 // 1000
# Move open to seperate column when signal for easy plotting
# Move open to separate column when signal for easy plotting
if 'buy' in dataframe.columns:
buy_mask = (dataframe['buy'] == 1)
buy_signals = int(buy_mask.sum())

View File

@ -15,6 +15,7 @@ class RPCManager:
"""
Class to manage RPC objects (Telegram, API, ...)
"""
def __init__(self, freqtrade) -> None:
""" Initializes all enabled rpc modules """
self.registered_modules: List[RPCHandler] = []

View File

@ -77,7 +77,6 @@ class Telegram(RPCHandler):
""" This class handles all telegram communication """
def __init__(self, rpc: RPC, config: Dict[str, Any]) -> None:
"""
Init the Telegram call, and init the super class RPCHandler
:param rpc: instance of RPC Helper class
@ -208,15 +207,25 @@ class Telegram(RPCHandler):
else:
msg['stake_amount_fiat'] = 0
message = (f"\N{LARGE BLUE CIRCLE} *{msg['exchange']}:* Buying {msg['pair']}"
content = []
content.append(
f"\N{LARGE BLUE CIRCLE} *{msg['exchange']}:* Buying {msg['pair']}"
f" (#{msg['trade_id']})\n"
f"*Amount:* `{msg['amount']:.8f}`\n"
f"*Open Rate:* `{msg['limit']:.8f}`\n"
f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
f"*Total:* `({round_coin_value(msg['stake_amount'], msg['stake_currency'])}")
)
if msg.get('buy_tag', None):
content.append(f"*Buy Tag:* `{msg['buy_tag']}`\n")
content.append(f"*Amount:* `{msg['amount']:.8f}`\n")
content.append(f"*Open Rate:* `{msg['limit']:.8f}`\n")
content.append(f"*Current Rate:* `{msg['current_rate']:.8f}`\n")
content.append(
f"*Total:* `({round_coin_value(msg['stake_amount'], msg['stake_currency'])}"
)
if msg.get('fiat_currency', None):
message += f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
content.append(
f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
)
message = ''.join(content)
message += ")`"
return message
@ -354,6 +363,7 @@ class Telegram(RPCHandler):
"*Trade ID:* `{trade_id}` `(since {open_date_hum})`",
"*Current Pair:* {pair}",
"*Amount:* `{amount} ({stake_amount} {base_currency})`",
"*Buy Tag:* `{buy_tag}`" if r['buy_tag'] else "",
"*Open Rate:* `{open_rate:.8f}`",
"*Close Rate:* `{close_rate}`" if r['close_rate'] else "",
"*Current Rate:* `{current_rate:.8f}`",
@ -567,7 +577,8 @@ class Telegram(RPCHandler):
headers=['Sell Reason', 'Sells', 'Wins', 'Losses']
)
durations = stats['durations']
duration_msg = tabulate([
duration_msg = tabulate(
[
['Wins', str(timedelta(seconds=durations['wins']))
if durations['wins'] != 'N/A' else 'N/A'],
['Losses', str(timedelta(seconds=durations['losses']))

View File

@ -1,7 +1,7 @@
# flake8: noqa: F401
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.strategy.hyper import (CategoricalParameter, DecimalParameter, IntParameter,
RealParameter)
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
IntParameter, RealParameter)
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open

View File

@ -270,6 +270,28 @@ class CategoricalParameter(BaseParameter):
return [self.value]
class BooleanParameter(CategoricalParameter):
def __init__(self, *, default: Optional[Any] = None,
space: Optional[str] = None, optimize: bool = True, load: bool = True, **kwargs):
"""
Initialize hyperopt-optimizable Boolean Parameter.
It's a shortcut to `CategoricalParameter([True, False])`.
:param default: A default value. If not specified, first item from specified space will be
used.
:param space: A parameter category. Can be 'buy' or 'sell'. This parameter is optional if
parameter field
name is prefixed with 'buy_' or 'sell_'.
:param optimize: Include parameter in hyperopt optimizations.
:param load: Load parameter value from {space}_params.
:param kwargs: Extra parameters to skopt.space.Categorical.
"""
categories = [True, False]
super().__init__(categories=categories, default=default, space=space, optimize=optimize,
load=load, **kwargs)
class HyperStrategyMixin(object):
"""
A helper base class which allows HyperOptAuto class to reuse implementations of buy/sell
@ -283,6 +305,7 @@ class HyperStrategyMixin(object):
self.config = config
self.ft_buy_params: List[BaseParameter] = []
self.ft_sell_params: List[BaseParameter] = []
self.ft_protection_params: List[BaseParameter] = []
self._load_hyper_params(config.get('runmode') == RunMode.HYPEROPT)
@ -292,11 +315,12 @@ class HyperStrategyMixin(object):
:param category:
:return:
"""
if category not in ('buy', 'sell', None):
raise OperationalException('Category must be one of: "buy", "sell", None.')
if category not in ('buy', 'sell', 'protection', None):
raise OperationalException(
'Category must be one of: "buy", "sell", "protection", None.')
if category is None:
params = self.ft_buy_params + self.ft_sell_params
params = self.ft_buy_params + self.ft_sell_params + self.ft_protection_params
else:
params = getattr(self, f"ft_{category}_params")
@ -324,9 +348,10 @@ class HyperStrategyMixin(object):
params: Dict = {
'buy': list(cls.detect_parameters('buy')),
'sell': list(cls.detect_parameters('sell')),
'protection': list(cls.detect_parameters('protection')),
}
params.update({
'count': len(params['buy'] + params['sell'])
'count': len(params['buy'] + params['sell'] + params['protection'])
})
return params
@ -340,9 +365,12 @@ class HyperStrategyMixin(object):
self._ft_params_from_file = params
buy_params = deep_merge_dicts(params.get('buy', {}), getattr(self, 'buy_params', {}))
sell_params = deep_merge_dicts(params.get('sell', {}), getattr(self, 'sell_params', {}))
protection_params = deep_merge_dicts(params.get('protection', {}),
getattr(self, 'protection_params', {}))
self._load_params(buy_params, 'buy', hyperopt)
self._load_params(sell_params, 'sell', hyperopt)
self._load_params(protection_params, 'protection', hyperopt)
def load_params_from_file(self) -> Dict:
filename_str = getattr(self, '__file__', '')
@ -397,7 +425,8 @@ class HyperStrategyMixin(object):
"""
params = {
'buy': {},
'sell': {}
'sell': {},
'protection': {},
}
for name, p in self.enumerate_parameters():
if not p.optimize or not p.in_space:

View File

@ -13,7 +13,7 @@ from pandas import DataFrame
from freqtrade.constants import ListPairsWithTimeframes
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import SellType, SignalType
from freqtrade.enums import SellType, SignalTagType, SignalType
from freqtrade.exceptions import OperationalException, StrategyError
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date
@ -280,6 +280,43 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
return self.stoploss
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
**kwargs) -> float:
"""
Custom entry price logic, returning the new entry price.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, returns None, orderbook is used to set entry price
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New entry price value if provided
"""
return proposed_rate
def custom_exit_price(self, pair: str, trade: Trade,
current_time: datetime, proposed_rate: float,
current_profit: float, **kwargs) -> float:
"""
Custom exit price logic, returning the new exit price.
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
When not implemented by a strategy, returns None, orderbook is used to set exit price
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New exit price value if provided
"""
return proposed_rate
def custom_sell(self, pair: str, trade: Trade, current_time: datetime, current_rate: float,
current_profit: float, **kwargs) -> Optional[Union[str, bool]]:
"""
@ -288,10 +325,10 @@ class IStrategy(ABC, HyperStrategyMixin):
time. This method is not called when sell signal is set.
This method should be overridden to create sell signals that depend on trade parameters. For
example you could implement a stoploss relative to candle when trade was opened, or a custom
1:2 risk-reward ROI.
example you could implement a sell relative to the candle when the trade was opened,
or a custom 1:2 risk-reward ROI.
Custom sell reason max length is 64. Exceeding this limit will raise OperationalException.
Custom sell reason max length is 64. Exceeding characters will be removed.
:param pair: Pair that's currently analyzed
:param trade: trade object.
@ -422,6 +459,7 @@ class IStrategy(ABC, HyperStrategyMixin):
logger.debug("Skipping TA Analysis for already analyzed candle")
dataframe['buy'] = 0
dataframe['sell'] = 0
dataframe['buy_tag'] = None
# Other Defs in strategy that want to be called every loop here
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
@ -482,8 +520,6 @@ class IStrategy(ABC, HyperStrategyMixin):
message = "No dataframe returned (return statement missing?)."
elif 'buy' not in dataframe:
message = "Buy column not set."
elif 'sell' not in dataframe:
message = "Sell column not set."
elif df_len != len(dataframe):
message = message_template.format("length")
elif df_close != dataframe["close"].iloc[-1]:
@ -496,7 +532,12 @@ class IStrategy(ABC, HyperStrategyMixin):
else:
raise StrategyError(message)
def get_signal(self, pair: str, timeframe: str, dataframe: DataFrame) -> Tuple[bool, bool]:
def get_signal(
self,
pair: str,
timeframe: str,
dataframe: DataFrame
) -> Tuple[bool, bool, Optional[str]]:
"""
Calculates current signal based based on the buy / sell columns of the dataframe.
Used by Bot to get the signal to buy or sell
@ -507,7 +548,7 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
if not isinstance(dataframe, DataFrame) or dataframe.empty:
logger.warning(f'Empty candle (OHLCV) data for pair {pair}')
return False, False
return False, False, None
latest_date = dataframe['date'].max()
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
@ -522,9 +563,16 @@ class IStrategy(ABC, HyperStrategyMixin):
'Outdated history for pair %s. Last tick is %s minutes old',
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
)
return False, False
return False, False, None
buy = latest[SignalType.BUY.value] == 1
sell = False
if SignalType.SELL.value in latest:
sell = latest[SignalType.SELL.value] == 1
buy_tag = latest.get(SignalTagType.BUY_TAG.value, None)
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s',
latest['date'], pair, str(buy), str(sell))
timeframe_seconds = timeframe_to_seconds(timeframe)
@ -532,8 +580,8 @@ class IStrategy(ABC, HyperStrategyMixin):
current_time=datetime.now(timezone.utc),
timeframe_seconds=timeframe_seconds,
buy=buy):
return False, sell
return buy, sell
return False, sell, buy_tag
return buy, sell, buy_tag
def ignore_expired_candle(self, latest_date: datetime, current_time: datetime,
timeframe_seconds: int, buy: bool):
@ -557,7 +605,7 @@ class IStrategy(ABC, HyperStrategyMixin):
current_rate = rate
current_profit = trade.calc_profit_ratio(current_rate)
trade.adjust_min_max_rates(high or current_rate)
trade.adjust_min_max_rates(high or current_rate, low or current_rate)
stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade,
current_time=date, current_profit=current_profit,
@ -721,7 +769,7 @@ class IStrategy(ABC, HyperStrategyMixin):
else:
return current_profit > roi
def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
def advise_all_indicators(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
"""
Populates indicators for given candle (OHLCV) data (for multiple pairs)
Does not run advise_buy or advise_sell!

View File

@ -25,7 +25,7 @@
"ask_strategy": {
"price_side": "ask",
"use_order_book": true,
"order_book_top": 1,
"order_book_top": 1
},
{{ exchange | indent(4) }},
"pairlists": [

View File

@ -6,8 +6,8 @@ import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy import IStrategy
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
# --------------------------------
# Add your lib to import here

View File

@ -6,8 +6,8 @@ import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.strategy import IStrategy
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
# --------------------------------
# Add your lib to import here

View File

@ -12,6 +12,23 @@ def bot_loop_start(self, **kwargs) -> None:
"""
pass
def custom_stake_amount(self, pair: str, current_time: 'datetime', current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
**kwargs) -> float:
"""
Customize stake size for each new trade. This method is not called when edge module is
enabled.
:param pair: Pair that's currently analyzed
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param proposed_stake: A stake amount proposed by the bot.
:param min_stake: Minimal stake size allowed by exchange.
:param max_stake: Balance available for trading.
:return: A stake size, which is between min_stake and max_stake.
"""
return proposed_stake
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: 'datetime',
@ -38,6 +55,30 @@ def custom_stoploss(self, pair: str, trade: 'Trade', current_time: 'datetime',
"""
return self.stoploss
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs) -> 'Optional[Union[str, bool]]':
"""
Custom sell signal logic indicating that specified position should be sold. Returning a
string or True from this method is equal to setting sell signal on a candle at specified
time. This method is not called when sell signal is set.
This method should be overridden to create sell signals that depend on trade parameters. For
example you could implement a sell relative to the candle when the trade was opened,
or a custom 1:2 risk-reward ROI.
Custom sell reason max length is 64. Exceeding characters will be removed.
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return: To execute sell, return a string with custom sell reason or True. Otherwise return
None or False.
"""
return None
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: 'datetime', **kwargs) -> bool:
"""

View File

@ -6,20 +6,20 @@
coveralls==3.2.0
flake8==3.9.2
flake8-type-annotations==0.1.0
flake8-tidy-imports==4.3.0
flake8-tidy-imports==4.4.1
mypy==0.910
pytest==6.2.4
pytest-asyncio==0.15.1
pytest-cov==2.12.1
pytest-mock==3.6.1
pytest-random-order==1.0.4
isort==5.9.2
isort==5.9.3
# Convert jupyter notebooks to markdown documents
nbconvert==6.1.0
# mypy types
types-cachetools==0.1.9
types-filelock==0.1.4
types-requests==2.25.0
types-tabulate==0.1.1
types-cachetools==4.2.0
types-filelock==0.1.5
types-requests==2.25.6
types-tabulate==0.8.2

View File

@ -2,7 +2,7 @@
-r requirements.txt
# Required for hyperopt
scipy==1.7.0
scipy==1.7.1
scikit-learn==0.24.2
scikit-optimize==0.8.1
filelock==3.0.12

View File

@ -1,5 +1,5 @@
# Include all requirements to run the bot.
-r requirements.txt
plotly==5.1.0
plotly==5.2.1

View File

@ -1,11 +1,11 @@
numpy==1.21.1
pandas==1.3.1
numpy==1.21.2
pandas==1.3.2
ccxt==1.53.72
ccxt==1.55.28
# Pin cryptography for now due to rust build errors with piwheels
cryptography==3.4.7
aiohttp==3.7.4.post0
SQLAlchemy==1.4.22
SQLAlchemy==1.4.23
python-telegram-bot==13.7
arrow==1.1.1
cachetools==4.2.2
@ -31,8 +31,8 @@ python-rapidjson==1.4
sdnotify==0.3.2
# API Server
fastapi==0.67.0
uvicorn==0.14.0
fastapi==0.68.0
uvicorn==0.15.0
pyjwt==2.1.0
aiofiles==0.7.0
@ -40,4 +40,4 @@ aiofiles==0.7.0
colorama==0.4.4
# Building config files interactively
questionary==1.10.0
prompt-toolkit==3.0.19
prompt-toolkit==3.0.20

View File

@ -163,7 +163,7 @@ function update() {
# Reset Develop or Stable branch
function reset() {
echo "----------------------------"
echo "Reseting branch and virtual env"
echo "Resetting branch and virtual env"
echo "----------------------------"
if [ "1" == $(git branch -vv |grep -cE "\* develop|\* stable") ]

View File

@ -510,17 +510,6 @@ def test_start_new_strategy(mocker, caplog):
start_new_strategy(get_args(args))
def test_start_new_strategy_DefaultStrat(mocker, caplog):
args = [
"new-strategy",
"--strategy",
"DefaultStrategy"
]
with pytest.raises(OperationalException,
match=r"DefaultStrategy is not allowed as name\."):
start_new_strategy(get_args(args))
def test_start_new_strategy_no_arg(mocker, caplog):
args = [
"new-strategy",
@ -552,17 +541,6 @@ def test_start_new_hyperopt(mocker, caplog):
start_new_hyperopt(get_args(args))
def test_start_new_hyperopt_DefaultHyperopt(mocker, caplog):
args = [
"new-hyperopt",
"--hyperopt",
"DefaultHyperopt"
]
with pytest.raises(OperationalException,
match=r"DefaultHyperopt is not allowed as name\."):
start_new_hyperopt(get_args(args))
def test_start_new_hyperopt_no_arg(mocker):
args = [
"new-hyperopt",
@ -827,9 +805,9 @@ def test_start_list_strategies(mocker, caplog, capsys):
# pargs['config'] = None
start_list_strategies(pargs)
captured = capsys.readouterr()
assert "TestStrategyLegacy" in captured.out
assert "legacy_strategy.py" not in captured.out
assert "DefaultStrategy" in captured.out
assert "TestStrategyLegacyV1" in captured.out
assert "legacy_strategy_v1.py" not in captured.out
assert "StrategyTestV2" in captured.out
# Test regular output
args = [
@ -842,9 +820,9 @@ def test_start_list_strategies(mocker, caplog, capsys):
# pargs['config'] = None
start_list_strategies(pargs)
captured = capsys.readouterr()
assert "TestStrategyLegacy" in captured.out
assert "legacy_strategy.py" in captured.out
assert "DefaultStrategy" in captured.out
assert "TestStrategyLegacyV1" in captured.out
assert "legacy_strategy_v1.py" in captured.out
assert "StrategyTestV2" in captured.out
def test_start_list_hyperopts(mocker, caplog, capsys):
@ -861,7 +839,7 @@ def test_start_list_hyperopts(mocker, caplog, capsys):
captured = capsys.readouterr()
assert "TestHyperoptLegacy" not in captured.out
assert "legacy_hyperopt.py" not in captured.out
assert "DefaultHyperOpt" in captured.out
assert "HyperoptTestSepFile" in captured.out
assert "test_hyperopt.py" not in captured.out
# Test regular output
@ -876,7 +854,7 @@ def test_start_list_hyperopts(mocker, caplog, capsys):
captured = capsys.readouterr()
assert "TestHyperoptLegacy" not in captured.out
assert "legacy_hyperopt.py" not in captured.out
assert "DefaultHyperOpt" in captured.out
assert "HyperoptTestSepFile" in captured.out
def test_start_test_pairlist(mocker, caplog, tickers, default_conf, capsys):
@ -938,13 +916,19 @@ def test_start_test_pairlist(mocker, caplog, tickers, default_conf, capsys):
pytest.fail(f'Expected well formed JSON, but failed to parse: {captured.out}')
def test_hyperopt_list(mocker, capsys, caplog, saved_hyperopt_results,
saved_hyperopt_results_legacy, tmpdir):
def test_hyperopt_list(mocker, capsys, caplog, saved_hyperopt_results, tmpdir):
csv_file = Path(tmpdir) / "test.csv"
for res in (saved_hyperopt_results, saved_hyperopt_results_legacy):
mocker.patch(
'freqtrade.optimize.hyperopt_tools.HyperoptTools.load_previous_results',
MagicMock(return_value=res)
'freqtrade.optimize.hyperopt_tools.HyperoptTools._test_hyperopt_results_exist',
return_value=True
)
def fake_iterator(*args, **kwargs):
yield from [saved_hyperopt_results]
mocker.patch(
'freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results',
side_effect=fake_iterator
)
args = [
@ -1177,8 +1161,16 @@ def test_hyperopt_list(mocker, capsys, caplog, saved_hyperopt_results,
def test_hyperopt_show(mocker, capsys, saved_hyperopt_results):
mocker.patch(
'freqtrade.optimize.hyperopt_tools.HyperoptTools.load_previous_results',
MagicMock(return_value=saved_hyperopt_results)
'freqtrade.optimize.hyperopt_tools.HyperoptTools._test_hyperopt_results_exist',
return_value=True
)
def fake_iterator(*args, **kwargs):
yield from [saved_hyperopt_results]
mocker.patch(
'freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results',
side_effect=fake_iterator
)
mocker.patch('freqtrade.commands.hyperopt_commands.show_backtest_result')

View File

@ -64,7 +64,9 @@
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"password": "",
"ccxt_config": {"enableRateLimit": true},
"ccxt_config": {
"enableRateLimit": true
},
"ccxt_async_config": {
"enableRateLimit": false,
"rateLimit": 500,

View File

@ -182,7 +182,7 @@ def get_patched_worker(mocker, config) -> Worker:
return Worker(args=None, config=config)
def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False)) -> None:
def patch_get_signal(freqtrade: FreqtradeBot, value=(True, False, None)) -> None:
"""
:param mocker: mocker to patch IStrategy class
:param value: which value IStrategy.get_signal() must return
@ -323,7 +323,7 @@ def get_default_conf(testdatadir):
"user_data_dir": Path("user_data"),
"verbosity": 3,
"strategy_path": str(Path(__file__).parent / "strategy" / "strats"),
"strategy": "DefaultStrategy",
"strategy": "StrategyTestV2",
"disableparamexport": True,
"internals": {},
"export": "none",
@ -1814,138 +1814,6 @@ def open_trade():
)
@pytest.fixture
def saved_hyperopt_results_legacy():
return [
{
'loss': 0.4366182531161519,
'params_dict': {
'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1190, 'roi_t2': 541, 'roi_t3': 408, 'roi_p1': 0.026035863879169705, 'roi_p2': 0.12508730043628782, 'roi_p3': 0.27766427921605896, 'stoploss': -0.2562930402099556}, # noqa: E501
'params_details': {'buy': {'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4287874435315165, 408: 0.15112316431545753, 949: 0.026035863879169705, 2139: 0}, 'stoploss': {'stoploss': -0.2562930402099556}}, # noqa: E501
'results_metrics': {'trade_count': 2, 'avg_profit': -1.254995, 'median_profit': -1.2222, 'total_profit': -0.00125625, 'profit': -2.50999, 'duration': 3930.0}, # noqa: E501
'results_explanation': ' 2 trades. Avg profit -1.25%. Total profit -0.00125625 BTC ( -2.51Σ%). Avg duration 3930.0 min.', # noqa: E501
'total_profit': -0.00125625,
'current_epoch': 1,
'is_initial_point': True,
'is_best': True
}, {
'loss': 20.0,
'params_dict': {
'mfi-value': 17, 'fastd-value': 38, 'adx-value': 48, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 96, 'sell-fastd-value': 68, 'sell-adx-value': 63, 'sell-rsi-value': 81, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 334, 'roi_t2': 683, 'roi_t3': 140, 'roi_p1': 0.06403981740598495, 'roi_p2': 0.055519840060645045, 'roi_p3': 0.3253712811342459, 'stoploss': -0.338070047333259}, # noqa: E501
'params_details': {
'buy': {'mfi-value': 17, 'fastd-value': 38, 'adx-value': 48, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, # noqa: E501
'sell': {'sell-mfi-value': 96, 'sell-fastd-value': 68, 'sell-adx-value': 63, 'sell-rsi-value': 81, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, # noqa: E501
'roi': {0: 0.4449309386008759, 140: 0.11955965746663, 823: 0.06403981740598495, 1157: 0}, # noqa: E501
'stoploss': {'stoploss': -0.338070047333259}},
'results_metrics': {'trade_count': 1, 'avg_profit': 0.12357, 'median_profit': -1.2222, 'total_profit': 6.185e-05, 'profit': 0.12357, 'duration': 1200.0}, # noqa: E501
'results_explanation': ' 1 trades. Avg profit 0.12%. Total profit 0.00006185 BTC ( 0.12Σ%). Avg duration 1200.0 min.', # noqa: E501
'total_profit': 6.185e-05,
'current_epoch': 2,
'is_initial_point': True,
'is_best': False
}, {
'loss': 14.241196856510731,
'params_dict': {'mfi-value': 25, 'fastd-value': 16, 'adx-value': 29, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 98, 'sell-fastd-value': 72, 'sell-adx-value': 51, 'sell-rsi-value': 82, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 889, 'roi_t2': 533, 'roi_t3': 263, 'roi_p1': 0.04759065393663096, 'roi_p2': 0.1488819964638463, 'roi_p3': 0.4102801822104605, 'stoploss': -0.05394588767607611}, # noqa: E501
'params_details': {'buy': {'mfi-value': 25, 'fastd-value': 16, 'adx-value': 29, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 98, 'sell-fastd-value': 72, 'sell-adx-value': 51, 'sell-rsi-value': 82, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.6067528326109377, 263: 0.19647265040047726, 796: 0.04759065393663096, 1685: 0}, 'stoploss': {'stoploss': -0.05394588767607611}}, # noqa: E501
'results_metrics': {'trade_count': 621, 'avg_profit': -0.43883302093397747, 'median_profit': -1.2222, 'total_profit': -0.13639474, 'profit': -272.515306, 'duration': 1691.207729468599}, # noqa: E501
'results_explanation': ' 621 trades. Avg profit -0.44%. Total profit -0.13639474 BTC (-272.52Σ%). Avg duration 1691.2 min.', # noqa: E501
'total_profit': -0.13639474,
'current_epoch': 3,
'is_initial_point': True,
'is_best': False
}, {
'loss': 100000,
'params_dict': {'mfi-value': 13, 'fastd-value': 35, 'adx-value': 39, 'rsi-value': 29, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 87, 'sell-fastd-value': 54, 'sell-adx-value': 63, 'sell-rsi-value': 93, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1402, 'roi_t2': 676, 'roi_t3': 215, 'roi_p1': 0.06264755784937427, 'roi_p2': 0.14258587851894644, 'roi_p3': 0.20671291201040828, 'stoploss': -0.11818343570194478}, # noqa: E501
'params_details': {'buy': {'mfi-value': 13, 'fastd-value': 35, 'adx-value': 39, 'rsi-value': 29, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 54, 'sell-adx-value': 63, 'sell-rsi-value': 93, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.411946348378729, 215: 0.2052334363683207, 891: 0.06264755784937427, 2293: 0}, 'stoploss': {'stoploss': -0.11818343570194478}}, # noqa: E501
'results_metrics': {'trade_count': 0, 'avg_profit': None, 'median_profit': None, 'total_profit': 0, 'profit': 0.0, 'duration': None}, # noqa: E501
'results_explanation': ' 0 trades. Avg profit nan%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration nan min.', # noqa: E501
'total_profit': 0, 'current_epoch': 4, 'is_initial_point': True, 'is_best': False
}, {
'loss': 0.22195522184191518,
'params_dict': {'mfi-value': 17, 'fastd-value': 21, 'adx-value': 38, 'rsi-value': 33, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 87, 'sell-fastd-value': 82, 'sell-adx-value': 78, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 1269, 'roi_t2': 601, 'roi_t3': 444, 'roi_p1': 0.07280999507931168, 'roi_p2': 0.08946698095898986, 'roi_p3': 0.1454876733325284, 'stoploss': -0.18181041180901014}, # noqa: E501
'params_details': {'buy': {'mfi-value': 17, 'fastd-value': 21, 'adx-value': 38, 'rsi-value': 33, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 82, 'sell-adx-value': 78, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.3077646493708299, 444: 0.16227697603830155, 1045: 0.07280999507931168, 2314: 0}, 'stoploss': {'stoploss': -0.18181041180901014}}, # noqa: E501
'results_metrics': {'trade_count': 14, 'avg_profit': -0.3539515, 'median_profit': -1.2222, 'total_profit': -0.002480140000000001, 'profit': -4.955321, 'duration': 3402.8571428571427}, # noqa: E501
'results_explanation': ' 14 trades. Avg profit -0.35%. Total profit -0.00248014 BTC ( -4.96Σ%). Avg duration 3402.9 min.', # noqa: E501
'total_profit': -0.002480140000000001,
'current_epoch': 5,
'is_initial_point': True,
'is_best': True
}, {
'loss': 0.545315889154162,
'params_dict': {'mfi-value': 22, 'fastd-value': 43, 'adx-value': 46, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'bb_lower', 'sell-mfi-value': 87, 'sell-fastd-value': 65, 'sell-adx-value': 94, 'sell-rsi-value': 63, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 319, 'roi_t2': 556, 'roi_t3': 216, 'roi_p1': 0.06251955472249589, 'roi_p2': 0.11659519602202795, 'roi_p3': 0.0953744132197762, 'stoploss': -0.024551752215582423}, # noqa: E501
'params_details': {'buy': {'mfi-value': 22, 'fastd-value': 43, 'adx-value': 46, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 65, 'sell-adx-value': 94, 'sell-rsi-value': 63, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.2744891639643, 216: 0.17911475074452382, 772: 0.06251955472249589, 1091: 0}, 'stoploss': {'stoploss': -0.024551752215582423}}, # noqa: E501
'results_metrics': {'trade_count': 39, 'avg_profit': -0.21400679487179478, 'median_profit': -1.2222, 'total_profit': -0.0041773, 'profit': -8.346264999999997, 'duration': 636.9230769230769}, # noqa: E501
'results_explanation': ' 39 trades. Avg profit -0.21%. Total profit -0.00417730 BTC ( -8.35Σ%). Avg duration 636.9 min.', # noqa: E501
'total_profit': -0.0041773,
'current_epoch': 6,
'is_initial_point': True,
'is_best': False
}, {
'loss': 4.713497421432944,
'params_dict': {'mfi-value': 13, 'fastd-value': 41, 'adx-value': 21, 'rsi-value': 29, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower', 'sell-mfi-value': 99, 'sell-fastd-value': 60, 'sell-adx-value': 81, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 771, 'roi_t2': 620, 'roi_t3': 145, 'roi_p1': 0.0586919200378493, 'roi_p2': 0.04984118697312542, 'roi_p3': 0.37521058680247044, 'stoploss': -0.14613268022709905}, # noqa: E501
'params_details': {
'buy': {'mfi-value': 13, 'fastd-value': 41, 'adx-value': 21, 'rsi-value': 29, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 99, 'sell-fastd-value': 60, 'sell-adx-value': 81, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.4837436938134452, 145: 0.10853310701097472, 765: 0.0586919200378493, 1536: 0}, # noqa: E501
'stoploss': {'stoploss': -0.14613268022709905}}, # noqa: E501
'results_metrics': {'trade_count': 318, 'avg_profit': -0.39833954716981146, 'median_profit': -1.2222, 'total_profit': -0.06339929, 'profit': -126.67197600000004, 'duration': 3140.377358490566}, # noqa: E501
'results_explanation': ' 318 trades. Avg profit -0.40%. Total profit -0.06339929 BTC (-126.67Σ%). Avg duration 3140.4 min.', # noqa: E501
'total_profit': -0.06339929,
'current_epoch': 7,
'is_initial_point': True,
'is_best': False
}, {
'loss': 20.0, # noqa: E501
'params_dict': {'mfi-value': 24, 'fastd-value': 43, 'adx-value': 33, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'sar_reversal', 'sell-mfi-value': 89, 'sell-fastd-value': 74, 'sell-adx-value': 70, 'sell-rsi-value': 70, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': False, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 1149, 'roi_t2': 375, 'roi_t3': 289, 'roi_p1': 0.05571820757172588, 'roi_p2': 0.0606240398618907, 'roi_p3': 0.1729012220156157, 'stoploss': -0.1588514289110401}, # noqa: E501
'params_details': {'buy': {'mfi-value': 24, 'fastd-value': 43, 'adx-value': 33, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 89, 'sell-fastd-value': 74, 'sell-adx-value': 70, 'sell-rsi-value': 70, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': False, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, 'roi': {0: 0.2892434694492323, 289: 0.11634224743361658, 664: 0.05571820757172588, 1813: 0}, 'stoploss': {'stoploss': -0.1588514289110401}}, # noqa: E501
'results_metrics': {'trade_count': 1, 'avg_profit': 0.0, 'median_profit': 0.0, 'total_profit': 0.0, 'profit': 0.0, 'duration': 5340.0}, # noqa: E501
'results_explanation': ' 1 trades. Avg profit 0.00%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration 5340.0 min.', # noqa: E501
'total_profit': 0.0,
'current_epoch': 8,
'is_initial_point': True,
'is_best': False
}, {
'loss': 2.4731817780991223,
'params_dict': {'mfi-value': 22, 'fastd-value': 20, 'adx-value': 29, 'rsi-value': 40, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'sar_reversal', 'sell-mfi-value': 97, 'sell-fastd-value': 65, 'sell-adx-value': 81, 'sell-rsi-value': 64, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1012, 'roi_t2': 584, 'roi_t3': 422, 'roi_p1': 0.036764323603472565, 'roi_p2': 0.10335480573205287, 'roi_p3': 0.10322347377503042, 'stoploss': -0.2780610808108503}, # noqa: E501
'params_details': {'buy': {'mfi-value': 22, 'fastd-value': 20, 'adx-value': 29, 'rsi-value': 40, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 97, 'sell-fastd-value': 65, 'sell-adx-value': 81, 'sell-rsi-value': 64, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.2433426031105559, 422: 0.14011912933552545, 1006: 0.036764323603472565, 2018: 0}, 'stoploss': {'stoploss': -0.2780610808108503}}, # noqa: E501
'results_metrics': {'trade_count': 229, 'avg_profit': -0.38433433624454144, 'median_profit': -1.2222, 'total_profit': -0.044050070000000004, 'profit': -88.01256299999999, 'duration': 6505.676855895196}, # noqa: E501
'results_explanation': ' 229 trades. Avg profit -0.38%. Total profit -0.04405007 BTC ( -88.01Σ%). Avg duration 6505.7 min.', # noqa: E501
'total_profit': -0.044050070000000004, # noqa: E501
'current_epoch': 9,
'is_initial_point': True,
'is_best': False
}, {
'loss': -0.2604606005845212, # noqa: E501
'params_dict': {'mfi-value': 23, 'fastd-value': 24, 'adx-value': 22, 'rsi-value': 24, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 97, 'sell-fastd-value': 70, 'sell-adx-value': 64, 'sell-rsi-value': 80, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 792, 'roi_t2': 464, 'roi_t3': 215, 'roi_p1': 0.04594053535385903, 'roi_p2': 0.09623192684243963, 'roi_p3': 0.04428219070850663, 'stoploss': -0.16992287161634415}, # noqa: E501
'params_details': {'buy': {'mfi-value': 23, 'fastd-value': 24, 'adx-value': 22, 'rsi-value': 24, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 97, 'sell-fastd-value': 70, 'sell-adx-value': 64, 'sell-rsi-value': 80, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, 'roi': {0: 0.18645465290480528, 215: 0.14217246219629864, 679: 0.04594053535385903, 1471: 0}, 'stoploss': {'stoploss': -0.16992287161634415}}, # noqa: E501
'results_metrics': {'trade_count': 4, 'avg_profit': 0.1080385, 'median_profit': -1.2222, 'total_profit': 0.00021629, 'profit': 0.432154, 'duration': 2850.0}, # noqa: E501
'results_explanation': ' 4 trades. Avg profit 0.11%. Total profit 0.00021629 BTC ( 0.43Σ%). Avg duration 2850.0 min.', # noqa: E501
'total_profit': 0.00021629,
'current_epoch': 10,
'is_initial_point': True,
'is_best': True
}, {
'loss': 4.876465945994304, # noqa: E501
'params_dict': {'mfi-value': 20, 'fastd-value': 32, 'adx-value': 49, 'rsi-value': 23, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower', 'sell-mfi-value': 75, 'sell-fastd-value': 56, 'sell-adx-value': 61, 'sell-rsi-value': 62, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 579, 'roi_t2': 614, 'roi_t3': 273, 'roi_p1': 0.05307643172744114, 'roi_p2': 0.1352282078262871, 'roi_p3': 0.1913307406325751, 'stoploss': -0.25728526022513887}, # noqa: E501
'params_details': {'buy': {'mfi-value': 20, 'fastd-value': 32, 'adx-value': 49, 'rsi-value': 23, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 75, 'sell-fastd-value': 56, 'sell-adx-value': 61, 'sell-rsi-value': 62, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.3796353801863034, 273: 0.18830463955372825, 887: 0.05307643172744114, 1466: 0}, 'stoploss': {'stoploss': -0.25728526022513887}}, # noqa: E501
'results_metrics': {'trade_count': 117, 'avg_profit': -1.2698609145299145, 'median_profit': -1.2222, 'total_profit': -0.07436117, 'profit': -148.573727, 'duration': 4282.5641025641025}, # noqa: E501
'results_explanation': ' 117 trades. Avg profit -1.27%. Total profit -0.07436117 BTC (-148.57Σ%). Avg duration 4282.6 min.', # noqa: E501
'total_profit': -0.07436117,
'current_epoch': 11,
'is_initial_point': True,
'is_best': False
}, {
'loss': 100000,
'params_dict': {'mfi-value': 10, 'fastd-value': 36, 'adx-value': 31, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'sar_reversal', 'sell-mfi-value': 80, 'sell-fastd-value': 71, 'sell-adx-value': 60, 'sell-rsi-value': 85, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1156, 'roi_t2': 581, 'roi_t3': 408, 'roi_p1': 0.06860454019988212, 'roi_p2': 0.12473718444931989, 'roi_p3': 0.2896360635226823, 'stoploss': -0.30889015124682806}, # noqa: E501
'params_details': {'buy': {'mfi-value': 10, 'fastd-value': 36, 'adx-value': 31, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 80, 'sell-fastd-value': 71, 'sell-adx-value': 60, 'sell-rsi-value': 85, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4829777881718843, 408: 0.19334172464920202, 989: 0.06860454019988212, 2145: 0}, 'stoploss': {'stoploss': -0.30889015124682806}}, # noqa: E501
'results_metrics': {'trade_count': 0, 'avg_profit': None, 'median_profit': None, 'total_profit': 0, 'profit': 0.0, 'duration': None}, # noqa: E501
'results_explanation': ' 0 trades. Avg profit nan%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration nan min.', # noqa: E501
'total_profit': 0,
'current_epoch': 12,
'is_initial_point': True,
'is_best': False
}
]
@pytest.fixture
def saved_hyperopt_results():
hyperopt_res = [
@ -2084,3 +1952,88 @@ def saved_hyperopt_results():
].total_seconds()
return hyperopt_res
@pytest.fixture(scope='function')
def limit_buy_order_usdt_open():
return {
'id': 'mocked_limit_buy',
'type': 'limit',
'side': 'buy',
'symbol': 'mocked',
'datetime': arrow.utcnow().isoformat(),
'timestamp': arrow.utcnow().int_timestamp,
'price': 2.00,
'amount': 30.0,
'filled': 0.0,
'cost': 60.0,
'remaining': 30.0,
'status': 'open'
}
@pytest.fixture(scope='function')
def limit_buy_order_usdt(limit_buy_order_usdt_open):
order = deepcopy(limit_buy_order_usdt_open)
order['status'] = 'closed'
order['filled'] = order['amount']
order['remaining'] = 0.0
return order
@pytest.fixture
def limit_sell_order_usdt_open():
return {
'id': 'mocked_limit_sell',
'type': 'limit',
'side': 'sell',
'pair': 'mocked',
'datetime': arrow.utcnow().isoformat(),
'timestamp': arrow.utcnow().int_timestamp,
'price': 2.20,
'amount': 30.0,
'filled': 0.0,
'remaining': 30.0,
'status': 'open'
}
@pytest.fixture
def limit_sell_order_usdt(limit_sell_order_usdt_open):
order = deepcopy(limit_sell_order_usdt_open)
order['remaining'] = 0.0
order['filled'] = order['amount']
order['status'] = 'closed'
return order
@pytest.fixture(scope='function')
def market_buy_order_usdt():
return {
'id': 'mocked_market_buy',
'type': 'market',
'side': 'buy',
'symbol': 'mocked',
'datetime': arrow.utcnow().isoformat(),
'price': 2.00,
'amount': 30.0,
'filled': 30.0,
'remaining': 0.0,
'status': 'closed'
}
@pytest.fixture
def market_sell_order_usdt():
return {
'id': 'mocked_limit_sell',
'type': 'market',
'side': 'sell',
'symbol': 'mocked',
'datetime': arrow.utcnow().isoformat(),
'price': 2.20,
'amount': 30.0,
'filled': 30.0,
'remaining': 0.0,
'status': 'closed'
}

View File

@ -33,7 +33,7 @@ def mock_trade_1(fee):
open_rate=0.123,
exchange='binance',
open_order_id='dry_run_buy_12345',
strategy='DefaultStrategy',
strategy='StrategyTestV2',
timeframe=5,
)
o = Order.parse_from_ccxt_object(mock_order_1(), 'ETH/BTC', 'buy')
@ -87,7 +87,7 @@ def mock_trade_2(fee):
exchange='binance',
is_open=False,
open_order_id='dry_run_sell_12345',
strategy='DefaultStrategy',
strategy='StrategyTestV2',
timeframe=5,
sell_reason='sell_signal',
open_date=datetime.now(tz=timezone.utc) - timedelta(minutes=20),
@ -146,7 +146,7 @@ def mock_trade_3(fee):
close_profit_abs=0.000155,
exchange='binance',
is_open=False,
strategy='DefaultStrategy',
strategy='StrategyTestV2',
timeframe=5,
sell_reason='roi',
open_date=datetime.now(tz=timezone.utc) - timedelta(minutes=20),
@ -189,7 +189,7 @@ def mock_trade_4(fee):
open_rate=0.123,
exchange='binance',
open_order_id='prod_buy_12345',
strategy='DefaultStrategy',
strategy='StrategyTestV2',
timeframe=5,
)
o = Order.parse_from_ccxt_object(mock_order_4(), 'ETC/BTC', 'buy')

View File

@ -93,7 +93,7 @@ def test_load_backtest_data_new_format(testdatadir):
def test_load_backtest_data_multi(testdatadir):
filename = testdatadir / "backtest-result_multistrat.json"
for strategy in ('DefaultStrategy', 'TestStrategy'):
for strategy in ('StrategyTestV2', 'TestStrategy'):
bt_data = load_backtest_data(filename, strategy=strategy)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
@ -128,7 +128,7 @@ def test_load_trades_from_db(default_conf, fee, mocker):
for col in BT_DATA_COLUMNS:
if col not in ['index', 'open_at_end']:
assert col in trades.columns
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='DefaultStrategy')
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='StrategyTestV2')
assert len(trades) == 4
trades = load_trades_from_db(db_url=default_conf['db_url'], strategy='NoneStrategy')
assert len(trades) == 0
@ -186,7 +186,7 @@ def test_load_trades(default_conf, mocker):
db_url=default_conf.get('db_url'),
exportfilename=default_conf.get('exportfilename'),
no_trades=False,
strategy="DefaultStrategy",
strategy="StrategyTestV2",
)
assert db_mock.call_count == 1

View File

@ -119,7 +119,7 @@ def test_ohlcv_fill_up_missing_data2(caplog):
# 3rd candle has been filled
row = data2.loc[2, :]
assert row['volume'] == 0
# close shoult match close of previous candle
# close should match close of previous candle
assert row['close'] == data.loc[1, 'close']
assert row['open'] == row['close']
assert row['high'] == row['close']

View File

@ -66,7 +66,7 @@ def test_historic_ohlcv_dataformat(mocker, default_conf, ohlcv_history):
hdf5loadmock.assert_not_called()
jsonloadmock.assert_called_once()
# Swiching to dataformat hdf5
# Switching to dataformat hdf5
hdf5loadmock.reset_mock()
jsonloadmock.reset_mock()
default_conf["dataformat_ohlcv"] = "hdf5"

View File

@ -133,8 +133,8 @@ def test_load_data_with_new_pair_1min(ohlcv_history_list, mocker, caplog,
load_pair_history(datadir=tmpdir1, timeframe='1m', pair='MEME/BTC')
assert file.is_file()
assert log_has_re(
'Download history data for pair: "MEME/BTC", timeframe: 1m '
'and store in .*', caplog
r'Download history data for pair: "MEME/BTC" \(0/1\), timeframe: 1m '
r'and store in .*', caplog
)
@ -200,15 +200,15 @@ def test_load_cached_data_for_updating(mocker, testdatadir) -> None:
assert start_ts == test_data[0][0] - 1000
# timeframe starts in the center of the cached data
# should return the chached data w/o the last item
# should return the cached data w/o the last item
timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0)
data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler)
assert_frame_equal(data, test_data_df.iloc[:-1])
assert test_data[-2][0] <= start_ts < test_data[-1][0]
# timeframe starts after the chached data
# should return the chached data w/o the last item
# timeframe starts after the cached data
# should return the cached data w/o the last item
timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 100, 0)
data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler)
assert_frame_equal(data, test_data_df.iloc[:-1])
@ -278,8 +278,10 @@ def test_download_pair_history2(mocker, default_conf, testdatadir) -> None:
return_value=None)
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=tick)
exchange = get_patched_exchange(mocker, default_conf)
_download_pair_history(testdatadir, exchange, pair="UNITTEST/BTC", timeframe='1m')
_download_pair_history(testdatadir, exchange, pair="UNITTEST/BTC", timeframe='3m')
_download_pair_history(datadir=testdatadir, exchange=exchange, pair="UNITTEST/BTC",
timeframe='1m')
_download_pair_history(datadir=testdatadir, exchange=exchange, pair="UNITTEST/BTC",
timeframe='3m')
assert json_dump_mock.call_count == 2
@ -378,10 +380,10 @@ def test_file_dump_json_tofile(testdatadir) -> None:
def test_get_timerange(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
default_conf.update({'strategy': 'DefaultStrategy'})
default_conf.update({'strategy': 'StrategyTestV2'})
strategy = StrategyResolver.load_strategy(default_conf)
data = strategy.ohlcvdata_to_dataframe(
data = strategy.advise_all_indicators(
load_data(
datadir=testdatadir,
timeframe='1m',
@ -396,10 +398,10 @@ def test_get_timerange(default_conf, mocker, testdatadir) -> None:
def test_validate_backtest_data_warn(default_conf, mocker, caplog, testdatadir) -> None:
patch_exchange(mocker)
default_conf.update({'strategy': 'DefaultStrategy'})
default_conf.update({'strategy': 'StrategyTestV2'})
strategy = StrategyResolver.load_strategy(default_conf)
data = strategy.ohlcvdata_to_dataframe(
data = strategy.advise_all_indicators(
load_data(
datadir=testdatadir,
timeframe='1m',
@ -420,11 +422,11 @@ def test_validate_backtest_data_warn(default_conf, mocker, caplog, testdatadir)
def test_validate_backtest_data(default_conf, mocker, caplog, testdatadir) -> None:
patch_exchange(mocker)
default_conf.update({'strategy': 'DefaultStrategy'})
default_conf.update({'strategy': 'StrategyTestV2'})
strategy = StrategyResolver.load_strategy(default_conf)
timerange = TimeRange('index', 'index', 200, 250)
data = strategy.ohlcvdata_to_dataframe(
data = strategy.advise_all_indicators(
load_data(
datadir=testdatadir,
timeframe='5m',

View File

@ -29,7 +29,6 @@ from tests.optimize import (BTContainer, BTrade, _build_backtest_dataframe,
tests_start_time = arrow.get(2018, 10, 3)
timeframe_in_minute = 60
_ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7}
# Helpers for this test file

View File

@ -42,6 +42,11 @@ EXCHANGES = {
'hasQuoteVolume': True,
'timeframe': '5m',
},
'gateio': {
'pair': 'BTC/USDT',
'hasQuoteVolume': True,
'timeframe': '5m',
},
}
@ -142,8 +147,8 @@ class TestCCXTExchange():
def test_ccxt_get_fee(self, exchange):
exchange, exchangename = exchange
pair = EXCHANGES[exchangename]['pair']
assert 0 < exchange.get_fee(pair, 'limit', 'buy') < 1
assert 0 < exchange.get_fee(pair, 'limit', 'sell') < 1
assert 0 < exchange.get_fee(pair, 'market', 'buy') < 1
assert 0 < exchange.get_fee(pair, 'market', 'sell') < 1
threshold = 0.01
assert 0 < exchange.get_fee(pair, 'limit', 'buy') < threshold
assert 0 < exchange.get_fee(pair, 'limit', 'sell') < threshold
assert 0 < exchange.get_fee(pair, 'market', 'buy') < threshold
assert 0 < exchange.get_fee(pair, 'market', 'sell') < threshold

View File

@ -984,16 +984,21 @@ def test_create_dry_run_order_limit_fill(default_conf, mocker, side, startprice,
assert order['fee']
@pytest.mark.parametrize("side,amount,endprice", [
("buy", 1, 25.566),
("buy", 100, 25.5672), # Requires interpolation
("buy", 1000, 25.575), # More than orderbook return
("sell", 1, 25.563),
("sell", 100, 25.5625), # Requires interpolation
("sell", 1000, 25.5555), # More than orderbook return
@pytest.mark.parametrize("side,rate,amount,endprice", [
# spread is 25.263-25.266
("buy", 25.564, 1, 25.566),
("buy", 25.564, 100, 25.5672), # Requires interpolation
("buy", 25.590, 100, 25.5672), # Price above spread ... average is lower
("buy", 25.564, 1000, 25.575), # More than orderbook return
("buy", 24.000, 100000, 25.200), # Run into max_slippage of 5%
("sell", 25.564, 1, 25.563),
("sell", 25.564, 100, 25.5625), # Requires interpolation
("sell", 25.510, 100, 25.5625), # price below spread - average is higher
("sell", 25.564, 1000, 25.5555), # More than orderbook return
("sell", 27, 10000, 25.65), # max-slippage 5%
])
@pytest.mark.parametrize("exchange_name", EXCHANGES)
def test_create_dry_run_order_market_fill(default_conf, mocker, side, amount, endprice,
def test_create_dry_run_order_market_fill(default_conf, mocker, side, rate, amount, endprice,
exchange_name, order_book_l2_usd):
default_conf['dry_run'] = True
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
@ -1003,7 +1008,7 @@ def test_create_dry_run_order_market_fill(default_conf, mocker, side, amount, en
)
order = exchange.create_dry_run_order(
pair='LTC/USDT', ordertype='market', side=side, amount=amount, rate=25.5)
pair='LTC/USDT', ordertype='market', side=side, amount=amount, rate=rate)
assert 'id' in order
assert f'dry_run_{side}_' in order["id"]
assert order["side"] == side
@ -1056,7 +1061,7 @@ def test_buy_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
exchange = get_patched_exchange(mocker, default_conf)
order = exchange.buy(pair='ETH/BTC', ordertype='limit',
order = exchange.create_order(pair='ETH/BTC', ordertype='limit', side="buy",
amount=1, rate=200, time_in_force='gtc')
assert 'id' in order
assert 'dry_run_buy_' in order['id']
@ -1080,7 +1085,7 @@ def test_buy_prod(default_conf, mocker, exchange_name):
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
order = exchange.buy(pair='ETH/BTC', ordertype=order_type,
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
assert 'id' in order
@ -1094,9 +1099,10 @@ def test_buy_prod(default_conf, mocker, exchange_name):
api_mock.create_order.reset_mock()
order_type = 'limit'
order = exchange.buy(
order = exchange.create_order(
pair='ETH/BTC',
ordertype=order_type,
side="buy",
amount=1,
rate=200,
time_in_force=time_in_force)
@ -1110,31 +1116,31 @@ def test_buy_prod(default_conf, mocker, exchange_name):
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InsufficientFunds("Not enough funds"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype=order_type,
exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype='limit',
exchange.create_order(pair='ETH/BTC', ordertype='limit', side="buy",
amount=1, rate=200, time_in_force=time_in_force)
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype='market',
exchange.create_order(pair='ETH/BTC', ordertype='market', side="buy",
amount=1, rate=200, time_in_force=time_in_force)
with pytest.raises(TemporaryError):
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError("Network disconnect"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype=order_type,
exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
with pytest.raises(OperationalException):
api_mock.create_order = MagicMock(side_effect=ccxt.BaseError("Unknown error"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype=order_type,
exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
@ -1157,7 +1163,7 @@ def test_buy_considers_time_in_force(default_conf, mocker, exchange_name):
order_type = 'limit'
time_in_force = 'ioc'
order = exchange.buy(pair='ETH/BTC', ordertype=order_type,
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
assert 'id' in order
@ -1174,7 +1180,7 @@ def test_buy_considers_time_in_force(default_conf, mocker, exchange_name):
order_type = 'market'
time_in_force = 'ioc'
order = exchange.buy(pair='ETH/BTC', ordertype=order_type,
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
assert 'id' in order
@ -1193,7 +1199,8 @@ def test_sell_dry_run(default_conf, mocker):
default_conf['dry_run'] = True
exchange = get_patched_exchange(mocker, default_conf)
order = exchange.sell(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
order = exchange.create_order(pair='ETH/BTC', ordertype='limit',
side="sell", amount=1, rate=200)
assert 'id' in order
assert 'dry_run_sell_' in order['id']
@ -1216,7 +1223,8 @@ def test_sell_prod(default_conf, mocker, exchange_name):
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type,
side="sell", amount=1, rate=200)
assert 'id' in order
assert 'info' in order
@ -1229,7 +1237,8 @@ def test_sell_prod(default_conf, mocker, exchange_name):
api_mock.create_order.reset_mock()
order_type = 'limit'
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type,
side="sell", amount=1, rate=200)
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
assert api_mock.create_order.call_args[0][1] == order_type
assert api_mock.create_order.call_args[0][2] == 'sell'
@ -1240,28 +1249,28 @@ def test_sell_prod(default_conf, mocker, exchange_name):
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InsufficientFunds("0 balance"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="sell", amount=1, rate=200)
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
exchange.create_order(pair='ETH/BTC', ordertype='limit', side="sell", amount=1, rate=200)
# Market orders don't require price, so the behaviour is slightly different
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype='market', amount=1, rate=200)
exchange.create_order(pair='ETH/BTC', ordertype='market', side="sell", amount=1, rate=200)
with pytest.raises(TemporaryError):
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError("No Connection"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="sell", amount=1, rate=200)
with pytest.raises(OperationalException):
api_mock.create_order = MagicMock(side_effect=ccxt.BaseError("DeadBeef"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="sell", amount=1, rate=200)
@pytest.mark.parametrize("exchange_name", EXCHANGES)
@ -1283,7 +1292,7 @@ def test_sell_considers_time_in_force(default_conf, mocker, exchange_name):
order_type = 'limit'
time_in_force = 'ioc'
order = exchange.sell(pair='ETH/BTC', ordertype=order_type,
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="sell",
amount=1, rate=200, time_in_force=time_in_force)
assert 'id' in order
@ -1299,7 +1308,7 @@ def test_sell_considers_time_in_force(default_conf, mocker, exchange_name):
order_type = 'market'
time_in_force = 'ioc'
order = exchange.sell(pair='ETH/BTC', ordertype=order_type,
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="sell",
amount=1, rate=200, time_in_force=time_in_force)
assert 'id' in order
@ -1555,13 +1564,16 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None:
pairs = [('IOTA/ETH', '5m'), ('XRP/ETH', '5m')]
# empty dicts
assert not exchange._klines
exchange.refresh_latest_ohlcv(pairs, cache=False)
res = exchange.refresh_latest_ohlcv(pairs, cache=False)
# No caching
assert not exchange._klines
assert len(res) == len(pairs)
assert exchange._api_async.fetch_ohlcv.call_count == 2
exchange._api_async.fetch_ohlcv.reset_mock()
exchange.refresh_latest_ohlcv(pairs)
res = exchange.refresh_latest_ohlcv(pairs)
assert len(res) == len(pairs)
assert log_has(f'Refreshing candle (OHLCV) data for {len(pairs)} pairs', caplog)
assert exchange._klines
@ -1578,12 +1590,16 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None:
assert exchange.klines(pair, copy=False) is exchange.klines(pair, copy=False)
# test caching
exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m')])
res = exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m')])
assert len(res) == len(pairs)
assert exchange._api_async.fetch_ohlcv.call_count == 2
assert log_has(f"Using cached candle (OHLCV) data for pair {pairs[0][0]}, "
f"timeframe {pairs[0][1]} ...",
caplog)
res = exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m'), ('XRP/ETH', '1d')],
cache=False)
assert len(res) == 3
@pytest.mark.asyncio
@ -1835,6 +1851,31 @@ def test_get_sell_rate(default_conf, mocker, caplog, side, bid, ask,
assert log_has("Using cached sell rate for ETH/BTC.", caplog)
@pytest.mark.parametrize("entry,side,ask,bid,last,last_ab,expected", [
('buy', 'ask', None, 4, 4, 0, 4), # ask not available
('buy', 'ask', None, None, 4, 0, 4), # ask not available
('buy', 'bid', 6, None, 4, 0, 5), # bid not available
('buy', 'bid', None, None, 4, 0, 5), # No rate available
('sell', 'ask', None, 4, 4, 0, 4), # ask not available
('sell', 'ask', None, None, 4, 0, 4), # ask not available
('sell', 'bid', 6, None, 4, 0, 5), # bid not available
('sell', 'bid', None, None, 4, 0, 5), # bid not available
])
def test_get_ticker_rate_error(mocker, entry, default_conf, caplog, side, ask, bid,
last, last_ab, expected) -> None:
caplog.set_level(logging.DEBUG)
default_conf['bid_strategy']['ask_last_balance'] = last_ab
default_conf['bid_strategy']['price_side'] = side
default_conf['ask_strategy']['price_side'] = side
default_conf['ask_strategy']['ask_last_balance'] = last_ab
exchange = get_patched_exchange(mocker, default_conf)
mocker.patch('freqtrade.exchange.Exchange.fetch_ticker',
return_value={'ask': ask, 'last': last, 'bid': bid})
with pytest.raises(PricingError):
exchange.get_rate('ETH/BTC', refresh=True, side=entry)
@pytest.mark.parametrize('side,expected', [
('bid', 0.043936), # Value from order_book_l2 fiture - bids side
('ask', 0.043949), # Value from order_book_l2 fiture - asks side
@ -2173,7 +2214,7 @@ def test_get_historic_trades_notsupported(default_conf, mocker, caplog, exchange
pair = 'ETH/BTC'
with pytest.raises(OperationalException,
match="This exchange does not suport downloading Trades."):
match="This exchange does not support downloading Trades."):
exchange.get_historic_trades(pair, since=trades_history[0][0],
until=trades_history[-1][0])
@ -2186,7 +2227,7 @@ def test_cancel_order_dry_run(default_conf, mocker, exchange_name):
assert exchange.cancel_order(order_id='123', pair='TKN/BTC') == {}
assert exchange.cancel_stoploss_order(order_id='123', pair='TKN/BTC') == {}
order = exchange.buy('ETH/BTC', 'limit', 5, 0.55, 'gtc')
order = exchange.create_order('ETH/BTC', 'limit', "buy", 5, 0.55, 'gtc')
cancel_order = exchange.cancel_order(order_id=order['id'], pair='ETH/BTC')
assert order['id'] == cancel_order['id']

View File

@ -31,7 +31,7 @@ def test_buy_kraken_trading_agreement(default_conf, mocker):
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
exchange = get_patched_exchange(mocker, default_conf, api_mock, id="kraken")
order = exchange.buy(pair='ETH/BTC', ordertype=order_type,
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type, side="buy",
amount=1, rate=200, time_in_force=time_in_force)
assert 'id' in order
@ -63,7 +63,8 @@ def test_sell_kraken_trading_agreement(default_conf, mocker):
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
exchange = get_patched_exchange(mocker, default_conf, api_mock, id="kraken")
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
order = exchange.create_order(pair='ETH/BTC', ordertype=order_type,
side="sell", amount=1, rate=200)
assert 'id' in order
assert 'info' in order

View File

@ -18,6 +18,7 @@ class BTrade(NamedTuple):
sell_reason: SellType
open_tick: int
close_tick: int
buy_tag: Optional[str] = None
class BTContainer(NamedTuple):
@ -44,10 +45,13 @@ def _get_frame_time_from_offset(offset):
def _build_backtest_dataframe(data):
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
columns = columns + ['buy_tag'] if len(data[0]) == 9 else columns
frame = DataFrame.from_records(data, columns=columns)
frame['date'] = frame['date'].apply(_get_frame_time_from_offset)
# Ensure floats are in place
for column in ['open', 'high', 'low', 'close', 'volume']:
frame[column] = frame[column].astype('float64')
if 'buy_tag' not in columns:
frame['buy_tag'] = None
return frame

View File

@ -16,7 +16,7 @@ def hyperopt_conf(default_conf):
hyperconf.update({
'datadir': Path(default_conf['datadir']),
'runmode': RunMode.HYPEROPT,
'hyperopt': 'DefaultHyperOpt',
'hyperopt': 'HyperoptTestSepFile',
'hyperopt_loss': 'ShortTradeDurHyperOptLoss',
'hyperopt_path': str(Path(__file__).parent / 'hyperopts'),
'epochs': 1,

View File

@ -11,7 +11,7 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt
class DefaultHyperOpt(IHyperOpt):
class HyperoptTestSepFile(IHyperOpt):
"""
Default hyperopt provided by the Freqtrade bot.
You can override it with your own Hyperopt

View File

@ -516,6 +516,26 @@ tc32 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=1)]
)
# Test 33: trailing_stop should be triggered immediately on trade open candle.
# stop-loss: 1%, ROI: 10% (should not apply)
tc33 = BTContainer(data=[
# D O H L C V B S BT
[0, 5000, 5050, 4950, 5000, 6172, 1, 0, 'buy_signal_01'],
[1, 5000, 5500, 5000, 4900, 6172, 0, 0, None], # enter trade (signal on last candle) and stop
[2, 4900, 5250, 4500, 5100, 6172, 0, 0, None],
[3, 5100, 5100, 4650, 4750, 6172, 0, 0, None],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0, None]],
stop_loss=-0.01, roi={"0": 0.10}, profit_perc=-0.01, trailing_stop=True,
trailing_only_offset_is_reached=True, trailing_stop_positive_offset=0.02,
trailing_stop_positive=0.01, use_custom_stoploss=True,
trades=[BTrade(
sell_reason=SellType.TRAILING_STOP_LOSS,
open_tick=1,
close_tick=1,
buy_tag='buy_signal_01'
)]
)
TESTS = [
tc0,
tc1,
@ -550,6 +570,7 @@ TESTS = [
tc30,
tc31,
tc32,
tc33,
]
@ -575,6 +596,7 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
frame = _build_backtest_dataframe(data.data)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.required_startup = 0
backtesting.strategy.advise_buy = lambda a, m: frame
backtesting.strategy.advise_sell = lambda a, m: frame
backtesting.strategy.use_custom_stoploss = data.use_custom_stoploss
@ -598,5 +620,6 @@ def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
for c, trade in enumerate(data.trades):
res = results.iloc[c]
assert res.sell_reason == trade.sell_reason.value
assert res.buy_tag == trade.buy_tag
assert res.open_date == _get_frame_time_from_offset(trade.open_tick)
assert res.close_date == _get_frame_time_from_offset(trade.close_tick)

View File

@ -1,6 +1,7 @@
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import random
from datetime import timedelta
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
@ -85,7 +86,7 @@ def simple_backtest(config, contour, mocker, testdatadir) -> None:
backtesting._set_strategy(backtesting.strategylist[0])
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
@ -107,7 +108,7 @@ def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'):
patch_exchange(mocker)
backtesting = Backtesting(conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
return {
'processed': processed,
@ -154,7 +155,7 @@ def test_setup_optimize_configuration_without_arguments(mocker, default_conf, ca
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--export', 'none'
]
@ -189,7 +190,7 @@ def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) ->
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--enable-position-stacking',
@ -239,7 +240,7 @@ def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--stake-amount', '1',
'--starting-balance', '2'
]
@ -250,7 +251,7 @@ def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--stake-amount', '1',
'--starting-balance', '0.5'
]
@ -268,7 +269,7 @@ def test_start(mocker, fee, default_conf, caplog) -> None:
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
]
pargs = get_args(args)
start_backtesting(pargs)
@ -289,7 +290,7 @@ def test_backtesting_init(mocker, default_conf, order_types) -> None:
backtesting._set_strategy(backtesting.strategylist[0])
assert backtesting.config == default_conf
assert backtesting.timeframe == '5m'
assert callable(backtesting.strategy.ohlcvdata_to_dataframe)
assert callable(backtesting.strategy.advise_all_indicators)
assert callable(backtesting.strategy.advise_buy)
assert callable(backtesting.strategy.advise_sell)
assert isinstance(backtesting.strategy.dp, DataProvider)
@ -301,7 +302,7 @@ def test_backtesting_init(mocker, default_conf, order_types) -> None:
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
del default_conf['timeframe']
default_conf['strategy_list'] = ['DefaultStrategy',
default_conf['strategy_list'] = ['StrategyTestV2',
'SampleStrategy']
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
@ -335,14 +336,14 @@ def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
fill_up_missing=True)
backtesting = Backtesting(default_conf)
backtesting._set_strategy(backtesting.strategylist[0])
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
processed = backtesting.strategy.advise_all_indicators(data)
assert len(processed['UNITTEST/BTC']) == 102
# Load strategy to compare the result between Backtesting function and strategy are the same
default_conf.update({'strategy': 'DefaultStrategy'})
default_conf.update({'strategy': 'StrategyTestV2'})
strategy = StrategyResolver.load_strategy(default_conf)
processed2 = strategy.ohlcvdata_to_dataframe(data)
processed2 = strategy.advise_all_indicators(data)
assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC'])
@ -472,7 +473,7 @@ def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, ti
Backtesting(default_conf)
# Multiple strategies
default_conf['strategy_list'] = ['DefaultStrategy', 'TestStrategyLegacy']
default_conf['strategy_list'] = ['StrategyTestV2', 'TestStrategyLegacyV1']
with pytest.raises(OperationalException,
match='PrecisionFilter not allowed for backtesting multiple strategies.'):
Backtesting(default_conf)
@ -496,6 +497,7 @@ def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
0, # Sell
0.00099, # Low
0.0012, # High
'', # Buy Signal Name
]
trade = backtesting._enter_trade(pair, row=row)
assert isinstance(trade, LocalTrade)
@ -534,6 +536,8 @@ def test_backtest__enter_trade(default_conf, fee, mocker) -> None:
trade = backtesting._enter_trade(pair, row=row)
assert trade is None
backtesting.cleanup()
def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
default_conf['use_sell_signal'] = False
@ -546,7 +550,7 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
timerange = TimeRange('date', None, 1517227800, 0)
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=processed,
@ -580,9 +584,10 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
'initial_stop_loss_ratio': [-0.1, -0.1],
'stop_loss_abs': [0.0940005, 0.09272236],
'stop_loss_ratio': [-0.1, -0.1],
'min_rate': [0.1038, 0.10302485],
'min_rate': [0.10370188, 0.10300000000000001],
'max_rate': [0.10501, 0.1038888],
'is_open': [False, False],
'buy_tag': [None, None],
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]
@ -610,7 +615,7 @@ def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None
timerange = TimeRange.parse_timerange('1510688220-1510700340')
data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
@ -629,7 +634,7 @@ def test_processed(default_conf, mocker, testdatadir) -> None:
backtesting._set_strategy(backtesting.strategylist[0])
dict_of_tickerrows = load_data_test('raise', testdatadir)
dataframes = backtesting.strategy.ohlcvdata_to_dataframe(dict_of_tickerrows)
dataframes = backtesting.strategy.advise_all_indicators(dict_of_tickerrows)
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
@ -689,7 +694,7 @@ def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir,
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
# Override the default buy trend function in our StrategyTestV2
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
@ -705,7 +710,7 @@ def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
# Override the default buy trend function in our StrategyTestV2
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
@ -727,6 +732,7 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
pair='UNITTEST/BTC', datadir=testdatadir)
default_conf['timeframe'] = '1m'
backtesting = Backtesting(default_conf)
backtesting.required_startup = 0
backtesting._set_strategy(backtesting.strategylist[0])
backtesting.strategy.advise_buy = _trend_alternate # Override
backtesting.strategy.advise_sell = _trend_alternate # Override
@ -736,6 +742,14 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
# 100 buys signals
results = result['results']
assert len(results) == 100
# Cached data should be 200
analyzed_df = backtesting.dataprovider.get_analyzed_dataframe('UNITTEST/BTC', '1m')[0]
assert len(analyzed_df) == 200
# Expect last candle to be 1 below end date (as the last candle is assumed as "incomplete"
# during backtesting)
expected_last_candle_date = backtest_conf['end_date'] - timedelta(minutes=1)
assert analyzed_df.iloc[-1]['date'].to_pydatetime() == expected_last_candle_date
# One trade was force-closed at the end
assert len(results.loc[results['is_open']]) == 0
@ -766,6 +780,7 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
if tres > 0:
data[pair] = data[pair][tres:].reset_index()
default_conf['timeframe'] = '5m'
@ -774,7 +789,7 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
backtesting.strategy.advise_buy = _trend_alternate_hold # Override
backtesting.strategy.advise_sell = _trend_alternate_hold # Override
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
processed = backtesting.strategy.advise_all_indicators(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
'processed': processed,
@ -791,6 +806,13 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results['results'], '5m', 3)) == 0
# Cached data correctly removed amounts
offset = 1 if tres == 0 else 0
removed_candles = len(data[pair]) - offset - backtesting.strategy.startup_candle_count
assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, '5m')[0]) == removed_candles
assert len(backtesting.dataprovider.get_analyzed_dataframe(
'NXT/BTC', '5m')[0]) == len(data['NXT/BTC']) - 1 - backtesting.strategy.startup_candle_count
backtest_conf = {
'processed': processed,
'start_date': min_date,
@ -815,7 +837,7 @@ def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--datadir', str(testdatadir),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
@ -886,8 +908,8 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
'StrategyTestV2',
'TestStrategyLegacyV1',
]
args = get_args(args)
start_backtesting(args)
@ -909,8 +931,8 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
'Running backtesting for Strategy StrategyTestV2',
'Running backtesting for Strategy TestStrategyLegacyV1',
]
for line in exists:
@ -990,8 +1012,8 @@ def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdat
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
'StrategyTestV2',
'TestStrategyLegacyV1',
]
args = get_args(args)
start_backtesting(args)
@ -1007,8 +1029,8 @@ def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdat
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days).',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
'Running backtesting for Strategy StrategyTestV2',
'Running backtesting for Strategy TestStrategyLegacyV1',
]
for line in exists:

View File

@ -16,7 +16,7 @@ def test_setup_optimize_configuration_without_arguments(mocker, default_conf, ca
args = [
'edge',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
]
config = setup_optimize_configuration(get_args(args), RunMode.EDGE)
@ -46,7 +46,7 @@ def test_setup_edge_configuration_with_arguments(mocker, edge_conf, caplog) -> N
args = [
'edge',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--timerange', ':100',
@ -80,7 +80,7 @@ def test_start(mocker, fee, edge_conf, caplog) -> None:
args = [
'edge',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
]
pargs = get_args(args)
start_edge(pargs)

View File

@ -22,7 +22,7 @@ from freqtrade.strategy.hyper import IntParameter
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
from .hyperopts.default_hyperopt import DefaultHyperOpt
from .hyperopts.hyperopt_test_sep_file import HyperoptTestSepFile
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
@ -31,7 +31,7 @@ def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, ca
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
]
config = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
@ -63,7 +63,7 @@ def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplo
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--timerange', ':100',
@ -115,7 +115,7 @@ def test_setup_hyperopt_configuration_stake_amount(mocker, default_conf) -> None
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
'--stake-amount', '1',
'--starting-balance', '2'
]
@ -125,7 +125,7 @@ def test_setup_hyperopt_configuration_stake_amount(mocker, default_conf) -> None
args = [
'hyperopt',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--strategy', 'StrategyTestV2',
'--stake-amount', '1',
'--starting-balance', '0.5'
]
@ -136,7 +136,7 @@ def test_setup_hyperopt_configuration_stake_amount(mocker, default_conf) -> None
def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
hyperopt = DefaultHyperOpt
hyperopt = HyperoptTestSepFile
delattr(hyperopt, 'populate_indicators')
delattr(hyperopt, 'populate_buy_trend')
delattr(hyperopt, 'populate_sell_trend')
@ -144,7 +144,7 @@ def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
'freqtrade.resolvers.hyperopt_resolver.HyperOptResolver.load_object',
MagicMock(return_value=hyperopt(default_conf))
)
default_conf.update({'hyperopt': 'DefaultHyperOpt'})
default_conf.update({'hyperopt': 'HyperoptTestSepFile'})
x = HyperOptResolver.load_hyperopt(default_conf)
assert not hasattr(x, 'populate_indicators')
assert not hasattr(x, 'populate_buy_trend')
@ -184,7 +184,7 @@ def test_start_not_installed(mocker, default_conf, import_fails) -> None:
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
'--hyperopt-path',
str(Path(__file__).parent / "hyperopts"),
'--epochs', '5',
@ -205,7 +205,7 @@ def test_start(mocker, hyperopt_conf, caplog) -> None:
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
'--epochs', '5'
]
@ -229,7 +229,7 @@ def test_start_no_data(mocker, hyperopt_conf) -> None:
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
'--epochs', '5'
]
@ -247,7 +247,7 @@ def test_start_filelock(mocker, hyperopt_conf, caplog) -> None:
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt', 'HyperoptTestSepFile',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
'--epochs', '5'
]
@ -351,7 +351,7 @@ def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
del hyperopt_conf['timeframe']
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
@ -426,7 +426,7 @@ def test_hyperopt_format_results(hyperopt):
def test_populate_indicators(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -438,7 +438,7 @@ def test_populate_indicators(hyperopt, testdatadir) -> None:
def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -463,7 +463,7 @@ def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
def test_sell_strategy_generator(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -577,6 +577,7 @@ def test_generate_optimizer(mocker, hyperopt_conf) -> None:
"20.0": 0.02,
"50.0": 0.01,
"110.0": 0},
'protection': {},
'sell': {'sell-adx-enabled': False,
'sell-adx-value': 0,
'sell-fastd-enabled': True,
@ -592,7 +593,7 @@ def test_generate_optimizer(mocker, hyperopt_conf) -> None:
'trailing_stop_positive': 0.02,
'trailing_stop_positive_offset': 0.07}},
'params_dict': optimizer_param,
'params_not_optimized': {'buy': {}, 'sell': {}},
'params_not_optimized': {'buy': {}, 'protection': {}, 'sell': {}},
'results_metrics': ANY,
'total_profit': 3.1e-08
}
@ -659,7 +660,7 @@ def test_print_json_spaces_all(mocker, hyperopt_conf, capsys) -> None:
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
@ -712,7 +713,7 @@ def test_print_json_spaces_default(mocker, hyperopt_conf, capsys) -> None:
hyperopt_conf.update({'print_json': True})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
@ -760,7 +761,7 @@ def test_print_json_spaces_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
@ -804,7 +805,7 @@ def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> Non
hyperopt_conf.update({'spaces': 'roi stoploss'})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
@ -843,7 +844,7 @@ def test_simplified_interface_all_failed(mocker, hyperopt_conf) -> None:
hyperopt_conf.update({'spaces': 'all', })
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
@ -885,7 +886,7 @@ def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None:
hyperopt_conf.update({'spaces': 'buy'})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
# TODO: sell_strategy_generator() is actually not called because
@ -939,7 +940,7 @@ def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None:
hyperopt_conf.update({'spaces': 'sell', })
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
# TODO: buy_strategy_generator() is actually not called because
@ -984,7 +985,7 @@ def test_simplified_interface_failed(mocker, hyperopt_conf, method, space) -> No
hyperopt_conf.update({'spaces': space})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.advise_all_indicators = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
delattr(hyperopt.custom_hyperopt.__class__, method)
@ -1002,6 +1003,8 @@ def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
hyperopt_conf.update({
'strategy': 'HyperoptableStrategy',
'user_data_dir': Path(tmpdir),
'hyperopt_random_state': 42,
'spaces': ['all']
})
hyperopt = Hyperopt(hyperopt_conf)
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
@ -1009,12 +1012,18 @@ def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
assert isinstance(buy_rsi_range, range)
# Range from 0 - 50 (inclusive)
assert len(list(buy_rsi_range)) == 51
hyperopt.start()
# All values should've changed.
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value != 30
assert hyperopt.backtesting.strategy.buy_rsi.value != 35
assert hyperopt.backtesting.strategy.sell_rsi.value != 74
def test_SKDecimal():

View File

@ -10,7 +10,7 @@ import rapidjson
from freqtrade.constants import FTHYPT_FILEVERSION
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
from tests.conftest import log_has, log_has_re
from tests.conftest import log_has
# Functions for recurrent object patching
@ -20,9 +20,14 @@ def create_results() -> List[Dict]:
def test_save_results_saves_epochs(hyperopt, tmpdir, caplog) -> None:
hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt')
hyperopt_epochs = HyperoptTools.load_filtered_results(hyperopt.results_file, {})
assert hyperopt_epochs == ([], 0)
# Test writing to temp dir and reading again
epochs = create_results()
hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt')
caplog.set_level(logging.DEBUG)
@ -33,68 +38,79 @@ def test_save_results_saves_epochs(hyperopt, tmpdir, caplog) -> None:
hyperopt._save_result(epochs[0])
assert log_has(f"2 epochs saved to '{hyperopt.results_file}'.", caplog)
hyperopt_epochs = HyperoptTools.load_previous_results(hyperopt.results_file)
hyperopt_epochs = HyperoptTools.load_filtered_results(hyperopt.results_file, {})
assert len(hyperopt_epochs) == 2
assert hyperopt_epochs[1] == 2
assert len(hyperopt_epochs[0]) == 2
def test_load_previous_results(testdatadir, caplog) -> None:
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
assert len(hyperopt_epochs) == 5
assert log_has_re(r"Reading pickled epochs from .*", caplog)
caplog.clear()
# Modern version
results_file = testdatadir / 'strategy_SampleStrategy.fthypt'
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
assert len(hyperopt_epochs) == 5
assert log_has_re(r"Reading epochs from .*", caplog)
result_gen = HyperoptTools._read_results(hyperopt.results_file, 1)
epoch = next(result_gen)
assert len(epoch) == 1
assert epoch[0] == epochs[0]
epoch = next(result_gen)
assert len(epoch) == 1
epoch = next(result_gen)
assert len(epoch) == 0
with pytest.raises(StopIteration):
next(result_gen)
def test_load_previous_results2(mocker, testdatadir, caplog) -> None:
mocker.patch('freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results_pickle',
return_value=[{'asdf': '222'}])
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
with pytest.raises(OperationalException, match=r"The file .* incompatible.*"):
HyperoptTools.load_previous_results(results_file)
with pytest.raises(OperationalException,
match=r"Legacy hyperopt results are no longer supported.*"):
HyperoptTools.load_filtered_results(results_file, {})
@pytest.mark.parametrize("spaces, expected_results", [
(['buy'],
{'buy': True, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False}),
{'buy': True, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False,
'protection': False}),
(['sell'],
{'buy': False, 'sell': True, 'roi': False, 'stoploss': False, 'trailing': False}),
{'buy': False, 'sell': True, 'roi': False, 'stoploss': False, 'trailing': False,
'protection': False}),
(['roi'],
{'buy': False, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
{'buy': False, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False,
'protection': False}),
(['stoploss'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': True, 'trailing': False}),
{'buy': False, 'sell': False, 'roi': False, 'stoploss': True, 'trailing': False,
'protection': False}),
(['trailing'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': True}),
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': True,
'protection': False}),
(['buy', 'sell', 'roi', 'stoploss'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False,
'protection': False}),
(['buy', 'sell', 'roi', 'stoploss', 'trailing'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True,
'protection': False}),
(['buy', 'roi'],
{'buy': True, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
{'buy': True, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False,
'protection': False}),
(['all'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True,
'protection': True}),
(['default'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False,
'protection': False}),
(['default', 'trailing'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True,
'protection': False}),
(['all', 'buy'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True,
'protection': True}),
(['default', 'buy'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False,
'protection': False}),
(['all'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True,
'protection': True}),
(['protection'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False,
'protection': True}),
])
def test_has_space(hyperopt_conf, spaces, expected_results):
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing', 'protection']:
hyperopt_conf.update({'spaces': spaces})
assert HyperoptTools.has_space(hyperopt_conf, s) == expected_results[s]
@ -151,9 +167,9 @@ def test__pprint_dict():
def test_get_strategy_filename(default_conf):
x = HyperoptTools.get_strategy_filename(default_conf, 'DefaultStrategy')
x = HyperoptTools.get_strategy_filename(default_conf, 'StrategyTestV2')
assert isinstance(x, Path)
assert x == Path(__file__).parents[1] / 'strategy/strats/default_strategy.py'
assert x == Path(__file__).parents[1] / 'strategy/strats/strategy_test_v2.py'
x = HyperoptTools.get_strategy_filename(default_conf, 'NonExistingStrategy')
assert x is None
@ -161,7 +177,7 @@ def test_get_strategy_filename(default_conf):
def test_export_params(tmpdir):
filename = Path(tmpdir) / "DefaultStrategy.json"
filename = Path(tmpdir) / "StrategyTestV2.json"
assert not filename.is_file()
params = {
"params_details": {
@ -189,12 +205,12 @@ def test_export_params(tmpdir):
}
}
HyperoptTools.export_params(params, "DefaultStrategy", filename)
HyperoptTools.export_params(params, "StrategyTestV2", filename)
assert filename.is_file()
content = rapidjson.load(filename.open('r'))
assert content['strategy_name'] == 'DefaultStrategy'
assert content['strategy_name'] == 'StrategyTestV2'
assert 'params' in content
assert "buy" in content["params"]
assert "sell" in content["params"]
@ -207,7 +223,7 @@ def test_try_export_params(default_conf, tmpdir, caplog, mocker):
default_conf['disableparamexport'] = False
export_mock = mocker.patch("freqtrade.optimize.hyperopt_tools.HyperoptTools.export_params")
filename = Path(tmpdir) / "DefaultStrategy.json"
filename = Path(tmpdir) / "StrategyTestV2.json"
assert not filename.is_file()
params = {
"params_details": {
@ -236,17 +252,17 @@ def test_try_export_params(default_conf, tmpdir, caplog, mocker):
FTHYPT_FILEVERSION: 2,
}
HyperoptTools.try_export_params(default_conf, "DefaultStrategy22", params)
HyperoptTools.try_export_params(default_conf, "StrategyTestV222", params)
assert log_has("Strategy not found, not exporting parameter file.", caplog)
assert export_mock.call_count == 0
caplog.clear()
HyperoptTools.try_export_params(default_conf, "DefaultStrategy", params)
HyperoptTools.try_export_params(default_conf, "StrategyTestV2", params)
assert export_mock.call_count == 1
assert export_mock.call_args_list[0][0][1] == 'DefaultStrategy'
assert export_mock.call_args_list[0][0][2].name == 'default_strategy.json'
assert export_mock.call_args_list[0][0][1] == 'StrategyTestV2'
assert export_mock.call_args_list[0][0][2].name == 'strategy_test_v2.json'
def test_params_print(capsys):

View File

@ -4,7 +4,7 @@ from unittest.mock import MagicMock
import pytest
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.default_hyperopt_loss import ShortTradeDurHyperOptLoss
from freqtrade.optimize.hyperopt_loss_short_trade_dur import ShortTradeDurHyperOptLoss
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver

View File

@ -52,7 +52,7 @@ def test_text_table_bt_results():
def test_generate_backtest_stats(default_conf, testdatadir, tmpdir):
default_conf.update({'strategy': 'DefaultStrategy'})
default_conf.update({'strategy': 'StrategyTestV2'})
StrategyResolver.load_strategy(default_conf)
results = {'DefStrat': {

View File

@ -427,6 +427,10 @@ def test_VolumePairList_refresh_empty(mocker, markets_empty, whitelist_conf):
{"method": "RangeStabilityFilter", "lookback_days": 10,
"min_rate_of_change": 0.01, "refresh_period": 1440}],
"BTC", ['ETH/BTC', 'TKN/BTC', 'HOT/BTC']),
([{"method": "StaticPairList"},
{"method": "RangeStabilityFilter", "lookback_days": 10,
"max_rate_of_change": 0.01, "refresh_period": 1440}],
"BTC", []), # All removed because of max_rate_of_change being 0.017
([{"method": "StaticPairList"},
{"method": "VolatilityFilter", "lookback_days": 3,
"min_volatility": 0.002, "max_volatility": 0.004, "refresh_period": 1440}],
@ -874,15 +878,16 @@ def test_rangestabilityfilter_checks(mocker, default_conf, markets, tickers):
get_patched_freqtradebot(mocker, default_conf)
@pytest.mark.parametrize('min_rate_of_change,expected_length', [
(0.01, 5),
(0.05, 0), # Setting rate_of_change to 5% removes all pairs from the whitelist.
@pytest.mark.parametrize('min_rate_of_change,max_rate_of_change,expected_length', [
(0.01, 0.99, 5),
(0.05, 0.0, 0), # Setting min rate_of_change to 5% removes all pairs from the whitelist.
])
def test_rangestabilityfilter_caching(mocker, markets, default_conf, tickers, ohlcv_history,
min_rate_of_change, expected_length):
min_rate_of_change, max_rate_of_change, expected_length):
default_conf['pairlists'] = [{'method': 'VolumePairList', 'number_assets': 10},
{'method': 'RangeStabilityFilter', 'lookback_days': 2,
'min_rate_of_change': min_rate_of_change}]
'min_rate_of_change': min_rate_of_change,
"max_rate_of_change": max_rate_of_change}]
mocker.patch.multiple('freqtrade.exchange.Exchange',
markets=PropertyMock(return_value=markets),
@ -984,11 +989,18 @@ def test_spreadfilter_invalid_data(mocker, default_conf, markets, tickers, caplo
None,
"PriceFilter requires max_value to be >= 0"
), # OperationalException expected
({"method": "RangeStabilityFilter", "lookback_days": 10, "min_rate_of_change": 0.01},
({"method": "RangeStabilityFilter", "lookback_days": 10,
"min_rate_of_change": 0.01},
"[{'RangeStabilityFilter': 'RangeStabilityFilter - Filtering pairs with rate of change below "
"0.01 over the last days.'}]",
None
),
({"method": "RangeStabilityFilter", "lookback_days": 10,
"min_rate_of_change": 0.01, "max_rate_of_change": 0.99},
"[{'RangeStabilityFilter': 'RangeStabilityFilter - Filtering pairs with rate of change below "
"0.01 and above 0.99 over the last days.'}]",
None
),
])
def test_pricefilter_desc(mocker, whitelist_conf, markets, pairlistconfig,
desc_expected, exception_expected):

Some files were not shown because too many files have changed in this diff Show More