Merge pull request #2084 from hroff-1902/hyperopt-print-params4

Improvements to hyperopt output
This commit is contained in:
Matthias 2019-08-03 13:24:47 +02:00 committed by GitHub
commit b3e6e710d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 35 additions and 27 deletions

View File

@ -303,8 +303,10 @@ Given the following result from hyperopt:
```
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': False,
@ -347,21 +349,15 @@ If you are optimizing ROI, you're result will look as follows and include a ROI
```
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': false,
'adx-enabled': False,
'rsi-enabled': True,
'trigger': 'bb_lower',
'roi_t1': 40,
'roi_t2': 57,
'roi_t3': 21,
'roi_p1': 0.03634636907306948,
'roi_p2': 0.055237357937802885,
'roi_p3': 0.015163796015548354,
'stoploss': -0.37996664668703606
}
'trigger': 'bb_lower'}
ROI table:
{ 0: 0.10674752302642071,
21: 0.09158372701087236,
@ -374,7 +370,7 @@ This would translate to the following ROI table:
``` python
minimal_roi = {
"118": 0,
"78": 0.0363463,
"78": 0.0363,
"21": 0.0915,
"0": 0.106
}

View File

@ -11,7 +11,7 @@ import sys
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count
from pandas import DataFrame
@ -133,11 +133,20 @@ class Hyperopt(Backtesting):
params = best_result['params']
log_str = self.format_results_logstring(best_result)
print(f"\nBest result:\n{log_str}\nwith values:")
pprint(params, indent=4)
print(f"\nBest result:\n\n{log_str}\n")
if self.has_space('buy'):
print('Buy hyperspace params:')
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('buy')},
indent=4)
if self.has_space('sell'):
print('Sell hyperspace params:')
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('sell')},
indent=4)
if self.has_space('roi'):
print("ROI table:")
pprint(self.custom_hyperopt.generate_roi_table(params), indent=4)
if self.has_space('stoploss'):
print(f"Stoploss: {params.get('stoploss')}")
def log_results(self, results) -> None:
"""
@ -171,21 +180,24 @@ class Hyperopt(Backtesting):
"""
return any(s in self.config['spaces'] for s in [space, 'all'])
def hyperopt_space(self) -> List[Dimension]:
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
"""
Return the space to use during Hyperopt
Return the dimensions in the hyperoptimization space.
:param space: Defines hyperspace to return dimensions for.
If None, then the self.has_space() will be used to return dimensions
for all hyperspaces used.
"""
spaces: List[Dimension] = []
if self.has_space('buy'):
if space == 'buy' or (space is None and self.has_space('buy')):
logger.debug("Hyperopt has 'buy' space")
spaces += self.custom_hyperopt.indicator_space()
if self.has_space('sell'):
if space == 'sell' or (space is None and self.has_space('sell')):
logger.debug("Hyperopt has 'sell' space")
spaces += self.custom_hyperopt.sell_indicator_space()
if self.has_space('roi'):
if space == 'roi' or (space is None and self.has_space('roi')):
logger.debug("Hyperopt has 'roi' space")
spaces += self.custom_hyperopt.roi_space()
if self.has_space('stoploss'):
if space == 'stoploss' or (space is None and self.has_space('stoploss')):
logger.debug("Hyperopt has 'stoploss' space")
spaces += self.custom_hyperopt.stoploss_space()
return spaces

View File

@ -463,7 +463,7 @@ def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
parallel.assert_called_once()
out, err = capsys.readouterr()
assert 'Best result:\n* 1/1: foo result Objective: 1.00000\nwith values:\n' in out
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
assert dumper.called
# Should be called twice, once for tickerdata, once to save evaluations
assert dumper.call_count == 2