fix generic reward, add time duration to reward
This commit is contained in:
@@ -270,7 +270,7 @@ def make_env(env_id: str, rank: int, seed: int, train_df, price,
|
||||
class MyRLEnv(Base5ActionRLEnv):
|
||||
"""
|
||||
User can override any function in BaseRLEnv and gym.Env. Here the user
|
||||
Adds 5 actions.
|
||||
sets a custom reward based on profit and trade duration.
|
||||
"""
|
||||
|
||||
def calculate_reward(self, action):
|
||||
@@ -278,22 +278,27 @@ class MyRLEnv(Base5ActionRLEnv):
|
||||
if self._last_trade_tick is None:
|
||||
return 0.
|
||||
|
||||
pnl = self.get_unrealized_profit()
|
||||
max_trade_duration = self.rl_config['max_trade_duration_candles']
|
||||
trade_duration = self._current_tick - self._last_trade_tick
|
||||
|
||||
factor = 1
|
||||
if trade_duration <= max_trade_duration:
|
||||
factor *= 1.5
|
||||
elif trade_duration > max_trade_duration:
|
||||
factor *= 0.5
|
||||
|
||||
# close long
|
||||
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
||||
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
|
||||
factor = 1
|
||||
if self.close_trade_profit and self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
factor = self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float((np.log(current_price) - np.log(last_trade_price)) * factor)
|
||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(pnl * factor)
|
||||
|
||||
# close short
|
||||
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
||||
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
|
||||
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
|
||||
factor = 1
|
||||
if self.close_trade_profit and self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
||||
factor = self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(np.log(last_trade_price) - np.log(current_price) * factor)
|
||||
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
|
||||
return float(pnl * factor)
|
||||
|
||||
return 0.
|
||||
|
||||
Reference in New Issue
Block a user