Merge remote-tracking branch 'origin/develop' into add-metric-tracker

This commit is contained in:
robcaulk 2022-10-14 19:00:49 +02:00
commit b236e362ba
72 changed files with 570 additions and 341 deletions

View File

@ -24,7 +24,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ] os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10.6"] python-version: ["3.8", "3.9", "3.10"]
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
@ -74,7 +74,7 @@ jobs:
if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-22.04' if: matrix.python-version == '3.9' && matrix.os == 'ubuntu-22.04'
- name: Coveralls - name: Coveralls
if: (runner.os == 'Linux' && matrix.python-version == '3.9') if: (runner.os == 'Linux' && matrix.python-version == '3.10' && matrix.os == 'ubuntu-22.04')
env: env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories # Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
@ -121,7 +121,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ macos-latest ] os: [ macos-latest ]
python-version: ["3.8", "3.9", "3.10.6"] python-version: ["3.8", "3.9", "3.10"]
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
@ -205,7 +205,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ windows-latest ] os: [ windows-latest ]
python-version: ["3.8", "3.9", "3.10.6"] python-version: ["3.8", "3.9", "3.10"]
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
@ -441,4 +441,4 @@ jobs:
with: with:
severity: info severity: info
details: Deploy Succeeded! details: Deploy Succeeded!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }} webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}

View File

@ -15,8 +15,8 @@ repos:
additional_dependencies: additional_dependencies:
- types-cachetools==5.2.1 - types-cachetools==5.2.1
- types-filelock==3.2.7 - types-filelock==3.2.7
- types-requests==2.28.11 - types-requests==2.28.11.2
- types-tabulate==0.8.11 - types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19 - types-python-dateutil==2.8.19
# stages: [push] # stages: [push]

BIN
docs/assets/tensorboard.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 362 KiB

View File

@ -215,16 +215,18 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float | `telegram.balance_dust_level` | Dust-level (in stake currency) - currencies with a balance below this will not be shown by `/balance`. <br> **Datatype:** float
| `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean | `telegram.reload` | Allow "reload" buttons on telegram messages. <br>*Defaults to `True`.<br> **Datatype:** boolean
| `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary | `telegram.notification_settings.*` | Detailed notification settings. Refer to the [telegram documentation](telegram-usage.md) for details.<br> **Datatype:** dictionary
| `telegram.allow_custom_messages` | Enable the sending of Telegram messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| | **Webhook** | | **Webhook**
| `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean | `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.entry` | Payload to send on entry. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentrycancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.entry_cancel` | Payload to send on entry order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookentryfill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.entry_fill` | Payload to send on entry order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.exit` | Payload to send on exit. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitcancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.exit_cancel` | Payload to send on exit order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookexitfill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.exit_fill` | Payload to send on exit order filled. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String | `webhook.status` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.allow_custom_messages` | Enable the sending of Webhook messages from strategies via the dataprovider.send_msg() function. <br> **Datatype:** Boolean
| | **Rest API / FreqUI / Producer-Consumer** | | **Rest API / FreqUI / Producer-Consumer**
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean | `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4 | `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4

View File

@ -66,11 +66,11 @@ We will keep a compatibility layer for 1-2 versions (so both `buy_tag` and `ente
#### Naming changes #### Naming changes
Webhook terminology changed from "sell" to "exit", and from "buy" to "entry". Webhook terminology changed from "sell" to "exit", and from "buy" to "entry", removing "webhook" in the process.
* `webhookbuy` -> `webhookentry` * `webhookbuy`, `webhookentry` -> `entry`
* `webhookbuyfill` -> `webhookentryfill` * `webhookbuyfill`, `webhookentryfill` -> `entry_fill`
* `webhookbuycancel` -> `webhookentrycancel` * `webhookbuycancel`, `webhookentrycancel` -> `entry_cancel`
* `webhooksell` -> `webhookexit` * `webhooksell`, `webhookexit` -> `exit`
* `webhooksellfill` -> `webhookexitfill` * `webhooksellfill`, `webhookexitfill` -> `exit_fill`
* `webhooksellcancel` -> `webhookexitcancel` * `webhooksellcancel`, `webhookexitcancel` -> `exit_cancel`

View File

@ -204,14 +204,44 @@ If this value is set, FreqAI will initially use the predictions from the trainin
## Using different prediction models ## Using different prediction models
FreqAI has multiple example prediction model libraries that are ready to be used as is via the flag `--freqaimodel`. These libraries include `Catboost`, `LightGBM`, and `XGBoost` regression, classification, and multi-target models, and can be found in `freqai/prediction_models/`. However, it is possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to let these customize various aspects of the training procedures. FreqAI has multiple example prediction model libraries that are ready to be used as is via the flag `--freqaimodel`. These libraries include `CatBoost`, `LightGBM`, and `XGBoost` regression, classification, and multi-target models, and can be found in `freqai/prediction_models/`.
### Setting classifier targets Regression and classification models differ in what targets they predict - a regression model will predict a target of continuous values, for example what price BTC will be at tomorrow, whilst a classifier will predict a target of discrete values, for example if the price of BTC will go up tomorrow or not. This means that you have to specify your targets differently depending on which model type you are using (see details [below](#setting-model-targets)).
FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example: All of the aforementioned model libraries implement gradient boosted decision tree algorithms. They all work on the principle of ensemble learning, where predictions from multiple simple learners are combined to get a final prediction that is more stable and generalized. The simple learners in this case are decision trees. Gradient boosting refers to the method of learning, where each simple learner is built in sequence - the subsequent learner is used to improve on the error from the previous learner. If you want to learn more about the different model libraries you can find the information in their respective docs:
* CatBoost: https://catboost.ai/en/docs/
* LightGBM: https://lightgbm.readthedocs.io/en/v3.3.2/#
* XGBoost: https://xgboost.readthedocs.io/en/stable/#
There are also numerous online articles describing and comparing the algorithms. Some relatively light-weight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
Apart from the models already available in FreqAI, it is also possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to customize various aspects of the training procedures. You can place custom FreqAI models in `user_data/freqaimodels` - and freqtrade will pick them up from there based on the provided `--freqaimodel` name - which has to correspond to the class name of your custom model.
Make sure to use unique names to avoid overriding built-in models.
### Setting model targets
#### Regressors
If you are using a regressor, you need to specify a target that has continuous values. FreqAI includes a variety of regressors, such as the `CatboostRegressor`via the flag `--freqaimodel CatboostRegressor`. An example of how you could set a regression target for predicting the price 100 candles into the future would be
```python
df['&s-close_price'] = df['close'].shift(-100)
```
If you want to predict multiple targets, you need to define multiple labels using the same syntax as shown above.
#### Classifiers
If you are using a classifier, you need to specify a target that has discrete values. FreqAI includes a variety of classifiers, such as the `CatboostClassifier` via the flag `--freqaimodel CatboostClassifier`. If you elects to use a classifier, the classes need to be set using strings. For example, if you want to predict if the price 100 candles into the future goes up or down you would set
```python ```python
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down') df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
``` ```
Additionally, the example classifier models do not accommodate multiple labels, but they do allow multi-class classification within a single label column. If you want to predict multiple targets you must specify all labels in the same label column. You could, for example, add the label `same` to define where the price was unchanged by setting
```python
df['&s-up_or_down'] = np.where( df["close"].shift(-100) > df["close"], 'up', 'down')
df['&s-up_or_down'] = np.where( df["close"].shift(-100) == df["close"], 'same', df['&s-up_or_down'])
```

View File

@ -43,7 +43,7 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `test_size` | The fraction of data that should be used for testing instead of training. <br> **Datatype:** Positive float < 1. | `test_size` | The fraction of data that should be used for testing instead of training. <br> **Datatype:** Positive float < 1.
| `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Defaut: `False`. | `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Defaut: `False`.
| | **Model training parameters** | | **Model training parameters**
| `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. <br> **Datatype:** Dictionary. | `model_training_parameters` | A flexible dictionary that includes all parameters available by the selected model library. For example, if you use `LightGBMRegressor`, this dictionary can contain any parameter available by the `LightGBMRegressor` [here](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html) (external website). If you select a different model, this dictionary can contain any parameter from that model. A list of the currently available models can be found [here](freqai-configuration.md#using-different-prediction-models). <br> **Datatype:** Dictionary.
| `n_estimators` | The number of boosted trees to fit in the training of the model. <br> **Datatype:** Integer. | `n_estimators` | The number of boosted trees to fit in the training of the model. <br> **Datatype:** Integer.
| `learning_rate` | Boosting learning rate during training of the model. <br> **Datatype:** Float. | `learning_rate` | Boosting learning rate during training of the model. <br> **Datatype:** Float.
| `n_jobs`, `thread_count`, `task_type` | Set the number of threads for parallel processing and the `task_type` (`gpu` or `cpu`). Different model libraries use different parameter names. <br> **Datatype:** Float. | `n_jobs`, `thread_count`, `task_type` | Set the number of threads for parallel processing and the `task_type` (`gpu` or `cpu`). Different model libraries use different parameter names. <br> **Datatype:** Float.

View File

@ -142,6 +142,19 @@ dataframe['outlier'] = np.where(dataframe['DI_values'] > self.di_max.value/10, 1
This specific hyperopt would help you understand the appropriate `DI_values` for your particular parameter space. This specific hyperopt would help you understand the appropriate `DI_values` for your particular parameter space.
## Using Tensorboard
CatBoost models benefit from tracking training metrics via Tensorboard. You can take advantage of the FreqAI integration to track training and evaluation performance across all coins and across all retrainings. Tensorboard is activated via the following command:
```bash
cd freqtrade
tensorboard --logdir user_data/models/unique-id
```
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
## Setting up a follower ## Setting up a follower
You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining: You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining:

View File

@ -43,19 +43,25 @@ Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `fo
* `order_time_in_force` buy -> entry, sell -> exit. * `order_time_in_force` buy -> entry, sell -> exit.
* `order_types` buy -> entry, sell -> exit. * `order_types` buy -> entry, sell -> exit.
* `unfilledtimeout` buy -> entry, sell -> exit. * `unfilledtimeout` buy -> entry, sell -> exit.
* `ignore_buying_expired_candle_after` -> moved to root level instead of "ask_strategy/exit_pricing"
* Terminology changes * Terminology changes
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy. * Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
* `sell_signal` -> `exit_signal` * `sell_signal` -> `exit_signal`
* `custom_sell` -> `custom_exit` * `custom_sell` -> `custom_exit`
* `force_sell` -> `force_exit` * `force_sell` -> `force_exit`
* `emergency_sell` -> `emergency_exit` * `emergency_sell` -> `emergency_exit`
* Order pricing
* `bid_strategy` -> `entry_pricing`
* `ask_strategy` -> `exit_pricing`
* `ask_last_balance` -> `price_last_balance`
* `bid_last_balance` -> `price_last_balance`
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry * Webhook terminology changed from "sell" to "exit", and from "buy" to entry
* `webhookbuy` -> `webhookentry` * `webhookbuy` -> `entry`
* `webhookbuyfill` -> `webhookentryfill` * `webhookbuyfill` -> `entry_fill`
* `webhookbuycancel` -> `webhookentrycancel` * `webhookbuycancel` -> `entry_cancel`
* `webhooksell` -> `webhookexit` * `webhooksell` -> `exit`
* `webhooksellfill` -> `webhookexitfill` * `webhooksellfill` -> `exit_fill`
* `webhooksellcancel` -> `webhookexitcancel` * `webhooksellcancel` -> `exit_cancel`
* Telegram notification settings * Telegram notification settings
* `buy` -> `entry` * `buy` -> `entry`
* `buy_fill` -> `entry_fill` * `buy_fill` -> `entry_fill`
@ -443,6 +449,7 @@ Please refer to the [pricing documentation](configuration.md#prices-used-for-ord
"use_order_book": true, "use_order_book": true,
"order_book_top": 1, "order_book_top": 1,
"bid_last_balance": 0.0 "bid_last_balance": 0.0
"ignore_buying_expired_candle_after": 120
} }
} }
``` ```
@ -466,6 +473,7 @@ after:
"use_order_book": true, "use_order_book": true,
"order_book_top": 1, "order_book_top": 1,
"price_last_balance": 0.0 "price_last_balance": 0.0
} },
"ignore_buying_expired_candle_after": 120
} }
``` ```

View File

@ -77,6 +77,7 @@ Example configuration showing the different settings:
"enabled": true, "enabled": true,
"token": "your_telegram_token", "token": "your_telegram_token",
"chat_id": "your_telegram_chat_id", "chat_id": "your_telegram_chat_id",
"allow_custom_messages": true,
"notification_settings": { "notification_settings": {
"status": "silent", "status": "silent",
"warning": "on", "warning": "on",
@ -115,6 +116,7 @@ Example configuration showing the different settings:
`show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`. `show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown. `balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
`allow_custom_messages` completely disable strategy messages.
`reload` allows you to disable reload-buttons on selected messages. `reload` allows you to disable reload-buttons on selected messages.
## Create a custom keyboard (command shortcut buttons) ## Create a custom keyboard (command shortcut buttons)

View File

@ -10,37 +10,37 @@ Sample configuration (tested using IFTTT).
"webhook": { "webhook": {
"enabled": true, "enabled": true,
"url": "https://maker.ifttt.com/trigger/<YOUREVENT>/with/key/<YOURKEY>/", "url": "https://maker.ifttt.com/trigger/<YOUREVENT>/with/key/<YOURKEY>/",
"webhookentry": { "entry": {
"value1": "Buying {pair}", "value1": "Buying {pair}",
"value2": "limit {limit:8f}", "value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}" "value3": "{stake_amount:8f} {stake_currency}"
}, },
"webhookentrycancel": { "entry_cancel": {
"value1": "Cancelling Open Buy Order for {pair}", "value1": "Cancelling Open Buy Order for {pair}",
"value2": "limit {limit:8f}", "value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}" "value3": "{stake_amount:8f} {stake_currency}"
}, },
"webhookentryfill": { "entry_fill": {
"value1": "Buy Order for {pair} filled", "value1": "Buy Order for {pair} filled",
"value2": "at {open_rate:8f}", "value2": "at {open_rate:8f}",
"value3": "" "value3": ""
}, },
"webhookexit": { "exit": {
"value1": "Exiting {pair}", "value1": "Exiting {pair}",
"value2": "limit {limit:8f}", "value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})" "value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
}, },
"webhookexitcancel": { "exit_cancel": {
"value1": "Cancelling Open Exit Order for {pair}", "value1": "Cancelling Open Exit Order for {pair}",
"value2": "limit {limit:8f}", "value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})" "value3": "profit: {profit_amount:8f} {stake_currency} ({profit_ratio})"
}, },
"webhookexitfill": { "exit_fill": {
"value1": "Exit Order for {pair} filled", "value1": "Exit Order for {pair} filled",
"value2": "at {close_rate:8f}.", "value2": "at {close_rate:8f}.",
"value3": "" "value3": ""
}, },
"webhookstatus": { "status": {
"value1": "Status: {status}", "value1": "Status: {status}",
"value2": "", "value2": "",
"value3": "" "value3": ""
@ -57,7 +57,7 @@ You can set the POST body format to Form-Encoded (default), JSON-Encoded, or raw
"enabled": true, "enabled": true,
"url": "https://<YOURSUBDOMAIN>.cloud.mattermost.com/hooks/<YOURHOOK>", "url": "https://<YOURSUBDOMAIN>.cloud.mattermost.com/hooks/<YOURHOOK>",
"format": "json", "format": "json",
"webhookstatus": { "status": {
"text": "Status: {status}" "text": "Status: {status}"
} }
}, },
@ -88,17 +88,30 @@ Optional parameters are available to enable automatic retries for webhook messag
"url": "https://<YOURHOOKURL>", "url": "https://<YOURHOOKURL>",
"retries": 3, "retries": 3,
"retry_delay": 0.2, "retry_delay": 0.2,
"webhookstatus": { "status": {
"status": "Status: {status}" "status": "Status: {status}"
} }
}, },
``` ```
Custom messages can be sent to Webhook endpoints via the `self.dp.send_msg()` function from within the strategy. To enable this, set the `allow_custom_messages` option to `true`:
```json
"webhook": {
"enabled": true,
"url": "https://<YOURHOOKURL>",
"allow_custom_messages": true,
"strategy_msg": {
"status": "StrategyMessage: {msg}"
}
},
```
Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called. Different payloads can be configured for different events. Not all fields are necessary, but you should configure at least one of the dicts, otherwise the webhook will never be called.
### Webhookentry ### Entry
The fields in `webhook.webhookentry` are filled when the bot executes a long/short. Parameters are filled using string.format. The fields in `webhook.entry` are filled when the bot executes a long/short. Parameters are filled using string.format.
Possible parameters are: Possible parameters are:
* `trade_id` * `trade_id`
@ -118,9 +131,9 @@ Possible parameters are:
* `current_rate` * `current_rate`
* `enter_tag` * `enter_tag`
### Webhookentrycancel ### Entry cancel
The fields in `webhook.webhookentrycancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format. The fields in `webhook.entry_cancel` are filled when the bot cancels a long/short order. Parameters are filled using string.format.
Possible parameters are: Possible parameters are:
* `trade_id` * `trade_id`
@ -139,9 +152,9 @@ Possible parameters are:
* `current_rate` * `current_rate`
* `enter_tag` * `enter_tag`
### Webhookentryfill ### Entry fill
The fields in `webhook.webhookentryfill` are filled when the bot filled a long/short order. Parameters are filled using string.format. The fields in `webhook.entry_fill` are filled when the bot filled a long/short order. Parameters are filled using string.format.
Possible parameters are: Possible parameters are:
* `trade_id` * `trade_id`
@ -160,9 +173,9 @@ Possible parameters are:
* `current_rate` * `current_rate`
* `enter_tag` * `enter_tag`
### Webhookexit ### Exit
The fields in `webhook.webhookexit` are filled when the bot exits a trade. Parameters are filled using string.format. The fields in `webhook.exit` are filled when the bot exits a trade. Parameters are filled using string.format.
Possible parameters are: Possible parameters are:
* `trade_id` * `trade_id`
@ -184,9 +197,9 @@ Possible parameters are:
* `open_date` * `open_date`
* `close_date` * `close_date`
### Webhookexitfill ### Exit fill
The fields in `webhook.webhookexitfill` are filled when the bot fills a exit order (closes a Trade). Parameters are filled using string.format. The fields in `webhook.exit_fill` are filled when the bot fills a exit order (closes a Trade). Parameters are filled using string.format.
Possible parameters are: Possible parameters are:
* `trade_id` * `trade_id`
@ -209,9 +222,9 @@ Possible parameters are:
* `open_date` * `open_date`
* `close_date` * `close_date`
### Webhookexitcancel ### Exit cancel
The fields in `webhook.webhookexitcancel` are filled when the bot cancels a exit order. Parameters are filled using string.format. The fields in `webhook.exit_cancel` are filled when the bot cancels a exit order. Parameters are filled using string.format.
Possible parameters are: Possible parameters are:
* `trade_id` * `trade_id`
@ -234,9 +247,9 @@ Possible parameters are:
* `open_date` * `open_date`
* `close_date` * `close_date`
### Webhookstatus ### Status
The fields in `webhook.webhookstatus` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format. The fields in `webhook.status` are used for regular status messages (Started / Stopped / ...). Parameters are filled using string.format.
The only possible value here is `{status}`. The only possible value here is `{status}`.
@ -280,7 +293,6 @@ You can configure this as follows:
} }
``` ```
The above represents the default (`exit_fill` and `entry_fill` are optional and will default to the above configuration) - modifications are obviously possible. The above represents the default (`exit_fill` and `entry_fill` are optional and will default to the above configuration) - modifications are obviously possible.
Available fields correspond to the fields for webhooks and are documented in the corresponding webhook sections. Available fields correspond to the fields for webhooks and are documented in the corresponding webhook sections.
@ -288,3 +300,13 @@ Available fields correspond to the fields for webhooks and are documented in the
The notifications will look as follows by default. The notifications will look as follows by default.
![discord-notification](assets/discord_notification.png) ![discord-notification](assets/discord_notification.png)
Custom messages can be sent from a strategy to Discord endpoints via the dataprovider.send_msg() function. To enable this, set the `allow_custom_messages` option to `true`:
```json
"discord": {
"enabled": true,
"webhook_url": "https://discord.com/api/webhooks/<Your webhook URL ...>",
"allow_custom_messages": true,
},
```

View File

@ -1,7 +1,6 @@
import csv import csv
import logging import logging
import sys import sys
from pathlib import Path
from typing import Any, Dict, List from typing import Any, Dict, List
import rapidjson import rapidjson
@ -10,7 +9,6 @@ from colorama import init as colorama_init
from tabulate import tabulate from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.enums import RunMode from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, validate_exchanges from freqtrade.exchange import market_is_active, validate_exchanges
@ -41,7 +39,7 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason'])) print(tabulate(exchanges, headers=['Exchange name', 'Valid', 'reason']))
def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> None: def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
if print_colorized: if print_colorized:
colorama_init(autoreset=True) colorama_init(autoreset=True)
red = Fore.RED red = Fore.RED
@ -55,7 +53,7 @@ def _print_objs_tabular(objs: List, print_colorized: bool, base_dir: Path) -> No
names = [s['name'] for s in objs] names = [s['name'] for s in objs]
objs_to_print = [{ objs_to_print = [{
'name': s['name'] if s['name'] else "--", 'name': s['name'] if s['name'] else "--",
'location': s['location'].relative_to(base_dir), 'location': s['location_rel'],
'status': (red + "LOAD FAILED" + reset if s['class'] is None 'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1 else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset) else yellow + "DUPLICATE NAME" + reset)
@ -76,9 +74,8 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
""" """
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE) config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects( strategy_objs = StrategyResolver.search_all_objects(
directory, not args['print_one_column'], config.get('recursive_strategy_search', False)) config, not args['print_one_column'], config.get('recursive_strategy_search', False))
# Sort alphabetically # Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name']) strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
for obj in strategy_objs: for obj in strategy_objs:
@ -90,7 +87,7 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
if args['print_one_column']: if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs])) print('\n'.join([s['name'] for s in strategy_objs]))
else: else:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False), directory) _print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None: def start_list_timeframes(args: Dict[str, Any]) -> None:

View File

@ -3,7 +3,8 @@ import shutil
from pathlib import Path from pathlib import Path
from typing import Optional from typing import Optional
from freqtrade.constants import USER_DATA_FILES, Config from freqtrade.constants import (USER_DATA_FILES, USERPATH_FREQAIMODELS, USERPATH_HYPEROPTS,
USERPATH_NOTEBOOKS, USERPATH_STRATEGIES, Config)
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
@ -49,8 +50,8 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
:param create_dir: Create directory if it does not exist. :param create_dir: Create directory if it does not exist.
:return: Path object containing the directory :return: Path object containing the directory
""" """
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "logs", sub_dirs = ["backtest_results", "data", USERPATH_HYPEROPTS, "hyperopt_results", "logs",
"notebooks", "plot", "strategies", ] USERPATH_NOTEBOOKS, "plot", USERPATH_STRATEGIES, USERPATH_FREQAIMODELS]
folder = Path(directory) folder = Path(directory)
chown_user_directory(folder) chown_user_directory(folder)
if not folder.is_dir(): if not folder.is_dir():

View File

@ -5,7 +5,7 @@ bot constants
""" """
from typing import Any, Dict, List, Literal, Tuple from typing import Any, Dict, List, Literal, Tuple
from freqtrade.enums import CandleType from freqtrade.enums import CandleType, RPCMessageType
DEFAULT_CONFIG = 'config.json' DEFAULT_CONFIG = 'config.json'
@ -282,6 +282,7 @@ CONF_SCHEMA = {
'enabled': {'type': 'boolean'}, 'enabled': {'type': 'boolean'},
'token': {'type': 'string'}, 'token': {'type': 'string'},
'chat_id': {'type': 'string'}, 'chat_id': {'type': 'string'},
'allow_custom_messages': {'type': 'boolean', 'default': True},
'balance_dust_level': {'type': 'number', 'minimum': 0.0}, 'balance_dust_level': {'type': 'number', 'minimum': 0.0},
'notification_settings': { 'notification_settings': {
'type': 'object', 'type': 'object',
@ -344,6 +345,8 @@ CONF_SCHEMA = {
'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'}, 'format': {'type': 'string', 'enum': WEBHOOK_FORMAT_OPTIONS, 'default': 'form'},
'retries': {'type': 'integer', 'minimum': 0}, 'retries': {'type': 'integer', 'minimum': 0},
'retry_delay': {'type': 'number', 'minimum': 0}, 'retry_delay': {'type': 'number', 'minimum': 0},
**dict([(x, {'type': 'object'}) for x in RPCMessageType]),
# Below -> Deprecated
'webhookentry': {'type': 'object'}, 'webhookentry': {'type': 'object'},
'webhookentrycancel': {'type': 'object'}, 'webhookentrycancel': {'type': 'object'},
'webhookentryfill': {'type': 'object'}, 'webhookentryfill': {'type': 'object'},
@ -655,5 +658,6 @@ LongShort = Literal['long', 'short']
EntryExit = Literal['entry', 'exit'] EntryExit = Literal['entry', 'exit']
BuySell = Literal['buy', 'sell'] BuySell = Literal['buy', 'sell']
MakerTaker = Literal['maker', 'taker'] MakerTaker = Literal['maker', 'taker']
BidAsk = Literal['bid', 'ask']
Config = Dict[str, Any] Config = Dict[str, Any]

View File

@ -11,6 +11,7 @@ from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier from freqtrade.exchange.common import retrier
from freqtrade.exchange.types import Tickers
from freqtrade.misc import deep_merge_dicts, json_load from freqtrade.misc import deep_merge_dicts, json_load
@ -59,7 +60,7 @@ class Binance(Exchange):
) )
)) ))
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Dict: def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
tickers = super().get_tickers(symbols=symbols, cached=cached) tickers = super().get_tickers(symbols=symbols, cached=cached)
if self.trading_mode == TradingMode.FUTURES: if self.trading_mode == TradingMode.FUTURES:
# Binance's future result has no bid/ask values. # Binance's future result has no bid/ask values.

View File

@ -20,8 +20,8 @@ from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
from dateutil import parser from dateutil import parser
from pandas import DataFrame, concat from pandas import DataFrame, concat
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell, from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BidAsk,
Config, EntryExit, ListPairsWithTimeframes, MakerTaker, BuySell, Config, EntryExit, ListPairsWithTimeframes, MakerTaker,
PairWithTimeframe) PairWithTimeframe)
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
@ -31,6 +31,7 @@ from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFun
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGES, from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGES,
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED, EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
remove_credentials, retrier, retrier_async) remove_credentials, retrier, retrier_async)
from freqtrade.exchange.types import Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json, from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2) safe_value_fallback2)
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@ -1420,14 +1421,17 @@ class Exchange:
raise OperationalException(e) from e raise OperationalException(e) from e
@retrier @retrier
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Dict: def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
""" """
:param cached: Allow cached result :param cached: Allow cached result
:return: fetch_tickers result :return: fetch_tickers result
""" """
tickers: Tickers
if not self.exchange_has('fetchTickers'):
return {}
if cached: if cached:
with self._cache_lock: with self._cache_lock:
tickers = self._fetch_tickers_cache.get('fetch_tickers') tickers = self._fetch_tickers_cache.get('fetch_tickers') # type: ignore
if tickers: if tickers:
return tickers return tickers
try: try:
@ -1450,12 +1454,12 @@ class Exchange:
# Pricing info # Pricing info
@retrier @retrier
def fetch_ticker(self, pair: str) -> dict: def fetch_ticker(self, pair: str) -> Ticker:
try: try:
if (pair not in self.markets or if (pair not in self.markets or
self.markets[pair].get('active', False) is False): self.markets[pair].get('active', False) is False):
raise ExchangeError(f"Pair {pair} not available") raise ExchangeError(f"Pair {pair} not available")
data = self._api.fetch_ticker(pair) data: Ticker = self._api.fetch_ticker(pair)
return data return data
except ccxt.DDoSProtection as e: except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e raise DDosProtection(e) from e
@ -1506,7 +1510,7 @@ class Exchange:
except ccxt.BaseError as e: except ccxt.BaseError as e:
raise OperationalException(e) from e raise OperationalException(e) from e
def _get_price_side(self, side: str, is_short: bool, conf_strategy: Dict) -> str: def _get_price_side(self, side: str, is_short: bool, conf_strategy: Dict) -> BidAsk:
price_side = conf_strategy['price_side'] price_side = conf_strategy['price_side']
if price_side in ('same', 'other'): if price_side in ('same', 'other'):
@ -1525,7 +1529,7 @@ class Exchange:
def get_rate(self, pair: str, refresh: bool, def get_rate(self, pair: str, refresh: bool,
side: EntryExit, is_short: bool, side: EntryExit, is_short: bool,
order_book: Optional[dict] = None, ticker: Optional[dict] = None) -> float: order_book: Optional[dict] = None, ticker: Optional[Ticker] = None) -> float:
""" """
Calculates bid/ask target Calculates bid/ask target
bid rate - between current ask price and last price bid rate - between current ask price and last price

View File

@ -12,6 +12,7 @@ from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, Invali
OperationalException, TemporaryError) OperationalException, TemporaryError)
from freqtrade.exchange import Exchange from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier from freqtrade.exchange.common import retrier
from freqtrade.exchange.types import Tickers
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -45,7 +46,7 @@ class Kraken(Exchange):
return (parent_check and return (parent_check and
market.get('darkpool', False) is False) market.get('darkpool', False) is False)
def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Dict: def get_tickers(self, symbols: Optional[List[str]] = None, cached: bool = False) -> Tickers:
# Only fetch tickers for current stake currency # Only fetch tickers for current stake currency
# Otherwise the request for kraken becomes too large. # Otherwise the request for kraken becomes too large.
symbols = list(self.get_markets(quote_currencies=[self._config['stake_currency']])) symbols = list(self.get_markets(quote_currencies=[self._config['stake_currency']]))

View File

@ -0,0 +1,16 @@
from typing import Dict, Optional, TypedDict
class Ticker(TypedDict):
symbol: str
ask: Optional[float]
askVolume: Optional[float]
bid: Optional[float]
bidVolume: Optional[float]
last: Optional[float]
quoteVolume: Optional[float]
baseVolume: Optional[float]
# Several more - only listing required.
Tickers = Dict[str, Ticker]

View File

@ -78,7 +78,7 @@ class BaseClassifierModel(IFreqaiModel):
) -> Tuple[DataFrame, npt.NDArray[np.int_]]: ) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
""" """
Filter the prediction features data and predict with it. Filter the prediction features data and predict with it.
:param: unfiltered_df: Full dataframe for the current backtest period. :param unfiltered_df: Full dataframe for the current backtest period.
:return: :return:
:pred_df: dataframe containing the predictions :pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove

View File

@ -77,7 +77,7 @@ class BaseRegressionModel(IFreqaiModel):
) -> Tuple[DataFrame, npt.NDArray[np.int_]]: ) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
""" """
Filter the prediction features data and predict with it. Filter the prediction features data and predict with it.
:param: unfiltered_df: Full dataframe for the current backtest period. :param unfiltered_df: Full dataframe for the current backtest period.
:return: :return:
:pred_df: dataframe containing the predictions :pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove

View File

@ -461,9 +461,8 @@ class FreqaiDataDrawer:
def save_data(self, model: Any, coin: str, dk: FreqaiDataKitchen) -> None: def save_data(self, model: Any, coin: str, dk: FreqaiDataKitchen) -> None:
""" """
Saves all data associated with a model for a single sub-train time range Saves all data associated with a model for a single sub-train time range
:params: :param model: User trained model which can be reused for inferencing to generate
:model: User trained model which can be reused for inferencing to generate predictions
predictions
""" """
if not dk.data_path.is_dir(): if not dk.data_path.is_dir():
@ -581,8 +580,7 @@ class FreqaiDataDrawer:
Append new candles to our stores historic data (in memory) so that Append new candles to our stores historic data (in memory) so that
we do not need to load candle history from disk and we dont need to we do not need to load candle history from disk and we dont need to
pinging exchange multiple times for the same candle. pinging exchange multiple times for the same candle.
:params: :param dataframe: DataFrame = strategy provided dataframe
dataframe: DataFrame = strategy provided dataframe
""" """
feat_params = self.freqai_info["feature_parameters"] feat_params = self.freqai_info["feature_parameters"]
with self.history_lock: with self.history_lock:
@ -628,9 +626,8 @@ class FreqaiDataDrawer:
""" """
Load pair histories for all whitelist and corr_pairlist pairs. Load pair histories for all whitelist and corr_pairlist pairs.
Only called once upon startup of bot. Only called once upon startup of bot.
:params: :param timerange: TimeRange = full timerange required to populate all indicators
timerange: TimeRange = full timerange required to populate all indicators for training according to user defined train_period_days
for training according to user defined train_period_days
""" """
history_data = self.historic_data history_data = self.historic_data
@ -653,10 +650,9 @@ class FreqaiDataDrawer:
""" """
Searches through our historic_data in memory and returns the dataframes relevant Searches through our historic_data in memory and returns the dataframes relevant
to the present pair. to the present pair.
:params: :param timerange: TimeRange = full timerange required to populate all indicators
timerange: TimeRange = full timerange required to populate all indicators for training according to user defined train_period_days
for training according to user defined train_period_days :param metadata: dict = strategy furnished pair metadata
metadata: dict = strategy furnished pair metadata
""" """
with self.history_lock: with self.history_lock:
corr_dataframes: Dict[Any, Any] = {} corr_dataframes: Dict[Any, Any] = {}

View File

@ -107,9 +107,8 @@ class FreqaiDataKitchen:
) -> None: ) -> None:
""" """
Set the paths to the data for the present coin/botloop Set the paths to the data for the present coin/botloop
:params: :param metadata: dict = strategy furnished pair metadata
metadata: dict = strategy furnished pair metadata :param trained_timestamp: int = timestamp of most recent training
trained_timestamp: int = timestamp of most recent training
""" """
self.full_path = Path( self.full_path = Path(
self.config["user_data_dir"] / "models" / str(self.freqai_config.get("identifier")) self.config["user_data_dir"] / "models" / str(self.freqai_config.get("identifier"))
@ -129,8 +128,8 @@ class FreqaiDataKitchen:
Given the dataframe for the full history for training, split the data into Given the dataframe for the full history for training, split the data into
training and test data according to user specified parameters in configuration training and test data according to user specified parameters in configuration
file. file.
:filtered_dataframe: cleaned dataframe ready to be split. :param filtered_dataframe: cleaned dataframe ready to be split.
:labels: cleaned labels ready to be split. :param labels: cleaned labels ready to be split.
""" """
feat_dict = self.freqai_config["feature_parameters"] feat_dict = self.freqai_config["feature_parameters"]
@ -189,13 +188,14 @@ class FreqaiDataKitchen:
remove all NaNs. Any row with a NaN is removed from training dataset or replaced with remove all NaNs. Any row with a NaN is removed from training dataset or replaced with
0s in the prediction dataset. However, prediction dataset do_predict will reflect any 0s in the prediction dataset. However, prediction dataset do_predict will reflect any
row that had a NaN and will shield user from that prediction. row that had a NaN and will shield user from that prediction.
:params:
:unfiltered_df: the full dataframe for the present training period :param unfiltered_df: the full dataframe for the present training period
:training_feature_list: list, the training feature list constructed by :param training_feature_list: list, the training feature list constructed by
self.build_feature_list() according to user specified parameters in the configuration file. self.build_feature_list() according to user specified
:labels: the labels for the dataset parameters in the configuration file.
:training_filter: boolean which lets the function know if it is training data or :param labels: the labels for the dataset
prediction data to be filtered. :param training_filter: boolean which lets the function know if it is training data or
prediction data to be filtered.
:returns: :returns:
:filtered_df: dataframe cleaned of NaNs and only containing the user :filtered_df: dataframe cleaned of NaNs and only containing the user
requested feature set. requested feature set.
@ -241,6 +241,7 @@ class FreqaiDataKitchen:
self.data["filter_drop_index_training"] = drop_index self.data["filter_drop_index_training"] = drop_index
else: else:
filtered_df = self.check_pred_labels(filtered_df)
# we are backtesting so we need to preserve row number to send back to strategy, # we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN # so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_df).any(axis=1) drop_index = pd.isnull(filtered_df).any(axis=1)
@ -285,8 +286,8 @@ class FreqaiDataKitchen:
def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]: def normalize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
""" """
Normalize all data in the data_dictionary according to the training dataset Normalize all data in the data_dictionary according to the training dataset
:params: :param data_dictionary: dictionary containing the cleaned and
:data_dictionary: dictionary containing the cleaned and split training/test data/labels split training/test data/labels
:returns: :returns:
:data_dictionary: updated dictionary with standardized values. :data_dictionary: updated dictionary with standardized values.
""" """
@ -460,6 +461,24 @@ class FreqaiDataKitchen:
return df return df
def check_pred_labels(self, df_predictions: DataFrame) -> DataFrame:
"""
Check that prediction feature labels match training feature labels.
:params:
:df_predictions: incoming predictions
"""
train_labels = self.data_dictionary["train_features"].columns
pred_labels = df_predictions.columns
num_diffs = len(pred_labels.difference(train_labels))
if num_diffs != 0:
df_predictions = df_predictions[train_labels]
logger.warning(
f"Removed {num_diffs} features from prediction features, "
f"these were likely considered constant values during most recent training."
)
return df_predictions
def principal_component_analysis(self) -> None: def principal_component_analysis(self) -> None:
""" """
Performs Principal Component Analysis on the data for dimensionality reduction Performs Principal Component Analysis on the data for dimensionality reduction
@ -516,8 +535,7 @@ class FreqaiDataKitchen:
def pca_transform(self, filtered_dataframe: DataFrame) -> None: def pca_transform(self, filtered_dataframe: DataFrame) -> None:
""" """
Use an existing pca transform to transform data into components Use an existing pca transform to transform data into components
:params: :param filtered_dataframe: DataFrame = the cleaned dataframe
filtered_dataframe: DataFrame = the cleaned dataframe
""" """
pca_components = self.pca.transform(filtered_dataframe) pca_components = self.pca.transform(filtered_dataframe)
self.data_dictionary["prediction_features"] = pd.DataFrame( self.data_dictionary["prediction_features"] = pd.DataFrame(
@ -561,8 +579,7 @@ class FreqaiDataKitchen:
""" """
Build/inference a Support Vector Machine to detect outliers Build/inference a Support Vector Machine to detect outliers
in training data and prediction in training data and prediction
:params: :param predict: bool = If true, inference an existing SVM model, else construct one
predict: bool = If true, inference an existing SVM model, else construct one
""" """
if self.keras: if self.keras:
@ -647,11 +664,11 @@ class FreqaiDataKitchen:
Use DBSCAN to cluster training data and remove "noisy" data (read outliers). Use DBSCAN to cluster training data and remove "noisy" data (read outliers).
User controls this via the config param `DBSCAN_outlier_pct` which indicates the User controls this via the config param `DBSCAN_outlier_pct` which indicates the
pct of training data that they want to be considered outliers. pct of training data that they want to be considered outliers.
:params: :param predict: bool = If False (training), iterate to find the best hyper parameters
predict: bool = If False (training), iterate to find the best hyper parameters to match to match user requested outlier percent target.
user requested outlier percent target. If True (prediction), use the parameters If True (prediction), use the parameters determined from
determined from the previous training to estimate if the current prediction point the previous training to estimate if the current prediction point
is an outlier. is an outlier.
""" """
if predict: if predict:
@ -1118,15 +1135,13 @@ class FreqaiDataKitchen:
prediction_dataframe: DataFrame = pd.DataFrame(), prediction_dataframe: DataFrame = pd.DataFrame(),
) -> DataFrame: ) -> DataFrame:
""" """
Use the user defined strategy for populating indicators during Use the user defined strategy for populating indicators during retrain
retrain :param strategy: IStrategy = user defined strategy object
:params: :param corr_dataframes: dict = dict containing the informative pair dataframes
strategy: IStrategy = user defined strategy object (for user defined timeframes)
corr_dataframes: dict = dict containing the informative pair dataframes :param base_dataframes: dict = dict containing the current pair dataframes
(for user defined timeframes) (for user defined timeframes)
base_dataframes: dict = dict containing the current pair dataframes :param metadata: dict = strategy furnished pair metadata
(for user defined timeframes)
metadata: dict = strategy furnished pair metadata
:returns: :returns:
dataframe: DataFrame = dataframe containing populated indicators dataframe: DataFrame = dataframe containing populated indicators
""" """

View File

@ -196,16 +196,15 @@ class IFreqaiModel(ABC):
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair) (_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
dk = FreqaiDataKitchen(self.config, self.live, pair) dk = FreqaiDataKitchen(self.config, self.live, pair)
dk.set_paths(pair, trained_timestamp)
( (
retrain, retrain,
new_trained_timerange, new_trained_timerange,
data_load_timerange, data_load_timerange,
) = dk.check_if_new_training_required(trained_timestamp) ) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(pair, new_trained_timerange.stopts)
if retrain: if retrain:
self.train_timer('start') self.train_timer('start')
dk.set_paths(pair, new_trained_timerange.stopts)
try: try:
self.extract_data_and_train_model( self.extract_data_and_train_model(
new_trained_timerange, pair, strategy, dk, data_load_timerange new_trained_timerange, pair, strategy, dk, data_load_timerange
@ -270,9 +269,7 @@ class IFreqaiModel(ABC):
) )
trained_timestamp_int = int(trained_timestamp.stopts) trained_timestamp_int = int(trained_timestamp.stopts)
dk.data_path = Path( dk.set_paths(pair, trained_timestamp_int)
dk.full_path / f"sub-train-{pair.split('/')[0]}_{trained_timestamp_int}"
)
dk.set_new_model_names(pair, trained_timestamp) dk.set_new_model_names(pair, trained_timestamp)
@ -605,11 +602,11 @@ class IFreqaiModel(ABC):
If the user reuses an identifier on a subsequent instance, If the user reuses an identifier on a subsequent instance,
this function will not be called. In that case, "real" predictions this function will not be called. In that case, "real" predictions
will be appended to the loaded set of historic predictions. will be appended to the loaded set of historic predictions.
:param: df: DataFrame = the dataframe containing the training feature data :param df: DataFrame = the dataframe containing the training feature data
:param: model: Any = A model which was `fit` using a common library such as :param model: Any = A model which was `fit` using a common library such as
catboost or lightgbm catboost or lightgbm
:param: dk: FreqaiDataKitchen = object containing methods for data analysis :param dk: FreqaiDataKitchen = object containing methods for data analysis
:param: pair: str = current pair :param pair: str = current pair
""" """
self.dd.historic_predictions[pair] = pred_df self.dd.historic_predictions[pair] = pred_df

View File

@ -1,4 +1,5 @@
import logging import logging
from pathlib import Path
from typing import Any, Dict from typing import Any, Dict
from catboost import CatBoostClassifier, Pool from catboost import CatBoostClassifier, Pool
@ -20,9 +21,8 @@ class CatboostClassifier(BaseClassifierModel):
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
""" """
User sets up the training and test data to fit their desired model here User sets up the training and test data to fit their desired model here
:params: :param data_dictionary: the dictionary constructed by DataHandler to hold
:data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels.
all the training and test data/labels.
""" """
train_data = Pool( train_data = Pool(
@ -32,8 +32,9 @@ class CatboostClassifier(BaseClassifierModel):
) )
cbr = CatBoostClassifier( cbr = CatBoostClassifier(
allow_writing_files=False, allow_writing_files=True,
loss_function='MultiClass', loss_function='MultiClass',
train_dir=Path(dk.data_path),
**self.model_training_parameters, **self.model_training_parameters,
) )

View File

@ -1,4 +1,5 @@
import logging import logging
from pathlib import Path
from typing import Any, Dict from typing import Any, Dict
from catboost import CatBoostRegressor, Pool from catboost import CatBoostRegressor, Pool
@ -41,7 +42,8 @@ class CatboostRegressor(BaseRegressionModel):
init_model = self.get_init_model(dk.pair) init_model = self.get_init_model(dk.pair)
model = CatBoostRegressor( model = CatBoostRegressor(
allow_writing_files=False, allow_writing_files=True,
train_dir=Path(dk.data_path),
**self.model_training_parameters, **self.model_training_parameters,
) )

View File

@ -1,4 +1,5 @@
import logging import logging
from pathlib import Path
from typing import Any, Dict from typing import Any, Dict
from catboost import CatBoostRegressor, Pool from catboost import CatBoostRegressor, Pool
@ -26,7 +27,8 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
""" """
cbr = CatBoostRegressor( cbr = CatBoostRegressor(
allow_writing_files=False, allow_writing_files=True,
train_dir=Path(dk.data_path),
**self.model_training_parameters, **self.model_training_parameters,
) )

View File

@ -20,9 +20,8 @@ class LightGBMClassifier(BaseClassifierModel):
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
""" """
User sets up the training and test data to fit their desired model here User sets up the training and test data to fit their desired model here
:params: :param data_dictionary: the dictionary constructed by DataHandler to hold
:data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels.
all the training and test data/labels.
""" """
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0: if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:

View File

@ -26,9 +26,8 @@ class XGBoostClassifier(BaseClassifierModel):
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
""" """
User sets up the training and test data to fit their desired model here User sets up the training and test data to fit their desired model here
:params: :param data_dictionary: the dictionary constructed by DataHandler to hold
:data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels.
all the training and test data/labels.
""" """
X = data_dictionary["train_features"].to_numpy() X = data_dictionary["train_features"].to_numpy()
@ -65,7 +64,7 @@ class XGBoostClassifier(BaseClassifierModel):
) -> Tuple[DataFrame, npt.NDArray[np.int_]]: ) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
""" """
Filter the prediction features data and predict with it. Filter the prediction features data and predict with it.
:param: unfiltered_df: Full dataframe for the current backtest period. :param unfiltered_df: Full dataframe for the current backtest period.
:return: :return:
:pred_df: dataframe containing the predictions :pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove :do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove

View File

@ -6,7 +6,7 @@ import logging
import re import re
from datetime import datetime from datetime import datetime
from pathlib import Path from pathlib import Path
from typing import Any, Iterator, List from typing import Any, Dict, Iterator, List, Mapping, Union
from typing.io import IO from typing.io import IO
from urllib.parse import urlparse from urllib.parse import urlparse
@ -186,7 +186,10 @@ def safe_value_fallback(obj: dict, key1: str, key2: str, default_value=None):
return default_value return default_value
def safe_value_fallback2(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None): dictMap = Union[Dict[str, Any], Mapping[str, Any]]
def safe_value_fallback2(dict1: dictMap, dict2: dictMap, key1: str, key2: str, default_value=None):
""" """
Search a value in dict1, return this if it's not None. Search a value in dict1, return this if it's not None.
Fall back to dict2 - return key2 from dict2 if it's not None. Fall back to dict2 - return key2 from dict2 if it's not None.

View File

@ -617,13 +617,16 @@ class Backtesting:
exit_reason = row[EXIT_TAG_IDX] exit_reason = row[EXIT_TAG_IDX]
# Custom exit pricing only for exit-signals # Custom exit pricing only for exit-signals
if order_type == 'limit': if order_type == 'limit':
close_rate = strategy_safe_wrapper(self.strategy.custom_exit_price, rate = strategy_safe_wrapper(self.strategy.custom_exit_price,
default_retval=close_rate)( default_retval=close_rate)(
pair=trade.pair, pair=trade.pair,
trade=trade, # type: ignore[arg-type] trade=trade, # type: ignore[arg-type]
current_time=exit_candle_time, current_time=exit_candle_time,
proposed_rate=close_rate, current_profit=current_profit, proposed_rate=close_rate, current_profit=current_profit,
exit_tag=exit_reason) exit_tag=exit_reason)
if rate != close_rate:
close_rate = price_to_precision(rate, trade.price_precision,
self.precision_mode)
# We can't place orders lower than current low. # We can't place orders lower than current low.
# freqtrade does not support this in live, and the order would fill immediately # freqtrade does not support this in live, and the order would fill immediately
if trade.is_short: if trade.is_short:
@ -660,7 +663,6 @@ class Backtesting:
# amount = amount or trade.amount # amount = amount or trade.amount
amount = amount_to_contract_precision(amount or trade.amount, trade.amount_precision, amount = amount_to_contract_precision(amount or trade.amount, trade.amount_precision,
self.precision_mode, trade.contract_size) self.precision_mode, trade.contract_size)
rate = price_to_precision(close_rate, trade.price_precision, self.precision_mode)
order = Order( order = Order(
id=self.order_id_counter, id=self.order_id_counter,
ft_trade_id=trade.id, ft_trade_id=trade.id,
@ -674,12 +676,12 @@ class Backtesting:
side=trade.exit_side, side=trade.exit_side,
order_type=order_type, order_type=order_type,
status="open", status="open",
price=rate, price=close_rate,
average=rate, average=close_rate,
amount=amount, amount=amount,
filled=0, filled=0,
remaining=amount, remaining=amount,
cost=amount * rate, cost=amount * close_rate,
) )
trade.orders.append(order) trade.orders.append(order)
return trade return trade
@ -726,18 +728,21 @@ class Backtesting:
def get_valid_price_and_stake( def get_valid_price_and_stake(
self, pair: str, row: Tuple, propose_rate: float, stake_amount: float, self, pair: str, row: Tuple, propose_rate: float, stake_amount: float,
direction: LongShort, current_time: datetime, entry_tag: Optional[str], direction: LongShort, current_time: datetime, entry_tag: Optional[str],
trade: Optional[LocalTrade], order_type: str trade: Optional[LocalTrade], order_type: str, price_precision: Optional[float]
) -> Tuple[float, float, float, float]: ) -> Tuple[float, float, float, float]:
if order_type == 'limit': if order_type == 'limit':
propose_rate = strategy_safe_wrapper(self.strategy.custom_entry_price, new_rate = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=propose_rate)( default_retval=propose_rate)(
pair=pair, current_time=current_time, pair=pair, current_time=current_time,
proposed_rate=propose_rate, entry_tag=entry_tag, proposed_rate=propose_rate, entry_tag=entry_tag,
side=direction, side=direction,
) # default value is the open rate ) # default value is the open rate
# We can't place orders higher than current high (otherwise it'd be a stop limit entry) # We can't place orders higher than current high (otherwise it'd be a stop limit entry)
# which freqtrade does not support in live. # which freqtrade does not support in live.
if new_rate != propose_rate:
propose_rate = price_to_precision(new_rate, price_precision,
self.precision_mode)
if direction == "short": if direction == "short":
propose_rate = max(propose_rate, row[LOW_IDX]) propose_rate = max(propose_rate, row[LOW_IDX])
else: else:
@ -799,9 +804,11 @@ class Backtesting:
pos_adjust = trade is not None and requested_rate is None pos_adjust = trade is not None and requested_rate is None
stake_amount_ = stake_amount or (trade.stake_amount if trade else 0.0) stake_amount_ = stake_amount or (trade.stake_amount if trade else 0.0)
precision_price = self.exchange.get_precision_price(pair)
propose_rate, stake_amount, leverage, min_stake_amount = self.get_valid_price_and_stake( propose_rate, stake_amount, leverage, min_stake_amount = self.get_valid_price_and_stake(
pair, row, row[OPEN_IDX], stake_amount_, direction, current_time, entry_tag, trade, pair, row, row[OPEN_IDX], stake_amount_, direction, current_time, entry_tag, trade,
order_type order_type, precision_price,
) )
# replace proposed rate if another rate was requested # replace proposed rate if another rate was requested
@ -817,8 +824,6 @@ class Backtesting:
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount): if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
self.order_id_counter += 1 self.order_id_counter += 1
base_currency = self.exchange.get_pair_base_currency(pair) base_currency = self.exchange.get_pair_base_currency(pair)
precision_price = self.exchange.get_precision_price(pair)
propose_rate = price_to_precision(propose_rate, precision_price, self.precision_mode)
amount_p = (stake_amount / propose_rate) * leverage amount_p = (stake_amount / propose_rate) * leverage
contract_size = self.exchange.get_contract_size(pair) contract_size = self.exchange.get_contract_size(pair)

View File

@ -12,7 +12,7 @@ import tabulate
from colorama import Fore, Style from colorama import Fore, Style
from pandas import isna, json_normalize from pandas import isna, json_normalize
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES, Config from freqtrade.constants import FTHYPT_FILEVERSION, Config
from freqtrade.enums import HyperoptState from freqtrade.enums import HyperoptState
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2 from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
@ -50,9 +50,8 @@ class HyperoptTools():
Get Strategy-location (filename) from strategy_name Get Strategy-location (filename) from strategy_name
""" """
from freqtrade.resolvers.strategy_resolver import StrategyResolver from freqtrade.resolvers.strategy_resolver import StrategyResolver
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects( strategy_objs = StrategyResolver.search_all_objects(
directory, False, config.get('recursive_strategy_search', False)) config, False, config.get('recursive_strategy_search', False))
strategies = [s for s in strategy_objs if s['name'] == strategy_name] strategies = [s for s in strategy_objs if s['name'] == strategy_name]
if strategies: if strategies:
strategy = strategies[0] strategy = strategies[0]

View File

@ -10,6 +10,7 @@ from pandas import DataFrame
from freqtrade.constants import Config, ListPairsWithTimeframes from freqtrade.constants import Config, ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.misc import plural from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.util import PeriodicCache from freqtrade.util import PeriodicCache
@ -67,10 +68,10 @@ class AgeFilter(IPairList):
f"{self._max_days_listed} {plural(self._max_days_listed, 'day')}" f"{self._max_days_listed} {plural(self._max_days_listed, 'day')}"
) if self._max_days_listed else '') ) if self._max_days_listed else '')
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new allowlist :return: new allowlist
""" """
needed_pairs: ListPairsWithTimeframes = [ needed_pairs: ListPairsWithTimeframes = [

View File

@ -4,11 +4,12 @@ PairList Handler base class
import logging import logging
from abc import ABC, abstractmethod, abstractproperty from abc import ABC, abstractmethod, abstractproperty
from copy import deepcopy from copy import deepcopy
from typing import Any, Dict, List from typing import Any, Dict, List, Optional
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange, market_is_active from freqtrade.exchange import Exchange, market_is_active
from freqtrade.exchange.types import Ticker, Tickers
from freqtrade.mixins import LoggingMixin from freqtrade.mixins import LoggingMixin
@ -61,7 +62,7 @@ class IPairList(LoggingMixin, ABC):
-> Please overwrite in subclasses -> Please overwrite in subclasses
""" """
def _validate_pair(self, pair: str, ticker: Dict[str, Any]) -> bool: def _validate_pair(self, pair: str, ticker: Optional[Ticker]) -> bool:
""" """
Check one pair against Pairlist Handler's specific conditions. Check one pair against Pairlist Handler's specific conditions.
@ -69,12 +70,12 @@ class IPairList(LoggingMixin, ABC):
filter_pairlist() method. filter_pairlist() method.
:param pair: Pair that's currently validated :param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.fetch_tickers() :param ticker: ticker dict as returned from ccxt.fetch_ticker
:return: True if the pair can stay, false if it should be removed :return: True if the pair can stay, false if it should be removed
""" """
raise NotImplementedError() raise NotImplementedError()
def gen_pairlist(self, tickers: Dict) -> List[str]: def gen_pairlist(self, tickers: Tickers) -> List[str]:
""" """
Generate the pairlist. Generate the pairlist.
@ -85,13 +86,13 @@ class IPairList(LoggingMixin, ABC):
it will raise the exception if a Pairlist Handler is used at the first it will raise the exception if a Pairlist Handler is used at the first
position in the chain. position in the chain.
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs :return: List of pairs
""" """
raise OperationalException("This Pairlist Handler should not be used " raise OperationalException("This Pairlist Handler should not be used "
"at the first position in the list of Pairlist Handlers.") "at the first position in the list of Pairlist Handlers.")
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Filters and sorts pairlist and returns the whitelist again. Filters and sorts pairlist and returns the whitelist again.
@ -103,14 +104,14 @@ class IPairList(LoggingMixin, ABC):
own filtration. own filtration.
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist :return: new whitelist
""" """
if self._enabled: if self._enabled:
# Copy list since we're modifying this list # Copy list since we're modifying this list
for p in deepcopy(pairlist): for p in deepcopy(pairlist):
# Filter out assets # Filter out assets
if not self._validate_pair(p, tickers[p] if p in tickers else {}): if not self._validate_pair(p, tickers[p] if p in tickers else None):
pairlist.remove(p) pairlist.remove(p)
return pairlist return pairlist

View File

@ -6,6 +6,7 @@ from typing import Any, Dict, List
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -42,12 +43,12 @@ class OffsetFilter(IPairList):
return f"{self.name} - Taking {self._number_pairs} Pairs, starting from {self._offset}." return f"{self.name} - Taking {self._number_pairs} Pairs, starting from {self._offset}."
return f"{self.name} - Offsetting pairs by {self._offset}." return f"{self.name} - Offsetting pairs by {self._offset}."
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Filters and sorts pairlist and returns the whitelist again. Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist :return: new whitelist
""" """
if self._offset > len(pairlist): if self._offset > len(pairlist):

View File

@ -7,6 +7,7 @@ from typing import Any, Dict, List
import pandas as pd import pandas as pd
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exchange.types import Tickers
from freqtrade.persistence import Trade from freqtrade.persistence import Trade
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -39,12 +40,12 @@ class PerformanceFilter(IPairList):
""" """
return f"{self.name} - Sorting pairs by performance." return f"{self.name} - Sorting pairs by performance."
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Filters and sorts pairlist and returns the allowlist again. Filters and sorts pairlist and returns the allowlist again.
Called on each bot iteration - please use internal caching if necessary Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new allowlist :return: new allowlist
""" """
# Get the trading performance for pairs from database # Get the trading performance for pairs from database

View File

@ -2,10 +2,11 @@
Precision pair list filter Precision pair list filter
""" """
import logging import logging
from typing import Any, Dict from typing import Any, Dict, Optional
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Ticker
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -44,15 +45,15 @@ class PrecisionFilter(IPairList):
""" """
return f"{self.name} - Filtering untradable pairs." return f"{self.name} - Filtering untradable pairs."
def _validate_pair(self, pair: str, ticker: Dict[str, Any]) -> bool: def _validate_pair(self, pair: str, ticker: Optional[Ticker]) -> bool:
""" """
Check if pair has enough room to add a stoploss to avoid "unsellable" buys of very Check if pair has enough room to add a stoploss to avoid "unsellable" buys of very
low value pairs. low value pairs.
:param pair: Pair that's currently validated :param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.fetch_tickers() :param ticker: ticker dict as returned from ccxt.fetch_ticker
:return: True if the pair can stay, false if it should be removed :return: True if the pair can stay, false if it should be removed
""" """
if ticker.get('last', None) is None: if not ticker or ticker.get('last', None) is None:
self.log_once(f"Removed {pair} from whitelist, because " self.log_once(f"Removed {pair} from whitelist, because "
"ticker['last'] is empty (Usually no trade in the last 24h).", "ticker['last'] is empty (Usually no trade in the last 24h).",
logger.info) logger.info)

View File

@ -2,10 +2,11 @@
Price pair list filter Price pair list filter
""" """
import logging import logging
from typing import Any, Dict from typing import Any, Dict, Optional
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Ticker
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -64,14 +65,16 @@ class PriceFilter(IPairList):
return f"{self.name} - No price filters configured." return f"{self.name} - No price filters configured."
def _validate_pair(self, pair: str, ticker: Dict[str, Any]) -> bool: def _validate_pair(self, pair: str, ticker: Optional[Ticker]) -> bool:
""" """
Check if if one price-step (pip) is > than a certain barrier. Check if if one price-step (pip) is > than a certain barrier.
:param pair: Pair that's currently validated :param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.fetch_tickers() :param ticker: ticker dict as returned from ccxt.fetch_ticker
:return: True if the pair can stay, false if it should be removed :return: True if the pair can stay, false if it should be removed
""" """
if ticker.get('last', None) is None or ticker.get('last') == 0: if ticker and 'last' in ticker and ticker['last'] is not None and ticker.get('last') != 0:
price: float = ticker['last']
else:
self.log_once(f"Removed {pair} from whitelist, because " self.log_once(f"Removed {pair} from whitelist, because "
"ticker['last'] is empty (Usually no trade in the last 24h).", "ticker['last'] is empty (Usually no trade in the last 24h).",
logger.info) logger.info)
@ -79,8 +82,8 @@ class PriceFilter(IPairList):
# Perform low_price_ratio check. # Perform low_price_ratio check.
if self._low_price_ratio != 0: if self._low_price_ratio != 0:
compare = self._exchange.price_get_one_pip(pair, ticker['last']) compare = self._exchange.price_get_one_pip(pair, price)
changeperc = compare / ticker['last'] changeperc = compare / price
if changeperc > self._low_price_ratio: if changeperc > self._low_price_ratio:
self.log_once(f"Removed {pair} from whitelist, " self.log_once(f"Removed {pair} from whitelist, "
f"because 1 unit is {changeperc:.3%}", logger.info) f"because 1 unit is {changeperc:.3%}", logger.info)
@ -88,7 +91,6 @@ class PriceFilter(IPairList):
# Perform low_amount check # Perform low_amount check
if self._max_value != 0: if self._max_value != 0:
price = ticker['last']
market = self._exchange.markets[pair] market = self._exchange.markets[pair]
limits = market['limits'] limits = market['limits']
if (limits['amount']['min'] is not None): if (limits['amount']['min'] is not None):
@ -113,14 +115,14 @@ class PriceFilter(IPairList):
# Perform min_price check. # Perform min_price check.
if self._min_price != 0: if self._min_price != 0:
if ticker['last'] < self._min_price: if price < self._min_price:
self.log_once(f"Removed {pair} from whitelist, " self.log_once(f"Removed {pair} from whitelist, "
f"because last price < {self._min_price:.8f}", logger.info) f"because last price < {self._min_price:.8f}", logger.info)
return False return False
# Perform max_price check. # Perform max_price check.
if self._max_price != 0: if self._max_price != 0:
if ticker['last'] > self._max_price: if price > self._max_price:
self.log_once(f"Removed {pair} from whitelist, " self.log_once(f"Removed {pair} from whitelist, "
f"because last price > {self._max_price:.8f}", logger.info) f"because last price > {self._max_price:.8f}", logger.info)
return False return False

View File

@ -7,6 +7,7 @@ import logging
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -68,10 +69,10 @@ class ProducerPairList(IPairList):
return pairs return pairs
def gen_pairlist(self, tickers: Dict) -> List[str]: def gen_pairlist(self, tickers: Tickers) -> List[str]:
""" """
Generate the pairlist Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs :return: List of pairs
""" """
pairs = self._filter_pairlist(None) pairs = self._filter_pairlist(None)
@ -79,12 +80,12 @@ class ProducerPairList(IPairList):
pairs = self._whitelist_for_active_markets(self.verify_whitelist(pairs, logger.info)) pairs = self._whitelist_for_active_markets(self.verify_whitelist(pairs, logger.info))
return pairs return pairs
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Filters and sorts pairlist and returns the whitelist again. Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist :return: new whitelist
""" """
return self._filter_pairlist(pairlist) return self._filter_pairlist(pairlist)

View File

@ -7,6 +7,7 @@ from typing import Any, Dict, List
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.enums import RunMode from freqtrade.enums import RunMode
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -47,12 +48,12 @@ class ShuffleFilter(IPairList):
return (f"{self.name} - Shuffling pairs" + return (f"{self.name} - Shuffling pairs" +
(f", seed = {self._seed}." if self._seed is not None else ".")) (f", seed = {self._seed}." if self._seed is not None else "."))
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Filters and sorts pairlist and returns the whitelist again. Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist :return: new whitelist
""" """
# Shuffle is done inplace # Shuffle is done inplace

View File

@ -2,10 +2,10 @@
Spread pair list filter Spread pair list filter
""" """
import logging import logging
from typing import Any, Dict from typing import Any, Dict, Optional
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exceptions import OperationalException from freqtrade.exchange.types import Ticker
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -22,12 +22,6 @@ class SpreadFilter(IPairList):
self._max_spread_ratio = pairlistconfig.get('max_spread_ratio', 0.005) self._max_spread_ratio = pairlistconfig.get('max_spread_ratio', 0.005)
self._enabled = self._max_spread_ratio != 0 self._enabled = self._max_spread_ratio != 0
if not self._exchange.exchange_has('fetchTickers'):
raise OperationalException(
'Exchange does not support fetchTickers, therefore SpreadFilter cannot be used.'
'Please edit your config and restart the bot.'
)
@property @property
def needstickers(self) -> bool: def needstickers(self) -> bool:
""" """
@ -44,14 +38,14 @@ class SpreadFilter(IPairList):
return (f"{self.name} - Filtering pairs with ask/bid diff above " return (f"{self.name} - Filtering pairs with ask/bid diff above "
f"{self._max_spread_ratio:.2%}.") f"{self._max_spread_ratio:.2%}.")
def _validate_pair(self, pair: str, ticker: Dict[str, Any]) -> bool: def _validate_pair(self, pair: str, ticker: Optional[Ticker]) -> bool:
""" """
Validate spread for the ticker Validate spread for the ticker
:param pair: Pair that's currently validated :param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.fetch_tickers() :param ticker: ticker dict as returned from ccxt.fetch_ticker
:return: True if the pair can stay, false if it should be removed :return: True if the pair can stay, false if it should be removed
""" """
if 'bid' in ticker and 'ask' in ticker and ticker['ask'] and ticker['bid']: if ticker and 'bid' in ticker and 'ask' in ticker and ticker['ask'] and ticker['bid']:
spread = 1 - ticker['bid'] / ticker['ask'] spread = 1 - ticker['bid'] / ticker['ask']
if spread > self._max_spread_ratio: if spread > self._max_spread_ratio:
self.log_once(f"Removed {pair} from whitelist, because spread " self.log_once(f"Removed {pair} from whitelist, because spread "

View File

@ -8,6 +8,7 @@ from copy import deepcopy
from typing import Any, Dict, List from typing import Any, Dict, List
from freqtrade.constants import Config from freqtrade.constants import Config
from freqtrade.exchange.types import Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -39,10 +40,10 @@ class StaticPairList(IPairList):
""" """
return f"{self.name}" return f"{self.name}"
def gen_pairlist(self, tickers: Dict) -> List[str]: def gen_pairlist(self, tickers: Tickers) -> List[str]:
""" """
Generate the pairlist Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs :return: List of pairs
""" """
if self._allow_inactive: if self._allow_inactive:
@ -53,12 +54,12 @@ class StaticPairList(IPairList):
return self._whitelist_for_active_markets( return self._whitelist_for_active_markets(
self.verify_whitelist(self._config['exchange']['pair_whitelist'], logger.info)) self.verify_whitelist(self._config['exchange']['pair_whitelist'], logger.info))
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Filters and sorts pairlist and returns the whitelist again. Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist :return: new whitelist
""" """
pairlist_ = deepcopy(pairlist) pairlist_ = deepcopy(pairlist)

View File

@ -13,6 +13,7 @@ from pandas import DataFrame
from freqtrade.constants import Config, ListPairsWithTimeframes from freqtrade.constants import Config, ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.misc import plural from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -62,11 +63,11 @@ class VolatilityFilter(IPairList):
f"{self._min_volatility}-{self._max_volatility} " f"{self._min_volatility}-{self._max_volatility} "
f" the last {self._days} {plural(self._days, 'day')}.") f" the last {self._days} {plural(self._days, 'day')}.")
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Validate trading range Validate trading range
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new allowlist :return: new allowlist
""" """
needed_pairs: ListPairsWithTimeframes = [ needed_pairs: ListPairsWithTimeframes = [

View File

@ -5,13 +5,14 @@ Provides dynamic pair list based on trade volumes
""" """
import logging import logging
from datetime import datetime, timedelta, timezone from datetime import datetime, timedelta, timezone
from typing import Any, Dict, List from typing import Any, Dict, List, Literal
from cachetools import TTLCache from cachetools import TTLCache
from freqtrade.constants import Config, ListPairsWithTimeframes from freqtrade.constants import Config, ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date
from freqtrade.exchange.types import Tickers
from freqtrade.misc import format_ms_time from freqtrade.misc import format_ms_time
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -36,7 +37,7 @@ class VolumePairList(IPairList):
self._stake_currency = config['stake_currency'] self._stake_currency = config['stake_currency']
self._number_pairs = self._pairlistconfig['number_assets'] self._number_pairs = self._pairlistconfig['number_assets']
self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume') self._sort_key: Literal['quoteVolume'] = self._pairlistconfig.get('sort_key', 'quoteVolume')
self._min_value = self._pairlistconfig.get('min_value', 0) self._min_value = self._pairlistconfig.get('min_value', 0)
self._refresh_period = self._pairlistconfig.get('refresh_period', 1800) self._refresh_period = self._pairlistconfig.get('refresh_period', 1800)
self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period) self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period)
@ -110,10 +111,10 @@ class VolumePairList(IPairList):
""" """
return f"{self.name} - top {self._pairlistconfig['number_assets']} volume pairs." return f"{self.name} - top {self._pairlistconfig['number_assets']} volume pairs."
def gen_pairlist(self, tickers: Dict) -> List[str]: def gen_pairlist(self, tickers: Tickers) -> List[str]:
""" """
Generate the pairlist Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs :return: List of pairs
""" """
# Generate dynamic whitelist # Generate dynamic whitelist
@ -150,7 +151,7 @@ class VolumePairList(IPairList):
Filters and sorts pairlist and returns the whitelist again. Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist :return: new whitelist
""" """
if self._use_range: if self._use_range:

View File

@ -12,7 +12,7 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
:param wildcardpl: List of Pairlists, which may contain regex :param wildcardpl: List of Pairlists, which may contain regex
:param available_pairs: List of all available pairs (`exchange.get_markets().keys()`) :param available_pairs: List of all available pairs (`exchange.get_markets().keys()`)
:param keep_invalid: If sets to True, drops invalid pairs silently while expanding regexes :param keep_invalid: If sets to True, drops invalid pairs silently while expanding regexes
:return expanded pairlist, with Regexes from wildcardpl applied to match all available pairs. :return: expanded pairlist, with Regexes from wildcardpl applied to match all available pairs.
:raises: ValueError if a wildcard is invalid (like '*/BTC' - which should be `.*/BTC`) :raises: ValueError if a wildcard is invalid (like '*/BTC' - which should be `.*/BTC`)
""" """
result = [] result = []

View File

@ -11,6 +11,7 @@ from pandas import DataFrame
from freqtrade.constants import Config, ListPairsWithTimeframes from freqtrade.constants import Config, ListPairsWithTimeframes
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.misc import plural from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
@ -60,11 +61,11 @@ class RangeStabilityFilter(IPairList):
f"{self._min_rate_of_change}{max_rate_desc} over the " f"{self._min_rate_of_change}{max_rate_desc} over the "
f"last {plural(self._days, 'day')}.") f"last {plural(self._days, 'day')}.")
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]: def filter_pairlist(self, pairlist: List[str], tickers: Tickers) -> List[str]:
""" """
Validate trading range Validate trading range
:param pairlist: pairlist to filter or sort :param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached. :param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new allowlist :return: new allowlist
""" """
needed_pairs: ListPairsWithTimeframes = [ needed_pairs: ListPairsWithTimeframes = [

View File

@ -11,6 +11,7 @@ from freqtrade.constants import Config, ListPairsWithTimeframes
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import CandleType from freqtrade.enums import CandleType
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange.types import Tickers
from freqtrade.mixins import LoggingMixin from freqtrade.mixins import LoggingMixin
from freqtrade.plugins.pairlist.IPairList import IPairList from freqtrade.plugins.pairlist.IPairList import IPairList
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@ -45,6 +46,15 @@ class PairListManager(LoggingMixin):
if not self._pairlist_handlers: if not self._pairlist_handlers:
raise OperationalException("No Pairlist Handlers defined") raise OperationalException("No Pairlist Handlers defined")
if self._tickers_needed and not self._exchange.exchange_has('fetchTickers'):
invalid = ". ".join([p.name for p in self._pairlist_handlers if p.needstickers])
raise OperationalException(
"Exchange does not support fetchTickers, therefore the following pairlists "
"cannot be used. Please edit your config and restart the bot.\n"
f"{invalid}."
)
refresh_period = config.get('pairlist_refresh_period', 3600) refresh_period = config.get('pairlist_refresh_period', 3600)
LoggingMixin.__init__(self, logger, refresh_period) LoggingMixin.__init__(self, logger, refresh_period)
@ -76,7 +86,7 @@ class PairListManager(LoggingMixin):
return [{p.name: p.short_desc()} for p in self._pairlist_handlers] return [{p.name: p.short_desc()} for p in self._pairlist_handlers]
@cached(TTLCache(maxsize=1, ttl=1800)) @cached(TTLCache(maxsize=1, ttl=1800))
def _get_cached_tickers(self): def _get_cached_tickers(self) -> Tickers:
return self._exchange.get_tickers() return self._exchange.get_tickers()
def refresh_pairlist(self) -> None: def refresh_pairlist(self) -> None:

View File

@ -183,9 +183,35 @@ class IResolver:
) )
@classmethod @classmethod
def search_all_objects(cls, directory: Path, enum_failed: bool, def search_all_objects(cls, config: Config, enum_failed: bool,
recursive: bool = False) -> List[Dict[str, Any]]: recursive: bool = False) -> List[Dict[str, Any]]:
""" """
Searches for valid objects
:param config: Config object
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:param recursive: Recursively walk directory tree searching for strategies
:return: List of dicts containing 'name', 'class' and 'location' entries
"""
result = []
abs_paths = cls.build_search_paths(config, user_subdir=cls.user_subdir)
for path in abs_paths:
result.extend(cls._search_all_objects(path, enum_failed, recursive))
return result
@classmethod
def _build_rel_location(cls, directory: Path, entry: Path) -> str:
builtin = cls.initial_search_path == directory
return f"<builtin>/{entry.relative_to(directory)}" if builtin else str(
entry.relative_to(directory))
@classmethod
def _search_all_objects(
cls, directory: Path, enum_failed: bool, recursive: bool = False,
basedir: Optional[Path] = None) -> List[Dict[str, Any]]:
"""
Searches a directory for valid objects Searches a directory for valid objects
:param directory: Path to search :param directory: Path to search
:param enum_failed: If True, will return None for modules which fail. :param enum_failed: If True, will return None for modules which fail.
@ -204,7 +230,8 @@ class IResolver:
and not entry.name.startswith('__') and not entry.name.startswith('__')
and not entry.name.startswith('.') and not entry.name.startswith('.')
): ):
objects.extend(cls.search_all_objects(entry, enum_failed, recursive=recursive)) objects.extend(cls._search_all_objects(
entry, enum_failed, recursive, basedir or directory))
# Only consider python files # Only consider python files
if entry.suffix != '.py': if entry.suffix != '.py':
logger.debug('Ignoring %s', entry) logger.debug('Ignoring %s', entry)
@ -217,5 +244,6 @@ class IResolver:
{'name': obj[0].__name__ if obj is not None else '', {'name': obj[0].__name__ if obj is not None else '',
'class': obj[0] if obj is not None else None, 'class': obj[0] if obj is not None else None,
'location': entry, 'location': entry,
'location_rel': cls._build_rel_location(basedir or directory, entry),
}) })
return objects return objects

View File

@ -268,6 +268,14 @@ class StrategyResolver(IResolver):
"or contains Python code errors." "or contains Python code errors."
) )
@classmethod
def build_search_paths(cls, config: Config, user_subdir: Optional[str] = None,
extra_dirs: List[str] = []) -> List[Path]:
if 'strategy_path' in config and config['strategy_path'] not in extra_dirs:
extra_dirs = [config['strategy_path']] + extra_dirs
return super().build_search_paths(config, user_subdir, extra_dirs)
def warn_deprecated_setting(strategy: IStrategy, old: str, new: str, error=False): def warn_deprecated_setting(strategy: IStrategy, old: str, new: str, error=False):
if hasattr(strategy, old): if hasattr(strategy, old):

View File

@ -1,13 +1,11 @@
import logging import logging
from copy import deepcopy from copy import deepcopy
from pathlib import Path
from typing import List, Optional from typing import List, Optional
from fastapi import APIRouter, Depends, Query from fastapi import APIRouter, Depends, Query
from fastapi.exceptions import HTTPException from fastapi.exceptions import HTTPException
from freqtrade import __version__ from freqtrade import __version__
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.data.history import get_datahandler from freqtrade.data.history import get_datahandler
from freqtrade.enums import CandleType, TradingMode from freqtrade.enums import CandleType, TradingMode
from freqtrade.exceptions import OperationalException from freqtrade.exceptions import OperationalException
@ -253,11 +251,9 @@ def plot_config(rpc: RPC = Depends(get_rpc)):
@router.get('/strategies', response_model=StrategyListResponse, tags=['strategy']) @router.get('/strategies', response_model=StrategyListResponse, tags=['strategy'])
def list_strategies(config=Depends(get_config)): def list_strategies(config=Depends(get_config)):
directory = Path(config.get(
'strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
from freqtrade.resolvers.strategy_resolver import StrategyResolver from freqtrade.resolvers.strategy_resolver import StrategyResolver
strategies = StrategyResolver.search_all_objects( strategies = StrategyResolver.search_all_objects(
directory, False, config.get('recursive_strategy_search', False)) config, False, config.get('recursive_strategy_search', False))
strategies = sorted(strategies, key=lambda x: x['name']) strategies = sorted(strategies, key=lambda x: x['name'])
return {'strategies': [x['name'] for x in strategies]} return {'strategies': [x['name'] for x in strategies]}

View File

@ -4,6 +4,7 @@ from typing import Any, Dict
from fastapi import APIRouter, Depends, WebSocketDisconnect from fastapi import APIRouter, Depends, WebSocketDisconnect
from fastapi.websockets import WebSocket, WebSocketState from fastapi.websockets import WebSocket, WebSocketState
from pydantic import ValidationError from pydantic import ValidationError
from websockets.exceptions import WebSocketException
from freqtrade.enums import RPCMessageType, RPCRequestType from freqtrade.enums import RPCMessageType, RPCRequestType
from freqtrade.rpc.api_server.api_auth import validate_ws_token from freqtrade.rpc.api_server.api_auth import validate_ws_token
@ -102,7 +103,6 @@ async def message_endpoint(
""" """
try: try:
channel = await channel_manager.on_connect(ws) channel = await channel_manager.on_connect(ws)
if await is_websocket_alive(ws): if await is_websocket_alive(ws):
logger.info(f"Consumer connected - {channel}") logger.info(f"Consumer connected - {channel}")
@ -115,26 +115,31 @@ async def message_endpoint(
# Process the request here # Process the request here
await _process_consumer_request(request, channel, rpc) await _process_consumer_request(request, channel, rpc)
except WebSocketDisconnect: except (WebSocketDisconnect, WebSocketException):
# Handle client disconnects # Handle client disconnects
logger.info(f"Consumer disconnected - {channel}") logger.info(f"Consumer disconnected - {channel}")
await channel_manager.on_disconnect(ws) except RuntimeError:
except Exception as e:
logger.info(f"Consumer connection failed - {channel}")
logger.exception(e)
# Handle cases like - # Handle cases like -
# RuntimeError('Cannot call "send" once a closed message has been sent') # RuntimeError('Cannot call "send" once a closed message has been sent')
pass
except Exception as e:
logger.info(f"Consumer connection failed - {channel}: {e}")
logger.debug(e, exc_info=e)
finally:
await channel_manager.on_disconnect(ws) await channel_manager.on_disconnect(ws)
else: else:
if channel:
await channel_manager.on_disconnect(ws)
await ws.close() await ws.close()
except RuntimeError: except RuntimeError:
# WebSocket was closed # WebSocket was closed
await channel_manager.on_disconnect(ws) # Do nothing
pass
except Exception as e: except Exception as e:
logger.error(f"Failed to serve - {ws.client}") logger.error(f"Failed to serve - {ws.client}")
# Log tracebacks to keep track of what errors are happening # Log tracebacks to keep track of what errors are happening
logger.exception(e) logger.exception(e)
finally:
await channel_manager.on_disconnect(ws) await channel_manager.on_disconnect(ws)

View File

@ -198,10 +198,6 @@ class ApiServer(RPCHandler):
logger.debug(f"Found message of type: {message.get('type')}") logger.debug(f"Found message of type: {message.get('type')}")
# Broadcast it # Broadcast it
await self._ws_channel_manager.broadcast(message) await self._ws_channel_manager.broadcast(message)
# Limit messages per sec.
# Could cause problems with queue size if too low, and
# problems with network traffik if too high.
await asyncio.sleep(0.001)
except asyncio.CancelledError: except asyncio.CancelledError:
pass pass
@ -245,6 +241,7 @@ class ApiServer(RPCHandler):
use_colors=False, use_colors=False,
log_config=None, log_config=None,
access_log=True if verbosity != 'error' else False, access_log=True if verbosity != 'error' else False,
ws_ping_interval=None # We do this explicitly ourselves
) )
try: try:
self._server = UvicornServer(uvconfig) self._server = UvicornServer(uvconfig)

View File

@ -1,6 +1,7 @@
import asyncio
import logging import logging
from threading import RLock from threading import RLock
from typing import List, Optional, Type from typing import Any, Dict, List, Optional, Type
from uuid import uuid4 from uuid import uuid4
from fastapi import WebSocket as FastAPIWebSocket from fastapi import WebSocket as FastAPIWebSocket
@ -34,6 +35,8 @@ class WebSocketChannel:
self._serializer_cls = serializer_cls self._serializer_cls = serializer_cls
self._subscriptions: List[str] = [] self._subscriptions: List[str] = []
self.queue: asyncio.Queue[Dict[str, Any]] = asyncio.Queue(maxsize=32)
self._relay_task = asyncio.create_task(self.relay())
# Internal event to signify a closed websocket # Internal event to signify a closed websocket
self._closed = False self._closed = False
@ -48,12 +51,18 @@ class WebSocketChannel:
def remote_addr(self): def remote_addr(self):
return self._websocket.remote_addr return self._websocket.remote_addr
async def send(self, data): async def _send(self, data):
""" """
Send data on the wrapped websocket Send data on the wrapped websocket
""" """
await self._wrapped_ws.send(data) await self._wrapped_ws.send(data)
async def send(self, data):
"""
Add the data to the queue to be sent
"""
self.queue.put_nowait(data)
async def recv(self): async def recv(self):
""" """
Receive data on the wrapped websocket Receive data on the wrapped websocket
@ -72,6 +81,7 @@ class WebSocketChannel:
""" """
self._closed = True self._closed = True
self._relay_task.cancel()
def is_closed(self) -> bool: def is_closed(self) -> bool:
""" """
@ -95,6 +105,26 @@ class WebSocketChannel:
""" """
return message_type in self._subscriptions return message_type in self._subscriptions
async def relay(self):
"""
Relay messages from the channel's queue and send them out. This is started
as a task.
"""
while True:
message = await self.queue.get()
try:
await self._send(message)
self.queue.task_done()
# Limit messages per sec.
# Could cause problems with queue size if too low, and
# problems with network traffik if too high.
# 0.001 = 1000/s
await asyncio.sleep(0.001)
except RuntimeError:
# The connection was closed, just exit the task
return
class ChannelManager: class ChannelManager:
def __init__(self): def __init__(self):
@ -155,12 +185,12 @@ class ChannelManager:
with self._lock: with self._lock:
message_type = data.get('type') message_type = data.get('type')
for websocket, channel in self.channels.copy().items(): for websocket, channel in self.channels.copy().items():
try: if channel.subscribed_to(message_type):
if channel.subscribed_to(message_type): if not channel.queue.full():
await channel.send(data) await channel.send(data)
except RuntimeError: else:
# Handle cannot send after close cases logger.info(f"Channel {channel} is too far behind, disconnecting")
await self.on_disconnect(websocket) await self.on_disconnect(websocket)
async def send_direct(self, channel, data): async def send_direct(self, channel, data):
""" """

View File

@ -11,13 +11,12 @@ logger = logging.getLogger(__name__)
class Discord(Webhook): class Discord(Webhook):
def __init__(self, rpc: 'RPC', config: Config): def __init__(self, rpc: 'RPC', config: Config):
# super().__init__(rpc, config) self._config = config
self.rpc = rpc self.rpc = rpc
self.config = config
self.strategy = config.get('strategy', '') self.strategy = config.get('strategy', '')
self.timeframe = config.get('timeframe', '') self.timeframe = config.get('timeframe', '')
self._url = self.config['discord']['webhook_url'] self._url = config['discord']['webhook_url']
self._format = 'json' self._format = 'json'
self._retries = 1 self._retries = 1
self._retry_delay = 0.1 self._retry_delay = 0.1
@ -31,19 +30,21 @@ class Discord(Webhook):
def send_msg(self, msg) -> None: def send_msg(self, msg) -> None:
if msg['type'].value in self.config['discord']: if msg['type'].value in self._config['discord']:
logger.info(f"Sending discord message: {msg}") logger.info(f"Sending discord message: {msg}")
msg['strategy'] = self.strategy msg['strategy'] = self.strategy
msg['timeframe'] = self.timeframe msg['timeframe'] = self.timeframe
fields = self.config['discord'].get(msg['type'].value) fields = self._config['discord'].get(msg['type'].value)
color = 0x0000FF color = 0x0000FF
if msg['type'] in (RPCMessageType.EXIT, RPCMessageType.EXIT_FILL): if msg['type'] in (RPCMessageType.EXIT, RPCMessageType.EXIT_FILL):
profit_ratio = msg.get('profit_ratio') profit_ratio = msg.get('profit_ratio')
color = (0x00FF00 if profit_ratio > 0 else 0xFF0000) color = (0x00FF00 if profit_ratio > 0 else 0xFF0000)
title = msg['type'].value
if 'pair' in msg:
title = f"Trade: {msg['pair']} {msg['type'].value}"
embeds = [{ embeds = [{
'title': f"Trade: {msg['pair']} {msg['type'].value}", 'title': title,
'color': color, 'color': color,
'fields': [], 'fields': [],
@ -51,7 +52,7 @@ class Discord(Webhook):
for f in fields: for f in fields:
for k, v in f.items(): for k, v in f.items():
v = v.format(**msg) v = v.format(**msg)
embeds[0]['fields'].append( # type: ignore embeds[0]['fields'].append(
{'name': k, 'value': v, 'inline': True}) {'name': k, 'value': v, 'inline': True})
# Send the message to discord channel # Send the message to discord channel

View File

@ -62,7 +62,7 @@ class ExternalMessageConsumer:
self.enabled = self._emc_config.get('enabled', False) self.enabled = self._emc_config.get('enabled', False)
self.producers: List[Producer] = self._emc_config.get('producers', []) self.producers: List[Producer] = self._emc_config.get('producers', [])
self.wait_timeout = self._emc_config.get('wait_timeout', 300) # in seconds self.wait_timeout = self._emc_config.get('wait_timeout', 30) # in seconds
self.ping_timeout = self._emc_config.get('ping_timeout', 10) # in seconds self.ping_timeout = self._emc_config.get('ping_timeout', 10) # in seconds
self.sleep_time = self._emc_config.get('sleep_time', 10) # in seconds self.sleep_time = self._emc_config.get('sleep_time', 10) # in seconds
@ -174,6 +174,7 @@ class ExternalMessageConsumer:
:param producer: Dictionary containing producer info :param producer: Dictionary containing producer info
:param lock: An asyncio Lock :param lock: An asyncio Lock
""" """
channel = None
while self._running: while self._running:
try: try:
host, port = producer['host'], producer['port'] host, port = producer['host'], producer['port']
@ -182,7 +183,11 @@ class ExternalMessageConsumer:
ws_url = f"ws://{host}:{port}/api/v1/message/ws?token={token}" ws_url = f"ws://{host}:{port}/api/v1/message/ws?token={token}"
# This will raise InvalidURI if the url is bad # This will raise InvalidURI if the url is bad
async with websockets.connect(ws_url, max_size=self.message_size_limit) as ws: async with websockets.connect(
ws_url,
max_size=self.message_size_limit,
ping_interval=None
) as ws:
channel = WebSocketChannel(ws, channel_id=name) channel = WebSocketChannel(ws, channel_id=name)
logger.info(f"Producer connection success - {channel}") logger.info(f"Producer connection success - {channel}")
@ -224,6 +229,10 @@ class ExternalMessageConsumer:
logger.exception(e) logger.exception(e)
continue continue
finally:
if channel:
await channel.close()
async def _receive_messages( async def _receive_messages(
self, self,
channel: WebSocketChannel, channel: WebSocketChannel,

View File

@ -88,10 +88,13 @@ class RPCManager:
""" """
while queue: while queue:
msg = queue.popleft() msg = queue.popleft()
self.send_msg({ logger.info('Sending rpc strategy_msg: %s', msg)
'type': RPCMessageType.STRATEGY_MSG, for mod in self.registered_modules:
'msg': msg, if mod._config.get(mod.name, {}).get('allow_custom_messages', False):
}) mod.send_msg({
'type': RPCMessageType.STRATEGY_MSG,
'msg': msg,
})
def startup_messages(self, config: Config, pairlist, protections) -> None: def startup_messages(self, config: Config, pairlist, protections) -> None:
if config['dry_run']: if config['dry_run']:

View File

@ -3,7 +3,7 @@ This module manages webhook communication
""" """
import logging import logging
import time import time
from typing import Any, Dict from typing import Any, Dict, Optional
from requests import RequestException, post from requests import RequestException, post
@ -41,36 +41,44 @@ class Webhook(RPCHandler):
""" """
pass pass
def _get_value_dict(self, msg: Dict[str, Any]) -> Optional[Dict[str, Any]]:
whconfig = self._config['webhook']
# Deprecated 2022.10 - only keep generic method.
if msg['type'] in [RPCMessageType.ENTRY]:
valuedict = whconfig.get('webhookentry')
elif msg['type'] in [RPCMessageType.ENTRY_CANCEL]:
valuedict = whconfig.get('webhookentrycancel')
elif msg['type'] in [RPCMessageType.ENTRY_FILL]:
valuedict = whconfig.get('webhookentryfill')
elif msg['type'] == RPCMessageType.EXIT:
valuedict = whconfig.get('webhookexit')
elif msg['type'] == RPCMessageType.EXIT_FILL:
valuedict = whconfig.get('webhookexitfill')
elif msg['type'] == RPCMessageType.EXIT_CANCEL:
valuedict = whconfig.get('webhookexitcancel')
elif msg['type'] in (RPCMessageType.STATUS,
RPCMessageType.STARTUP,
RPCMessageType.WARNING):
valuedict = whconfig.get('webhookstatus')
elif msg['type'].value in whconfig:
# Allow all types ...
valuedict = whconfig.get(msg['type'].value)
elif msg['type'] in (
RPCMessageType.PROTECTION_TRIGGER,
RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
RPCMessageType.WHITELIST,
RPCMessageType.ANALYZED_DF,
RPCMessageType.STRATEGY_MSG):
# Don't fail for non-implemented types
return None
return valuedict
def send_msg(self, msg: Dict[str, Any]) -> None: def send_msg(self, msg: Dict[str, Any]) -> None:
""" Send a message to telegram channel """ """ Send a message to telegram channel """
try: try:
whconfig = self._config['webhook']
if msg['type'] in [RPCMessageType.ENTRY]: valuedict = self._get_value_dict(msg)
valuedict = whconfig.get('webhookentry')
elif msg['type'] in [RPCMessageType.ENTRY_CANCEL]:
valuedict = whconfig.get('webhookentrycancel')
elif msg['type'] in [RPCMessageType.ENTRY_FILL]:
valuedict = whconfig.get('webhookentryfill')
elif msg['type'] == RPCMessageType.EXIT:
valuedict = whconfig.get('webhookexit')
elif msg['type'] == RPCMessageType.EXIT_FILL:
valuedict = whconfig.get('webhookexitfill')
elif msg['type'] == RPCMessageType.EXIT_CANCEL:
valuedict = whconfig.get('webhookexitcancel')
elif msg['type'] in (RPCMessageType.STATUS,
RPCMessageType.STARTUP,
RPCMessageType.WARNING):
valuedict = whconfig.get('webhookstatus')
elif msg['type'] in (
RPCMessageType.PROTECTION_TRIGGER,
RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
RPCMessageType.WHITELIST,
RPCMessageType.ANALYZED_DF,
RPCMessageType.STRATEGY_MSG):
# Don't fail for non-implemented types
return
else:
raise NotImplementedError('Unknown message type: {}'.format(msg['type']))
if not valuedict: if not valuedict:
logger.info("Message type '%s' not configured for webhooks", msg['type']) logger.info("Message type '%s' not configured for webhooks", msg['type'])
return return

View File

@ -49,7 +49,7 @@ class IStrategy(ABC, HyperStrategyMixin):
_ft_params_from_file: Dict _ft_params_from_file: Dict
# associated minimal roi # associated minimal roi
minimal_roi: Dict = {} minimal_roi: Dict = {"0": 10.0}
# associated stoploss # associated stoploss
stoploss: float stoploss: float

View File

@ -8,23 +8,23 @@
coveralls==3.3.1 coveralls==3.3.1
flake8==5.0.4 flake8==5.0.4
flake8-tidy-imports==4.8.0 flake8-tidy-imports==4.8.0
mypy==0.981 mypy==0.982
pre-commit==2.20.0 pre-commit==2.20.0
pytest==7.1.3 pytest==7.1.3
pytest-asyncio==0.19.0 pytest-asyncio==0.19.0
pytest-cov==4.0.0 pytest-cov==4.0.0
pytest-mock==3.9.0 pytest-mock==3.10.0
pytest-random-order==1.0.4 pytest-random-order==1.0.4
isort==5.10.1 isort==5.10.1
# For datetime mocking # For datetime mocking
time-machine==2.8.2 time-machine==2.8.2
# Convert jupyter notebooks to markdown documents # Convert jupyter notebooks to markdown documents
nbconvert==7.0.0 nbconvert==7.2.1
# mypy types # mypy types
types-cachetools==5.2.1 types-cachetools==5.2.1
types-filelock==3.2.7 types-filelock==3.2.7
types-requests==2.28.11 types-requests==2.28.11.2
types-tabulate==0.8.11 types-tabulate==0.9.0.0
types-python-dateutil==2.8.19 types-python-dateutil==2.8.19

View File

@ -7,3 +7,4 @@ joblib==1.2.0
catboost==1.1; platform_machine != 'aarch64' catboost==1.1; platform_machine != 'aarch64'
lightgbm==3.3.2 lightgbm==3.3.2
xgboost==1.6.2 xgboost==1.6.2
tensorboard==2.10.1

View File

@ -2,7 +2,7 @@
-r requirements.txt -r requirements.txt
# Required for hyperopt # Required for hyperopt
scipy==1.9.1 scipy==1.9.2
scikit-learn==1.1.2 scikit-learn==1.1.2
scikit-optimize==0.9.0 scikit-optimize==0.9.0
filelock==3.8.0 filelock==3.8.0

View File

@ -4,7 +4,7 @@ pandas==1.5.0; platform_machine != 'armv7l'
pandas==1.4.3; platform_machine == 'armv7l' pandas==1.4.3; platform_machine == 'armv7l'
pandas-ta==0.3.14b pandas-ta==0.3.14b
ccxt==1.95.2 ccxt==1.95.30
# Pin cryptography for now due to rust build errors with piwheels # Pin cryptography for now due to rust build errors with piwheels
cryptography==38.0.1 cryptography==38.0.1
aiohttp==3.8.3 aiohttp==3.8.3
@ -17,7 +17,7 @@ urllib3==1.26.12
jsonschema==4.16.0 jsonschema==4.16.0
TA-Lib==0.4.25 TA-Lib==0.4.25
technical==1.3.0 technical==1.3.0
tabulate==0.8.10 tabulate==0.9.0
pycoingecko==3.0.0 pycoingecko==3.0.0
jinja2==3.1.2 jinja2==3.1.2
tables==3.7.0 tables==3.7.0

View File

@ -82,7 +82,7 @@ def readable_timedelta(delta):
""" """
attrs = ['years', 'months', 'days', 'hours', 'minutes', 'seconds', 'microseconds'] attrs = ['years', 'months', 'days', 'hours', 'minutes', 'seconds', 'microseconds']
return ", ".join([ return ", ".join([
'%d %s' % (getattr(delta, attr), attr if getattr(delta, attr) > 1 else attr[:-1]) '%d %s' % (getattr(delta, attr), attr if getattr(delta, attr) > 0 else attr[:-1])
for attr in attrs if getattr(delta, attr) for attr in attrs if getattr(delta, attr)
]) ])
@ -170,7 +170,7 @@ class ClientProtocol:
def _calculate_time_difference(self): def _calculate_time_difference(self):
old_last_received_at = self._LAST_RECEIVED_AT old_last_received_at = self._LAST_RECEIVED_AT
self._LAST_RECEIVED_AT = time.time() * 1000 self._LAST_RECEIVED_AT = time.time() * 1e6
time_delta = relativedelta(microseconds=(self._LAST_RECEIVED_AT - old_last_received_at)) time_delta = relativedelta(microseconds=(self._LAST_RECEIVED_AT - old_last_received_at))
return readable_timedelta(time_delta) return readable_timedelta(time_delta)
@ -238,7 +238,7 @@ async def create_client(
except ( except (
asyncio.TimeoutError, asyncio.TimeoutError,
websockets.exceptions.ConnectionClosed websockets.exceptions.WebSocketException
): ):
# Try pinging # Try pinging
try: try:
@ -298,7 +298,7 @@ async def _main(args):
producers = emc_config.get('producers', []) producers = emc_config.get('producers', [])
producer = producers[0] producer = producers[0]
wait_timeout = emc_config.get('wait_timeout', 300) wait_timeout = emc_config.get('wait_timeout', 30)
ping_timeout = emc_config.get('ping_timeout', 10) ping_timeout = emc_config.get('ping_timeout', 10)
sleep_time = emc_config.get('sleep_time', 10) sleep_time = emc_config.get('sleep_time', 10)
message_size_limit = (emc_config.get('message_size_limit', 8) << 20) message_size_limit = (emc_config.get('message_size_limit', 8) << 20)
@ -311,7 +311,8 @@ async def _main(args):
sleep_time=sleep_time, sleep_time=sleep_time,
ping_timeout=ping_timeout, ping_timeout=ping_timeout,
wait_timeout=wait_timeout, wait_timeout=wait_timeout,
max_size=message_size_limit max_size=message_size_limit,
ping_interval=None
) )

View File

@ -56,7 +56,7 @@ EXCHANGES = {
'leverage_in_spot_market': True, 'leverage_in_spot_market': True,
}, },
'kucoin': { 'kucoin': {
'pair': 'BTC/USDT', 'pair': 'XRP/USDT',
'stake_currency': 'USDT', 'stake_currency': 'USDT',
'hasQuoteVolume': True, 'hasQuoteVolume': True,
'timeframe': '5m', 'timeframe': '5m',

View File

@ -1834,6 +1834,7 @@ def test_get_tickers(default_conf, mocker, exchange_name):
'last': 41, 'last': 41,
} }
} }
mocker.patch('freqtrade.exchange.exchange.Exchange.exchange_has', return_value=True)
api_mock.fetch_tickers = MagicMock(return_value=tick) api_mock.fetch_tickers = MagicMock(return_value=tick)
api_mock.fetch_bids_asks = MagicMock(return_value={}) api_mock.fetch_bids_asks = MagicMock(return_value={})
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name) exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
@ -1883,6 +1884,11 @@ def test_get_tickers(default_conf, mocker, exchange_name):
assert api_mock.fetch_tickers.call_count == 1 assert api_mock.fetch_tickers.call_count == 1
assert api_mock.fetch_bids_asks.call_count == (1 if exchange_name == 'binance' else 0) assert api_mock.fetch_bids_asks.call_count == (1 if exchange_name == 'binance' else 0)
api_mock.fetch_tickers.reset_mock()
api_mock.fetch_bids_asks.reset_mock()
mocker.patch('freqtrade.exchange.exchange.Exchange.exchange_has', return_value=False)
assert exchange.get_tickers() == {}
@pytest.mark.parametrize("exchange_name", EXCHANGES) @pytest.mark.parametrize("exchange_name", EXCHANGES)
def test_fetch_ticker(default_conf, mocker, exchange_name): def test_fetch_ticker(default_conf, mocker, exchange_name):

View File

@ -107,6 +107,8 @@ def make_unfiltered_dataframe(mocker, freqai_conf):
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators( unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, freqai.dk.pair strategy, corr_dataframes, base_dataframes, freqai.dk.pair
) )
for i in range(5):
unfiltered_dataframe[f'constant_{i}'] = i
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe) unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)

View File

@ -163,7 +163,7 @@ def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
("CatboostClassifier", 6, "freqai_test_classifier") ("CatboostClassifier", 6, "freqai_test_classifier")
], ],
) )
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat): def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog):
freqai_conf.get("freqai", {}).update({"save_backtest_models": True}) freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
freqai_conf['runmode'] = RunMode.BACKTEST freqai_conf['runmode'] = RunMode.BACKTEST
Trade.use_db = False Trade.use_db = False
@ -187,12 +187,23 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk) corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC") df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
for i in range(5):
df[f'%-constant_{i}'] = i
# df.loc[:, f'%-constant_{i}'] = i
metadata = {"pair": "LTC/BTC"} metadata = {"pair": "LTC/BTC"}
freqai.start_backtesting(df, metadata, freqai.dk) freqai.start_backtesting(df, metadata, freqai.dk)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()] model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
assert len(model_folders) == num_files assert len(model_folders) == num_files
assert log_has_re(
"Removed features ",
caplog,
)
assert log_has_re(
"Removed 5 features from prediction features, ",
caplog,
)
Backtesting.cleanup() Backtesting.cleanup()
shutil.rmtree(Path(freqai.dk.full_path)) shutil.rmtree(Path(freqai.dk.full_path))
@ -262,6 +273,7 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk) corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC") df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
freqai.start_backtesting(df, metadata, freqai.dk) freqai.start_backtesting(df, metadata, freqai.dk)
assert log_has_re( assert log_has_re(
@ -318,6 +330,7 @@ def test_follow_mode(mocker, freqai_conf):
freqai.dd.load_all_pair_histories(timerange, freqai.dk) freqai.dd.load_all_pair_histories(timerange, freqai.dk)
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m') df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
freqai.start_live(df, metadata, strategy, freqai.dk) freqai.start_live(df, metadata, strategy, freqai.dk)
assert len(freqai.dk.return_dataframe.index) == 5702 assert len(freqai.dk.return_dataframe.index) == 5702

View File

@ -910,8 +910,9 @@ def test_in_strategy_auto_hyperopt_with_parallel(mocker, hyperopt_conf, tmpdir,
}) })
hyperopt = Hyperopt(hyperopt_conf) hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.exchange.get_max_leverage = lambda *x, **xx: 1.0 hyperopt.backtesting.exchange.get_max_leverage = lambda *x, **xx: 1.0
hyperopt.backtesting.exchange.get_min_pair_stake_amount = lambda *x, **xx: 1.0 hyperopt.backtesting.exchange.get_min_pair_stake_amount = lambda *x, **xx: 0.00001
hyperopt.backtesting.exchange.get_max_pair_stake_amount = lambda *x, **xx: 100.0 hyperopt.backtesting.exchange.get_max_pair_stake_amount = lambda *x, **xx: 100.0
hyperopt.backtesting.exchange._markets = get_markets()
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto) assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter) assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)

View File

@ -1443,8 +1443,9 @@ def test_api_plot_config(botclient):
assert isinstance(rc.json()['subplots'], dict) assert isinstance(rc.json()['subplots'], dict)
def test_api_strategies(botclient): def test_api_strategies(botclient, tmpdir):
ftbot, client = botclient ftbot, client = botclient
ftbot.config['user_data_dir'] = Path(tmpdir)
rc = client_get(client, f"{BASE_URI}/strategies") rc = client_get(client, f"{BASE_URI}/strategies")

View File

@ -99,6 +99,7 @@ def test_send_msg_telegram_error(mocker, default_conf, caplog) -> None:
def test_process_msg_queue(mocker, default_conf, caplog) -> None: def test_process_msg_queue(mocker, default_conf, caplog) -> None:
telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg') telegram_mock = mocker.patch('freqtrade.rpc.telegram.Telegram.send_msg')
default_conf['telegram']['allow_custom_messages'] = True
mocker.patch('freqtrade.rpc.telegram.Telegram._init') mocker.patch('freqtrade.rpc.telegram.Telegram._init')
freqtradebot = get_patched_freqtradebot(mocker, default_conf) freqtradebot = get_patched_freqtradebot(mocker, default_conf)
@ -108,8 +109,8 @@ def test_process_msg_queue(mocker, default_conf, caplog) -> None:
queue.append('Test message 2') queue.append('Test message 2')
rpc_manager.process_msg_queue(queue) rpc_manager.process_msg_queue(queue)
assert log_has("Sending rpc message: {'type': strategy_msg, 'msg': 'Test message'}", caplog) assert log_has("Sending rpc strategy_msg: Test message", caplog)
assert log_has("Sending rpc message: {'type': strategy_msg, 'msg': 'Test message 2'}", caplog) assert log_has("Sending rpc strategy_msg: Test message 2", caplog)
assert telegram_mock.call_count == 2 assert telegram_mock.call_count == 2

View File

@ -3,7 +3,6 @@
from datetime import datetime, timedelta from datetime import datetime, timedelta
from unittest.mock import MagicMock from unittest.mock import MagicMock
import pytest
from requests import RequestException from requests import RequestException
from freqtrade.enums import ExitType, RPCMessageType from freqtrade.enums import ExitType, RPCMessageType
@ -337,34 +336,18 @@ def test_exception_send_msg(default_conf, mocker, caplog):
caplog) caplog)
default_conf["webhook"] = get_webhook_dict() default_conf["webhook"] = get_webhook_dict()
default_conf["webhook"]["webhookentry"]["value1"] = "{DEADBEEF:8f}" default_conf["webhook"]["strategy_msg"] = {"value1": "{DEADBEEF:8f}"}
msg_mock = MagicMock() msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock) mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
webhook = Webhook(RPC(get_patched_freqtradebot(mocker, default_conf)), default_conf) webhook = Webhook(RPC(get_patched_freqtradebot(mocker, default_conf)), default_conf)
msg = { msg = {
'type': RPCMessageType.ENTRY, 'type': RPCMessageType.STRATEGY_MSG,
'exchange': 'Binance', 'msg': 'hello world',
'pair': 'ETH/BTC',
'limit': 0.005,
'order_type': 'limit',
'stake_amount': 0.8,
'stake_amount_fiat': 500,
'stake_currency': 'BTC',
'fiat_currency': 'EUR'
} }
webhook.send_msg(msg) webhook.send_msg(msg)
assert log_has("Problem calling Webhook. Please check your webhook configuration. " assert log_has("Problem calling Webhook. Please check your webhook configuration. "
"Exception: 'DEADBEEF'", caplog) "Exception: 'DEADBEEF'", caplog)
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
msg = {
'type': 'DEADBEEF',
'status': 'whatever'
}
with pytest.raises(NotImplementedError):
webhook.send_msg(msg)
# Test no failure for not implemented but known messagetypes # Test no failure for not implemented but known messagetypes
for e in RPCMessageType: for e in RPCMessageType:
msg = { msg = {

View File

@ -32,7 +32,7 @@ def test_search_strategy():
def test_search_all_strategies_no_failed(): def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats" directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False) strategies = StrategyResolver._search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list) assert isinstance(strategies, list)
assert len(strategies) == 9 assert len(strategies) == 9
assert isinstance(strategies[0], dict) assert isinstance(strategies[0], dict)
@ -40,7 +40,7 @@ def test_search_all_strategies_no_failed():
def test_search_all_strategies_with_failed(): def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats" directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True) strategies = StrategyResolver._search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list) assert isinstance(strategies, list)
assert len(strategies) == 10 assert len(strategies) == 10
# with enum_failed=True search_all_objects() shall find 2 good strategies # with enum_failed=True search_all_objects() shall find 2 good strategies
@ -49,7 +49,7 @@ def test_search_all_strategies_with_failed():
assert len([x for x in strategies if x['class'] is None]) == 1 assert len([x for x in strategies if x['class'] is None]) == 1
directory = Path(__file__).parent / "strats_nonexistingdir" directory = Path(__file__).parent / "strats_nonexistingdir"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True) strategies = StrategyResolver._search_all_objects(directory, enum_failed=True)
assert len(strategies) == 0 assert len(strategies) == 0
@ -77,10 +77,9 @@ def test_load_strategy_base64(dataframe_1m, caplog, default_conf):
def test_load_strategy_invalid_directory(caplog, default_conf): def test_load_strategy_invalid_directory(caplog, default_conf):
default_conf['strategy'] = 'StrategyTestV3'
extra_dir = Path.cwd() / 'some/path' extra_dir = Path.cwd() / 'some/path'
with pytest.raises(OperationalException): with pytest.raises(OperationalException, match=r"Impossible to load Strategy.*"):
StrategyResolver._load_strategy(CURRENT_TEST_STRATEGY, config=default_conf, StrategyResolver._load_strategy('StrategyTestV333', config=default_conf,
extra_dir=extra_dir) extra_dir=extra_dir)
assert log_has_re(r'Path .*' + r'some.*path.*' + r'.* does not exist', caplog) assert log_has_re(r'Path .*' + r'some.*path.*' + r'.* does not exist', caplog)
@ -102,8 +101,8 @@ def test_load_strategy_noname(default_conf):
StrategyResolver.load_strategy(default_conf) StrategyResolver.load_strategy(default_conf)
@pytest.mark.filterwarnings("ignore:deprecated") @ pytest.mark.filterwarnings("ignore:deprecated")
@pytest.mark.parametrize('strategy_name', ['StrategyTestV2']) @ pytest.mark.parametrize('strategy_name', ['StrategyTestV2'])
def test_strategy_pre_v3(dataframe_1m, default_conf, strategy_name): def test_strategy_pre_v3(dataframe_1m, default_conf, strategy_name):
default_conf.update({'strategy': strategy_name}) default_conf.update({'strategy': strategy_name})
@ -349,7 +348,7 @@ def test_strategy_override_use_exit_profit_only(caplog, default_conf):
assert log_has("Override strategy 'exit_profit_only' with value in config file: True.", caplog) assert log_has("Override strategy 'exit_profit_only' with value in config file: True.", caplog)
@pytest.mark.filterwarnings("ignore:deprecated") @ pytest.mark.filterwarnings("ignore:deprecated")
def test_missing_implements(default_conf, caplog): def test_missing_implements(default_conf, caplog):
default_location = Path(__file__).parent / "strats" default_location = Path(__file__).parent / "strats"

View File

@ -25,7 +25,7 @@ def test_create_userdata_dir(mocker, default_conf, caplog) -> None:
md = mocker.patch.object(Path, 'mkdir', MagicMock()) md = mocker.patch.object(Path, 'mkdir', MagicMock())
x = create_userdata_dir('/tmp/bar', create_dir=True) x = create_userdata_dir('/tmp/bar', create_dir=True)
assert md.call_count == 9 assert md.call_count == 10
assert md.call_args[1]['parents'] is False assert md.call_args[1]['parents'] is False
assert log_has(f'Created user-data directory: {Path("/tmp/bar")}', caplog) assert log_has(f'Created user-data directory: {Path("/tmp/bar")}', caplog)
assert isinstance(x, Path) assert isinstance(x, Path)