Merge branch 'develop' into add-spice-rack

This commit is contained in:
Robert Caulk 2022-09-17 17:56:08 +02:00 committed by GitHub
commit b1e92933f4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 983 additions and 182 deletions

View File

@ -24,7 +24,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ] os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10"] python-version: ["3.8", "3.9", "3.10.6"]
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
@ -121,7 +121,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ macos-latest ] os: [ macos-latest ]
python-version: ["3.8", "3.9", "3.10"] python-version: ["3.8", "3.9", "3.10.6"]
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
@ -205,7 +205,7 @@ jobs:
strategy: strategy:
matrix: matrix:
os: [ windows-latest ] os: [ windows-latest ]
python-version: ["3.8", "3.9", "3.10"] python-version: ["3.8", "3.9", "3.10.6"]
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3

View File

@ -15,7 +15,7 @@ repos:
additional_dependencies: additional_dependencies:
- types-cachetools==5.2.1 - types-cachetools==5.2.1
- types-filelock==3.2.7 - types-filelock==3.2.7
- types-requests==2.28.9 - types-requests==2.28.10
- types-tabulate==0.8.11 - types-tabulate==0.8.11
- types-python-dateutil==2.8.19 - types-python-dateutil==2.8.19
# stages: [push] # stages: [push]

View File

@ -25,8 +25,7 @@ usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--include-inactive-pairs] [--include-inactive-pairs]
[--timerange TIMERANGE] [--dl-trades] [--timerange TIMERANGE] [--dl-trades]
[--exchange EXCHANGE] [--exchange EXCHANGE]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} ...]] [-t TIMEFRAMES [TIMEFRAMES ...]] [--erase]
[--erase]
[--data-format-ohlcv {json,jsongz,hdf5}] [--data-format-ohlcv {json,jsongz,hdf5}]
[--data-format-trades {json,jsongz,hdf5}] [--data-format-trades {json,jsongz,hdf5}]
[--trading-mode {spot,margin,futures}] [--trading-mode {spot,margin,futures}]
@ -37,7 +36,8 @@ optional arguments:
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...] -p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Limit command to these pairs. Pairs are space- Limit command to these pairs. Pairs are space-
separated. separated.
--pairs-file FILE File containing a list of pairs to download. --pairs-file FILE File containing a list of pairs. Takes precedence over
--pairs or pairs configured in the configuration.
--days INT Download data for given number of days. --days INT Download data for given number of days.
--new-pairs-days INT Download data of new pairs for given number of days. --new-pairs-days INT Download data of new pairs for given number of days.
Default: `None`. Default: `None`.
@ -50,7 +50,7 @@ optional arguments:
as --timeframes/-t. as --timeframes/-t.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no --exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided. config is provided.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w,2w,1M,1y} ...] -t TIMEFRAMES [TIMEFRAMES ...], --timeframes TIMEFRAMES [TIMEFRAMES ...]
Specify which tickers to download. Space-separated Specify which tickers to download. Space-separated
list. Default: `1m 5m`. list. Default: `1m 5m`.
--erase Clean all existing data for the selected --erase Clean all existing data for the selected
@ -61,7 +61,7 @@ optional arguments:
--data-format-trades {json,jsongz,hdf5} --data-format-trades {json,jsongz,hdf5}
Storage format for downloaded trades data. (default: Storage format for downloaded trades data. (default:
`jsongz`). `jsongz`).
--trading-mode {spot,margin,futures} --trading-mode {spot,margin,futures}, --tradingmode {spot,margin,futures}
Select Trading mode Select Trading mode
--prepend Allow data prepending. (Data-appending is disabled) --prepend Allow data prepending. (Data-appending is disabled)

View File

@ -57,7 +57,8 @@ This configuration enables kraken, as well as rate-limiting to avoid bans from t
Binance supports [time_in_force](configuration.md#understand-order_time_in_force). Binance supports [time_in_force](configuration.md#understand-order_time_in_force).
!!! Tip "Stoploss on Exchange" !!! Tip "Stoploss on Exchange"
Binance supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.. Binance supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Binance supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
### Binance Blacklist ### Binance Blacklist

View File

@ -190,19 +190,6 @@ The FreqAI strategy requires the user to include the following lines of code in
# passed to any single indicator) # passed to any single indicator)
startup_candle_count: int = 20 startup_candle_count: int = 20
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# the model will return all labels created by user in `populate_any_indicators` # the model will return all labels created by user in `populate_any_indicators`

View File

@ -1,6 +1,6 @@
markdown==3.3.7 markdown==3.3.7
mkdocs==1.3.1 mkdocs==1.3.1
mkdocs-material==8.4.2 mkdocs-material==8.4.3
mdx_truly_sane_lists==1.3 mdx_truly_sane_lists==1.3
pymdown-extensions==9.5 pymdown-extensions==9.5
jinja2==3.1.2 jinja2==3.1.2

View File

@ -264,7 +264,8 @@ def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFram
### Exit signal rules ### Exit signal rules
Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy. Edit the method `populate_exit_trend()` into your strategy file to update your exit strategy.
Please note that the exit-signal is only used if `use_exit_signal` is set to true in the configuration. The exit-signal is only used for exits if `use_exit_signal` is set to true in the configuration.
`use_exit_signal` will not influence [signal collision rules](#colliding-signals) - which will still apply and can prevent entries.
It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected. It's important to always return the dataframe without removing/modifying the columns `"open", "high", "low", "close", "volume"`, otherwise these fields would contain something unexpected.

View File

@ -525,12 +525,14 @@ Requires a configuration with specified `pairlists` attribute.
Can be used to generate static pairlists to be used during backtesting / hyperopt. Can be used to generate static pairlists to be used during backtesting / hyperopt.
``` ```
usage: freqtrade test-pairlist [-h] [-v] [-c PATH] usage: freqtrade test-pairlist [-h] [--userdir PATH] [-v] [-c PATH]
[--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]] [--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]]
[-1] [--print-json] [--exchange EXCHANGE] [-1] [--print-json] [--exchange EXCHANGE]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: Specify configuration file (default:

View File

@ -53,8 +53,8 @@ ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all", "print_csv", "base_currencies", "quote_currencies", "list_pairs_all",
"trading_mode"] "trading_mode"]
ARGS_TEST_PAIRLIST = ["verbosity", "config", "quote_currencies", "print_one_column", ARGS_TEST_PAIRLIST = ["user_data_dir", "verbosity", "config", "quote_currencies",
"list_pairs_print_json", "exchange"] "print_one_column", "list_pairs_print_json", "exchange"]
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"] ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]

View File

@ -393,7 +393,8 @@ AVAILABLE_CLI_OPTIONS = {
# Download data # Download data
"pairs_file": Arg( "pairs_file": Arg(
'--pairs-file', '--pairs-file',
help='File containing a list of pairs to download.', help='File containing a list of pairs. '
'Takes precedence over --pairs or pairs configured in the configuration.',
metavar='FILE', metavar='FILE',
), ),
"days": Arg( "days": Arg(

View File

@ -86,7 +86,7 @@ class DataProvider:
""" """
_candle_type = CandleType.from_string( _candle_type = CandleType.from_string(
candle_type) if candle_type != '' else self._config['candle_type_def'] candle_type) if candle_type != '' else self._config['candle_type_def']
saved_pair = (pair, str(timeframe), _candle_type) saved_pair: PairWithTimeframe = (pair, str(timeframe), _candle_type)
if saved_pair not in self.__cached_pairs_backtesting: if saved_pair not in self.__cached_pairs_backtesting:
timerange = TimeRange.parse_timerange(None if self._config.get( timerange = TimeRange.parse_timerange(None if self._config.get(
'timerange') is None else str(self._config.get('timerange'))) 'timerange') is None else str(self._config.get('timerange')))
@ -196,7 +196,9 @@ class DataProvider:
Clear pair dataframe cache. Clear pair dataframe cache.
""" """
self.__cached_pairs = {} self.__cached_pairs = {}
self.__cached_pairs_backtesting = {} # Don't reset backtesting pairs -
# otherwise they're reloaded each time during hyperopt due to with analyze_per_epoch
# self.__cached_pairs_backtesting = {}
self.__slice_index = 0 self.__slice_index = 0
# Exchange functions # Exchange functions

View File

@ -31,7 +31,7 @@ class Binance(Exchange):
"ccxt_futures_name": "future" "ccxt_futures_name": "future"
} }
_ft_has_futures: Dict = { _ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "stop"}, "stoploss_order_types": {"limit": "limit", "market": "market"},
"tickers_have_price": False, "tickers_have_price": False,
} }
@ -48,13 +48,12 @@ class Binance(Exchange):
Returns True if adjustment is necessary. Returns True if adjustment is necessary.
:param side: "buy" or "sell" :param side: "buy" or "sell"
""" """
order_types = ('stop_loss_limit', 'stop', 'stop_market')
ordertype = 'stop' if self.trading_mode == TradingMode.FUTURES else 'stop_loss_limit'
return ( return (
order.get('stopPrice', None) is None order.get('stopPrice', None) is None
or ( or (
order['type'] == ordertype order['type'] in order_types
and ( and (
(side == "sell" and stop_loss > float(order['stopPrice'])) or (side == "sell" and stop_loss > float(order['stopPrice'])) or
(side == "buy" and stop_loss < float(order['stopPrice'])) (side == "buy" and stop_loss < float(order['stopPrice']))

View File

@ -81,6 +81,104 @@
} }
} }
], ],
"1000LUNC/USDT": [
{
"tier": 1.0,
"currency": "USDT",
"minNotional": 0.0,
"maxNotional": 5000.0,
"maintenanceMarginRate": 0.01,
"maxLeverage": 25.0,
"info": {
"bracket": "1",
"initialLeverage": "25",
"notionalCap": "5000",
"notionalFloor": "0",
"maintMarginRatio": "0.01",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "USDT",
"minNotional": 5000.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "2",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "5000",
"maintMarginRatio": "0.025",
"cum": "75.0"
}
},
{
"tier": 3.0,
"currency": "USDT",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "3",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "700.0"
}
},
{
"tier": 4.0,
"currency": "USDT",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "4",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5700.0"
}
},
{
"tier": 5.0,
"currency": "USDT",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "5",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11950.0"
}
},
{
"tier": 6.0,
"currency": "USDT",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "6",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386950.0"
}
}
],
"1000SHIB/BUSD": [ "1000SHIB/BUSD": [
{ {
"tier": 1.0, "tier": 1.0,
@ -1109,6 +1207,88 @@
} }
} }
], ],
"AMB/BUSD": [
{
"tier": 1.0,
"currency": "BUSD",
"minNotional": 0.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "1",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "0",
"maintMarginRatio": "0.025",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "BUSD",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "2",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "625.0"
}
},
{
"tier": 3.0,
"currency": "BUSD",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "3",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5625.0"
}
},
{
"tier": 4.0,
"currency": "BUSD",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "4",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11875.0"
}
},
{
"tier": 5.0,
"currency": "BUSD",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "5",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386875.0"
}
}
],
"ANC/BUSD": [ "ANC/BUSD": [
{ {
"tier": 1.0, "tier": 1.0,
@ -3300,13 +3480,13 @@
"tier": 6.0, "tier": 6.0,
"currency": "USDT", "currency": "USDT",
"minNotional": 1000000.0, "minNotional": 1000000.0,
"maxNotional": 30000000.0, "maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5, "maintenanceMarginRate": 0.5,
"maxLeverage": 1.0, "maxLeverage": 1.0,
"info": { "info": {
"bracket": "6", "bracket": "6",
"initialLeverage": "1", "initialLeverage": "1",
"notionalCap": "30000000", "notionalCap": "5000000",
"notionalFloor": "1000000", "notionalFloor": "1000000",
"maintMarginRatio": "0.5", "maintMarginRatio": "0.5",
"cum": "386950.0" "cum": "386950.0"
@ -4880,13 +5060,13 @@
"tier": 6.0, "tier": 6.0,
"currency": "USDT", "currency": "USDT",
"minNotional": 1000000.0, "minNotional": 1000000.0,
"maxNotional": 30000000.0, "maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5, "maintenanceMarginRate": 0.5,
"maxLeverage": 1.0, "maxLeverage": 1.0,
"info": { "info": {
"bracket": "6", "bracket": "6",
"initialLeverage": "1", "initialLeverage": "1",
"notionalCap": "30000000", "notionalCap": "5000000",
"notionalFloor": "1000000", "notionalFloor": "1000000",
"maintMarginRatio": "0.5", "maintMarginRatio": "0.5",
"cum": "386940.0" "cum": "386940.0"
@ -8333,6 +8513,104 @@
} }
} }
], ],
"FOOTBALL/USDT": [
{
"tier": 1.0,
"currency": "USDT",
"minNotional": 0.0,
"maxNotional": 5000.0,
"maintenanceMarginRate": 0.01,
"maxLeverage": 25.0,
"info": {
"bracket": "1",
"initialLeverage": "25",
"notionalCap": "5000",
"notionalFloor": "0",
"maintMarginRatio": "0.01",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "USDT",
"minNotional": 5000.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "2",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "5000",
"maintMarginRatio": "0.025",
"cum": "75.0"
}
},
{
"tier": 3.0,
"currency": "USDT",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "3",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "700.0"
}
},
{
"tier": 4.0,
"currency": "USDT",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "4",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5700.0"
}
},
{
"tier": 5.0,
"currency": "USDT",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "5",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11950.0"
}
},
{
"tier": 6.0,
"currency": "USDT",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "6",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386950.0"
}
}
],
"FTM/BUSD": [ "FTM/BUSD": [
{ {
"tier": 1.0, "tier": 1.0,
@ -12123,6 +12401,104 @@
} }
} }
], ],
"LUNA2/USDT": [
{
"tier": 1.0,
"currency": "USDT",
"minNotional": 0.0,
"maxNotional": 5000.0,
"maintenanceMarginRate": 0.015,
"maxLeverage": 25.0,
"info": {
"bracket": "1",
"initialLeverage": "25",
"notionalCap": "5000",
"notionalFloor": "0",
"maintMarginRatio": "0.015",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "USDT",
"minNotional": 5000.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "2",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "5000",
"maintMarginRatio": "0.025",
"cum": "50.0"
}
},
{
"tier": 3.0,
"currency": "USDT",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "3",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "675.0"
}
},
{
"tier": 4.0,
"currency": "USDT",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "4",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5675.0"
}
},
{
"tier": 5.0,
"currency": "USDT",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "5",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11925.0"
}
},
{
"tier": 6.0,
"currency": "USDT",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "6",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386925.0"
}
}
],
"MANA/USDT": [ "MANA/USDT": [
{ {
"tier": 1.0, "tier": 1.0,
@ -13028,10 +13404,10 @@
"minNotional": 0.0, "minNotional": 0.0,
"maxNotional": 5000.0, "maxNotional": 5000.0,
"maintenanceMarginRate": 0.01, "maintenanceMarginRate": 0.01,
"maxLeverage": 50.0, "maxLeverage": 25.0,
"info": { "info": {
"bracket": "1", "bracket": "1",
"initialLeverage": "50", "initialLeverage": "25",
"notionalCap": "5000", "notionalCap": "5000",
"notionalFloor": "0", "notionalFloor": "0",
"maintMarginRatio": "0.01", "maintMarginRatio": "0.01",
@ -13805,6 +14181,88 @@
} }
} }
], ],
"PHB/BUSD": [
{
"tier": 1.0,
"currency": "BUSD",
"minNotional": 0.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "1",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "0",
"maintMarginRatio": "0.025",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "BUSD",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "2",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "625.0"
}
},
{
"tier": 3.0,
"currency": "BUSD",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "3",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5625.0"
}
},
{
"tier": 4.0,
"currency": "BUSD",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "4",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11875.0"
}
},
{
"tier": 5.0,
"currency": "BUSD",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "5",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386875.0"
}
}
],
"QTUM/USDT": [ "QTUM/USDT": [
{ {
"tier": 1.0, "tier": 1.0,
@ -14008,10 +14466,10 @@
"minNotional": 0.0, "minNotional": 0.0,
"maxNotional": 5000.0, "maxNotional": 5000.0,
"maintenanceMarginRate": 0.01, "maintenanceMarginRate": 0.01,
"maxLeverage": 50.0, "maxLeverage": 25.0,
"info": { "info": {
"bracket": "1", "bracket": "1",
"initialLeverage": "50", "initialLeverage": "25",
"notionalCap": "5000", "notionalCap": "5000",
"notionalFloor": "0", "notionalFloor": "0",
"maintMarginRatio": "0.01", "maintMarginRatio": "0.01",
@ -14478,13 +14936,13 @@
"tier": 6.0, "tier": 6.0,
"currency": "USDT", "currency": "USDT",
"minNotional": 1000000.0, "minNotional": 1000000.0,
"maxNotional": 30000000.0, "maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5, "maintenanceMarginRate": 0.5,
"maxLeverage": 1.0, "maxLeverage": 1.0,
"info": { "info": {
"bracket": "6", "bracket": "6",
"initialLeverage": "1", "initialLeverage": "1",
"notionalCap": "30000000", "notionalCap": "5000000",
"notionalFloor": "1000000", "notionalFloor": "1000000",
"maintMarginRatio": "0.5", "maintMarginRatio": "0.5",
"cum": "386950.0" "cum": "386950.0"
@ -14576,13 +15034,13 @@
"tier": 6.0, "tier": 6.0,
"currency": "USDT", "currency": "USDT",
"minNotional": 1000000.0, "minNotional": 1000000.0,
"maxNotional": 30000000.0, "maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5, "maintenanceMarginRate": 0.5,
"maxLeverage": 1.0, "maxLeverage": 1.0,
"info": { "info": {
"bracket": "6", "bracket": "6",
"initialLeverage": "1", "initialLeverage": "1",
"notionalCap": "30000000", "notionalCap": "5000000",
"notionalFloor": "1000000", "notionalFloor": "1000000",
"maintMarginRatio": "0.5", "maintMarginRatio": "0.5",
"cum": "386950.0" "cum": "386950.0"
@ -15487,6 +15945,104 @@
} }
} }
], ],
"SPELL/USDT": [
{
"tier": 1.0,
"currency": "USDT",
"minNotional": 0.0,
"maxNotional": 5000.0,
"maintenanceMarginRate": 0.01,
"maxLeverage": 25.0,
"info": {
"bracket": "1",
"initialLeverage": "25",
"notionalCap": "5000",
"notionalFloor": "0",
"maintMarginRatio": "0.01",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "USDT",
"minNotional": 5000.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "2",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "5000",
"maintMarginRatio": "0.025",
"cum": "75.0"
}
},
{
"tier": 3.0,
"currency": "USDT",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "3",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "700.0"
}
},
{
"tier": 4.0,
"currency": "USDT",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "4",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5700.0"
}
},
{
"tier": 5.0,
"currency": "USDT",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "5",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11950.0"
}
},
{
"tier": 6.0,
"currency": "USDT",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "6",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386950.0"
}
}
],
"SRM/USDT": [ "SRM/USDT": [
{ {
"tier": 1.0, "tier": 1.0,
@ -15585,6 +16141,104 @@
} }
} }
], ],
"STG/USDT": [
{
"tier": 1.0,
"currency": "USDT",
"minNotional": 0.0,
"maxNotional": 5000.0,
"maintenanceMarginRate": 0.01,
"maxLeverage": 25.0,
"info": {
"bracket": "1",
"initialLeverage": "25",
"notionalCap": "5000",
"notionalFloor": "0",
"maintMarginRatio": "0.01",
"cum": "0.0"
}
},
{
"tier": 2.0,
"currency": "USDT",
"minNotional": 5000.0,
"maxNotional": 25000.0,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20.0,
"info": {
"bracket": "2",
"initialLeverage": "20",
"notionalCap": "25000",
"notionalFloor": "5000",
"maintMarginRatio": "0.025",
"cum": "75.0"
}
},
{
"tier": 3.0,
"currency": "USDT",
"minNotional": 25000.0,
"maxNotional": 100000.0,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10.0,
"info": {
"bracket": "3",
"initialLeverage": "10",
"notionalCap": "100000",
"notionalFloor": "25000",
"maintMarginRatio": "0.05",
"cum": "700.0"
}
},
{
"tier": 4.0,
"currency": "USDT",
"minNotional": 100000.0,
"maxNotional": 250000.0,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5.0,
"info": {
"bracket": "4",
"initialLeverage": "5",
"notionalCap": "250000",
"notionalFloor": "100000",
"maintMarginRatio": "0.1",
"cum": "5700.0"
}
},
{
"tier": 5.0,
"currency": "USDT",
"minNotional": 250000.0,
"maxNotional": 1000000.0,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2.0,
"info": {
"bracket": "5",
"initialLeverage": "2",
"notionalCap": "1000000",
"notionalFloor": "250000",
"maintMarginRatio": "0.125",
"cum": "11950.0"
}
},
{
"tier": 6.0,
"currency": "USDT",
"minNotional": 1000000.0,
"maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1.0,
"info": {
"bracket": "6",
"initialLeverage": "1",
"notionalCap": "5000000",
"notionalFloor": "1000000",
"maintMarginRatio": "0.5",
"cum": "386950.0"
}
}
],
"STMX/USDT": [ "STMX/USDT": [
{ {
"tier": 1.0, "tier": 1.0,
@ -16176,13 +16830,13 @@
"tier": 5.0, "tier": 5.0,
"currency": "BUSD", "currency": "BUSD",
"minNotional": 1000000.0, "minNotional": 1000000.0,
"maxNotional": 30000000.0, "maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5, "maintenanceMarginRate": 0.5,
"maxLeverage": 1.0, "maxLeverage": 1.0,
"info": { "info": {
"bracket": "5", "bracket": "5",
"initialLeverage": "1", "initialLeverage": "1",
"notionalCap": "30000000", "notionalCap": "5000000",
"notionalFloor": "1000000", "notionalFloor": "1000000",
"maintMarginRatio": "0.5", "maintMarginRatio": "0.5",
"cum": "386875.0" "cum": "386875.0"
@ -16470,13 +17124,13 @@
"tier": 6.0, "tier": 6.0,
"currency": "USDT", "currency": "USDT",
"minNotional": 1000000.0, "minNotional": 1000000.0,
"maxNotional": 30000000.0, "maxNotional": 5000000.0,
"maintenanceMarginRate": 0.5, "maintenanceMarginRate": 0.5,
"maxLeverage": 1.0, "maxLeverage": 1.0,
"info": { "info": {
"bracket": "6", "bracket": "6",
"initialLeverage": "1", "initialLeverage": "1",
"notionalCap": "30000000", "notionalCap": "5000000",
"notionalFloor": "1000000", "notionalFloor": "1000000",
"maintMarginRatio": "0.5", "maintMarginRatio": "0.5",
"cum": "386950.0" "cum": "386950.0"

View File

@ -2304,7 +2304,7 @@ class Exchange:
updated = tiers.get('updated') updated = tiers.get('updated')
if updated: if updated:
updated_dt = parser.parse(updated) updated_dt = parser.parse(updated)
if updated_dt < datetime.now(timezone.utc) - timedelta(days=1): if updated_dt < datetime.now(timezone.utc) - timedelta(weeks=4):
logger.info("Cached leverage tiers are outdated. Will update.") logger.info("Cached leverage tiers are outdated. Will update.")
return None return None
return tiers['data'] return tiers['data']

View File

@ -355,7 +355,7 @@ class FreqaiDataDrawer:
for dir in model_folders: for dir in model_folders:
result = pattern.match(str(dir.name)) result = pattern.match(str(dir.name))
if result is None: if result is None:
break continue
coin = result.group(1) coin = result.group(1)
timestamp = result.group(2) timestamp = result.group(2)

View File

@ -0,0 +1,85 @@
import logging
from typing import Any, Dict, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandas import DataFrame
from pandas.api.types import is_integer_dtype
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBClassifier
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class XGBoostClassifier(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
X = data_dictionary["train_features"].to_numpy()
y = data_dictionary["train_labels"].to_numpy()[:, 0]
le = LabelEncoder()
if not is_integer_dtype(y):
y = pd.Series(le.fit_transform(y), dtype="int64")
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
eval_set = None
else:
test_features = data_dictionary["test_features"].to_numpy()
test_labels = data_dictionary["test_labels"].to_numpy()[:, 0]
if not is_integer_dtype(test_labels):
test_labels = pd.Series(le.transform(test_labels), dtype="int64")
eval_set = [(test_features, test_labels)]
train_weights = data_dictionary["train_weights"]
init_model = self.get_init_model(dk.pair)
model = XGBClassifier(**self.model_training_parameters)
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
xgb_model=init_model)
return model
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_df: Full dataframe for the current backtest period.
:return:
:pred_df: dataframe containing the predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
(pred_df, dk.do_predict) = super().predict(unfiltered_df, dk, **kwargs)
le = LabelEncoder()
label = dk.label_list[0]
labels_before = list(dk.data['labels_std'].keys())
labels_after = le.fit_transform(labels_before).tolist()
pred_df[label] = le.inverse_transform(pred_df[label])
pred_df = pred_df.rename(
columns={labels_after[i]: labels_before[i] for i in range(len(labels_before))})
return (pred_df, dk.do_predict)

View File

@ -1072,6 +1072,7 @@ class FreqtradeBot(LoggingMixin):
order_obj = Order.parse_from_ccxt_object(stoploss_order, trade.pair, 'stoploss') order_obj = Order.parse_from_ccxt_object(stoploss_order, trade.pair, 'stoploss')
trade.orders.append(order_obj) trade.orders.append(order_obj)
trade.stoploss_order_id = str(stoploss_order['id']) trade.stoploss_order_id = str(stoploss_order['id'])
trade.stoploss_last_update = datetime.now(timezone.utc)
return True return True
except InsufficientFundsError as e: except InsufficientFundsError as e:
logger.warning(f"Unable to place stoploss order {e}.") logger.warning(f"Unable to place stoploss order {e}.")
@ -1145,10 +1146,9 @@ class FreqtradeBot(LoggingMixin):
if self.create_stoploss_order(trade=trade, stop_price=stop_price): if self.create_stoploss_order(trade=trade, stop_price=stop_price):
# The above will return False if the placement failed and the trade was force-sold. # The above will return False if the placement failed and the trade was force-sold.
# in which case the trade will be closed - which we must check below. # in which case the trade will be closed - which we must check below.
trade.stoploss_last_update = datetime.utcnow()
return False return False
# If stoploss order is canceled for some reason we add it # If stoploss order is canceled for some reason we add it again
if (trade.is_open if (trade.is_open
and stoploss_order and stoploss_order
and stoploss_order['status'] in ('canceled', 'cancelled')): and stoploss_order['status'] in ('canceled', 'cancelled')):
@ -1186,7 +1186,8 @@ class FreqtradeBot(LoggingMixin):
if self.exchange.stoploss_adjust(stoploss_norm, order, side=trade.exit_side): if self.exchange.stoploss_adjust(stoploss_norm, order, side=trade.exit_side):
# we check if the update is necessary # we check if the update is necessary
update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60) update_beat = self.strategy.order_types.get('stoploss_on_exchange_interval', 60)
if (datetime.utcnow() - trade.stoploss_last_update).total_seconds() >= update_beat: upd_req = datetime.now(timezone.utc) - timedelta(seconds=update_beat)
if trade.stoploss_last_update_utc and upd_req >= trade.stoploss_last_update_utc:
# cancelling the current stoploss on exchange first # cancelling the current stoploss on exchange first
logger.info(f"Cancelling current stoploss on exchange for pair {trade.pair} " logger.info(f"Cancelling current stoploss on exchange for pair {trade.pair} "
f"(orderid:{order['id']}) in order to add another one ...") f"(orderid:{order['id']}) in order to add another one ...")

View File

@ -812,14 +812,6 @@ class Backtesting:
return trade return trade
time_in_force = self.strategy.order_time_in_force['entry'] time_in_force = self.strategy.order_time_in_force['entry']
if not pos_adjust:
# Confirm trade entry:
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=stake_amount, rate=propose_rate,
time_in_force=time_in_force, current_time=current_time,
entry_tag=entry_tag, side=direction):
return trade
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount): if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
self.order_id_counter += 1 self.order_id_counter += 1
base_currency = self.exchange.get_pair_base_currency(pair) base_currency = self.exchange.get_pair_base_currency(pair)
@ -834,6 +826,15 @@ class Backtesting:
# Backcalculate actual stake amount. # Backcalculate actual stake amount.
stake_amount = amount * propose_rate / leverage stake_amount = amount * propose_rate / leverage
if not pos_adjust:
# Confirm trade entry:
if not strategy_safe_wrapper(
self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=amount, rate=propose_rate,
time_in_force=time_in_force, current_time=current_time,
entry_tag=entry_tag, side=direction):
return trade
is_short = (direction == 'short') is_short = (direction == 'short')
# Necessary for Margin trading. Disabled until support is enabled. # Necessary for Margin trading. Disabled until support is enabled.
# interest_rate = self.exchange.get_interest_rate() # interest_rate = self.exchange.get_interest_rate()

View File

@ -290,7 +290,7 @@ class Hyperopt:
# noinspection PyProtectedMember # noinspection PyProtectedMember
attr.value = params_dict[attr_name] attr.value = params_dict[attr_name]
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict: def generate_optimizer(self, raw_params: List[Any]) -> Dict[str, Any]:
""" """
Used Optimize function. Used Optimize function.
Called once per epoch to optimize whatever is configured. Called once per epoch to optimize whatever is configured.
@ -410,9 +410,11 @@ class Hyperopt:
model_queue_size=SKOPT_MODEL_QUEUE_SIZE, model_queue_size=SKOPT_MODEL_QUEUE_SIZE,
) )
def run_optimizer_parallel(self, parallel, asked, i) -> List: def run_optimizer_parallel(
self, parallel: Parallel, asked: List[List]) -> List[Dict[str, Any]]:
""" Start optimizer in a parallel way """
return parallel(delayed( return parallel(delayed(
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked) wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
def _set_random_state(self, random_state: Optional[int]) -> int: def _set_random_state(self, random_state: Optional[int]) -> int:
return random_state or random.randint(1, 2**16 - 1) return random_state or random.randint(1, 2**16 - 1)
@ -491,6 +493,53 @@ class Hyperopt:
else: else:
return self.opt.ask(n_points=n_points), [False for _ in range(n_points)] return self.opt.ask(n_points=n_points), [False for _ in range(n_points)]
def get_progressbar_widgets(self):
if self.print_colorized:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
else:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
return widgets
def evaluate_result(self, val: Dict[str, Any], current: int, is_random: bool):
"""
Evaluate results returned from generate_optimizer
"""
val['current_epoch'] = current
val['is_initial_point'] = current <= INITIAL_POINTS
logger.debug("Optimizer epoch evaluated: %s", val)
is_best = HyperoptTools.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
val['is_random'] = is_random
self.print_results(val)
if is_best:
self.current_best_loss = val['loss']
self.current_best_epoch = val
self._save_result(val)
def start(self) -> None: def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state')) self.random_state = self._set_random_state(self.config.get('hyperopt_random_state'))
logger.info(f"Using optimizer random state: {self.random_state}") logger.info(f"Using optimizer random state: {self.random_state}")
@ -526,64 +575,40 @@ class Hyperopt:
logger.info(f'Effective number of parallel workers used: {jobs}') logger.info(f'Effective number of parallel workers used: {jobs}')
# Define progressbar # Define progressbar
if self.print_colorized: widgets = self.get_progressbar_widgets()
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
else:
widgets = [
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
' (', progressbar.Percentage(), ')] ',
progressbar.Bar(marker=progressbar.AnimatedMarker(
fill='\N{FULL BLOCK}',
)),
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
]
with progressbar.ProgressBar( with progressbar.ProgressBar(
max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False, max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
widgets=widgets widgets=widgets
) as pbar: ) as pbar:
EVALS = ceil(self.total_epochs / jobs) start = 0
for i in range(EVALS):
if self.analyze_per_epoch:
# First analysis not in parallel mode when using --analyze-per-epoch.
# This allows dataprovider to load it's informative cache.
asked, is_random = self.get_asked_points(n_points=1)
f_val0 = self.generate_optimizer(asked[0])
self.opt.tell(asked, [f_val0['loss']])
self.evaluate_result(f_val0, 1, is_random[0])
pbar.update(1)
start += 1
evals = ceil((self.total_epochs - start) / jobs)
for i in range(evals):
# Correct the number of epochs to be processed for the last # Correct the number of epochs to be processed for the last
# iteration (should not exceed self.total_epochs in total) # iteration (should not exceed self.total_epochs in total)
n_rest = (i + 1) * jobs - self.total_epochs n_rest = (i + 1) * jobs - (self.total_epochs - start)
current_jobs = jobs - n_rest if n_rest > 0 else jobs current_jobs = jobs - n_rest if n_rest > 0 else jobs
asked, is_random = self.get_asked_points(n_points=current_jobs) asked, is_random = self.get_asked_points(n_points=current_jobs)
f_val = self.run_optimizer_parallel(parallel, asked, i) f_val = self.run_optimizer_parallel(parallel, asked)
self.opt.tell(asked, [v['loss'] for v in f_val]) self.opt.tell(asked, [v['loss'] for v in f_val])
# Calculate progressbar outputs # Calculate progressbar outputs
for j, val in enumerate(f_val): for j, val in enumerate(f_val):
# Use human-friendly indexes here (starting from 1) # Use human-friendly indexes here (starting from 1)
current = i * jobs + j + 1 current = i * jobs + j + 1 + start
val['current_epoch'] = current
val['is_initial_point'] = current <= INITIAL_POINTS
logger.debug(f"Optimizer epoch evaluated: {val}") self.evaluate_result(val, current, is_random[j])
is_best = HyperoptTools.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
val['is_random'] = is_random[j]
self.print_results(val)
if is_best:
self.current_best_loss = val['loss']
self.current_best_epoch = val
self._save_result(val)
pbar.update(current) pbar.update(current)

View File

@ -83,7 +83,7 @@ class Order(_DECL_BASE):
@property @property
def safe_price(self) -> float: def safe_price(self) -> float:
return self.average or self.price return self.average or self.price or self.stop_price
@property @property
def safe_filled(self) -> float: def safe_filled(self) -> float:
@ -376,6 +376,12 @@ class LocalTrade():
def open_date_utc(self): def open_date_utc(self):
return self.open_date.replace(tzinfo=timezone.utc) return self.open_date.replace(tzinfo=timezone.utc)
@property
def stoploss_last_update_utc(self):
if self.stoploss_last_update:
return self.stoploss_last_update.replace(tzinfo=timezone.utc)
return None
@property @property
def close_date_utc(self): def close_date_utc(self):
return self.close_date.replace(tzinfo=timezone.utc) return self.close_date.replace(tzinfo=timezone.utc)
@ -560,7 +566,6 @@ class LocalTrade():
self.stop_loss = stop_loss_norm self.stop_loss = stop_loss_norm
self.stop_loss_pct = -1 * abs(percent) self.stop_loss_pct = -1 * abs(percent)
self.stoploss_last_update = datetime.utcnow()
def adjust_stop_loss(self, current_price: float, stoploss: float, def adjust_stop_loss(self, current_price: float, stoploss: float,
initial: bool = False, refresh: bool = False) -> None: initial: bool = False, refresh: bool = False) -> None:

View File

@ -684,6 +684,22 @@ class IStrategy(ABC, HyperStrategyMixin):
# END - Intended to be overridden by strategy # END - Intended to be overridden by strategy
### ###
def __informative_pairs_freqai(self) -> ListPairsWithTimeframes:
"""
Create informative-pairs needed for FreqAI
"""
if self.config.get('freqai', {}).get('enabled', False):
whitelist_pairs = self.dp.current_whitelist()
candle_type = self.config.get('candle_type_def', CandleType.SPOT)
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in set(whitelist_pairs + corr_pairs):
informative_pairs.append((pair, tf, candle_type))
return informative_pairs
return []
def gather_informative_pairs(self) -> ListPairsWithTimeframes: def gather_informative_pairs(self) -> ListPairsWithTimeframes:
""" """
Internal method which gathers all informative pairs (user or automatically defined). Internal method which gathers all informative pairs (user or automatically defined).
@ -708,6 +724,7 @@ class IStrategy(ABC, HyperStrategyMixin):
else: else:
for pair in self.dp.current_whitelist(): for pair in self.dp.current_whitelist():
informative_pairs.append((pair, inf_data.timeframe, candle_type)) informative_pairs.append((pair, inf_data.timeframe, candle_type))
informative_pairs.extend(self.__informative_pairs_freqai())
return list(set(informative_pairs)) return list(set(informative_pairs))
def get_strategy_name(self) -> str: def get_strategy_name(self) -> str:

View File

@ -47,19 +47,6 @@ class FreqaiExampleStrategy(IStrategy):
std_dev_multiplier_sell = CategoricalParameter( std_dev_multiplier_sell = CategoricalParameter(
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True) [0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
def populate_any_indicators( def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False self, pair, df, tf, informative=None, set_generalized_indicators=False
): ):

View File

@ -95,20 +95,6 @@ class FreqaiExampleHybridStrategy(IStrategy):
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True) short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True) exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
# FreqAI required function, leave as is or add additional informatives to existing structure.
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
# FreqAI required function, user can add or remove indicators, but general structure # FreqAI required function, user can add or remove indicators, but general structure
# must stay the same. # must stay the same.
def populate_any_indicators( def populate_any_indicators(

View File

@ -49,6 +49,8 @@ theme:
logo: "images/logo.png" logo: "images/logo.png"
favicon: "images/logo.png" favicon: "images/logo.png"
custom_dir: "docs/overrides" custom_dir: "docs/overrides"
features:
- search.share
palette: palette:
- scheme: default - scheme: default
primary: "blue grey" primary: "blue grey"

View File

@ -25,6 +25,6 @@ nbconvert==7.0.0
# mypy types # mypy types
types-cachetools==5.2.1 types-cachetools==5.2.1
types-filelock==3.2.7 types-filelock==3.2.7
types-requests==2.28.9 types-requests==2.28.10
types-tabulate==0.8.11 types-tabulate==0.8.11
types-python-dateutil==2.8.19 types-python-dateutil==2.8.19

View File

@ -1,18 +1,18 @@
numpy==1.23.2 numpy==1.23.3
pandas==1.4.4 pandas==1.4.4
pandas-ta==0.3.14b pandas-ta==0.3.14b
ccxt==1.93.3 ccxt==1.93.35
# Pin cryptography for now due to rust build errors with piwheels # Pin cryptography for now due to rust build errors with piwheels
cryptography==37.0.4 cryptography==38.0.1
aiohttp==3.8.1 aiohttp==3.8.1
SQLAlchemy==1.4.40 SQLAlchemy==1.4.41
python-telegram-bot==13.14 python-telegram-bot==13.14
arrow==1.2.3 arrow==1.2.3
cachetools==4.2.2 cachetools==4.2.2
requests==2.28.1 requests==2.28.1
urllib3==1.26.12 urllib3==1.26.12
jsonschema==4.15.0 jsonschema==4.16.0
TA-Lib==0.4.24 TA-Lib==0.4.24
technical==1.3.0 technical==1.3.0
tabulate==0.8.10 tabulate==0.8.10
@ -34,10 +34,10 @@ orjson==3.8.0
sdnotify==0.3.2 sdnotify==0.3.2
# API Server # API Server
fastapi==0.82.0 fastapi==0.83.0
uvicorn==0.18.3 uvicorn==0.18.3
pyjwt==2.4.0 pyjwt==2.4.0
aiofiles==0.8.0 aiofiles==22.1.0
psutil==5.9.2 psutil==5.9.2
# Support for colorized terminal output # Support for colorized terminal output

View File

@ -23,7 +23,7 @@ from tests.exchange.test_exchange import ccxt_exceptionhandlers
def test_stoploss_order_binance(default_conf, mocker, limitratio, expected, side, trademode): def test_stoploss_order_binance(default_conf, mocker, limitratio, expected, side, trademode):
api_mock = MagicMock() api_mock = MagicMock()
order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6)) order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6))
order_type = 'stop_loss_limit' if trademode == TradingMode.SPOT else 'stop' order_type = 'stop_loss_limit' if trademode == TradingMode.SPOT else 'limit'
api_mock.create_order = MagicMock(return_value={ api_mock.create_order = MagicMock(return_value={
'id': order_id, 'id': order_id,
@ -45,12 +45,15 @@ def test_stoploss_order_binance(default_conf, mocker, limitratio, expected, side
amount=1, amount=1,
stop_price=190, stop_price=190,
side=side, side=side,
order_types={'stoploss_on_exchange_limit_ratio': 1.05}, order_types={'stoploss': 'limit', 'stoploss_on_exchange_limit_ratio': 1.05},
leverage=1.0 leverage=1.0
) )
api_mock.create_order.reset_mock() api_mock.create_order.reset_mock()
order_types = {} if limitratio is None else {'stoploss_on_exchange_limit_ratio': limitratio} order_types = {'stoploss': 'limit'}
if limitratio is not None:
order_types.update({'stoploss_on_exchange_limit_ratio': limitratio})
order = exchange.stoploss( order = exchange.stoploss(
pair='ETH/BTC', pair='ETH/BTC',
amount=1, amount=1,

View File

@ -297,7 +297,7 @@ class TestCCXTExchange():
def test_ccxt__async_get_candle_history(self, exchange): def test_ccxt__async_get_candle_history(self, exchange):
exchange, exchangename = exchange exchange, exchangename = exchange
# For some weired reason, this test returns random lengths for bittrex. # For some weired reason, this test returns random lengths for bittrex.
if not exchange._ft_has['ohlcv_has_history'] or exchangename in ('bittrex', 'gateio'): if not exchange._ft_has['ohlcv_has_history'] or exchangename in ('bittrex'):
return return
pair = EXCHANGES[exchangename]['pair'] pair = EXCHANGES[exchangename]['pair']
timeframe = EXCHANGES[exchangename]['timeframe'] timeframe = EXCHANGES[exchangename]['timeframe']

View File

@ -472,7 +472,7 @@ def test_load_leverage_tiers_okx(default_conf, mocker, markets, tmpdir, caplog,
api_mock.fetch_market_leverage_tiers.call_count == 0 api_mock.fetch_market_leverage_tiers.call_count == 0
# 2 day passes ... # 2 day passes ...
time_machine.move_to(datetime.now() + timedelta(days=2)) time_machine.move_to(datetime.now() + timedelta(weeks=5))
exchange.load_leverage_tiers() exchange.load_leverage_tiers()
assert log_has(logmsg, caplog) assert log_has(logmsg, caplog)

View File

@ -9,6 +9,7 @@ import pytest
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.plugins.pairlistmanager import PairListManager
from tests.conftest import get_patched_exchange, log_has_re from tests.conftest import get_patched_exchange, log_has_re
from tests.freqai.conftest import get_patched_freqai_strategy from tests.freqai.conftest import get_patched_freqai_strategy
@ -100,6 +101,7 @@ def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model):
@pytest.mark.parametrize('model', [ @pytest.mark.parametrize('model', [
'LightGBMClassifier', 'LightGBMClassifier',
'CatboostClassifier', 'CatboostClassifier',
'XGBoostClassifier',
]) ])
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model): def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
if is_arm() and model == 'CatboostClassifier': if is_arm() and model == 'CatboostClassifier':
@ -340,3 +342,27 @@ def test_spice_rack(mocker, default_conf, tmpdir):
assert 'freqai' in freqai_conf assert 'freqai' in freqai_conf
assert strategy.freqai assert strategy.freqai
@pytest.mark.parametrize('timeframes,corr_pairs', [
(['5m'], ['ADA/BTC', 'DASH/BTC']),
(['5m'], ['ADA/BTC', 'DASH/BTC', 'ETH/USDT']),
(['5m', '15m'], ['ADA/BTC', 'DASH/BTC', 'ETH/USDT']),
])
def test_freqai_informative_pairs(mocker, freqai_conf, timeframes, corr_pairs):
freqai_conf['freqai']['feature_parameters'].update({
'include_timeframes': timeframes,
'include_corr_pairlist': corr_pairs,
})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
pairlists = PairListManager(exchange, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange, pairlists)
pairlist = strategy.dp.current_whitelist()
pairs_a = strategy.informative_pairs()
assert len(pairs_a) == 0
pairs_b = strategy.gather_informative_pairs()
# we expect unique pairs * timeframes
assert len(pairs_b) == len(set(pairlist + corr_pairs)) * len(timeframes)

View File

@ -922,6 +922,45 @@ def test_in_strategy_auto_hyperopt_with_parallel(mocker, hyperopt_conf, tmpdir,
hyperopt.start() hyperopt.start()
def test_in_strategy_auto_hyperopt_per_epoch(mocker, hyperopt_conf, tmpdir, fee) -> None:
patch_exchange(mocker)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
(Path(tmpdir) / 'hyperopt_results').mkdir(parents=True)
hyperopt_conf.update({
'strategy': 'HyperoptableStrategy',
'user_data_dir': Path(tmpdir),
'hyperopt_random_state': 42,
'spaces': ['all'],
'epochs': 3,
'analyze_per_epoch': True,
})
go = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.generate_optimizer',
return_value={
'loss': 0.05,
'results_explanation': 'foo result', 'params': {},
'results_metrics': generate_result_metrics(),
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.exchange.get_max_leverage = MagicMock(return_value=1.0)
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
assert hyperopt.backtesting.strategy.bot_loop_started is True
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
assert hyperopt.backtesting.strategy.sell_rsi.value == 74
assert hyperopt.backtesting.strategy.protection_cooldown_lookback.value == 30
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
assert isinstance(buy_rsi_range, range)
# Range from 0 - 50 (inclusive)
assert len(list(buy_rsi_range)) == 51
hyperopt.start()
# backtesting should be called 3 times (once per epoch)
assert go.call_count == 3
def test_SKDecimal(): def test_SKDecimal():
space = SKDecimal(1, 2, decimals=2) space = SKDecimal(1, 2, decimals=2)
assert 1.5 in space assert 1.5 in space

View File

@ -43,19 +43,6 @@ class freqai_test_multimodel_strat(IStrategy):
) )
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True) max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
def populate_any_indicators( def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False self, pair, df, tf, informative=None, set_generalized_indicators=False
): ):

View File

@ -43,19 +43,6 @@ class freqai_test_strat(IStrategy):
) )
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True) max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
def populate_any_indicators( def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False self, pair, df, tf, informative=None, set_generalized_indicators=False
): ):

View File

@ -1427,6 +1427,7 @@ def test_handle_stoploss_on_exchange_trailing(
trade.is_open = True trade.is_open = True
trade.open_order_id = None trade.open_order_id = None
trade.stoploss_order_id = 100 trade.stoploss_order_id = 100
trade.stoploss_last_update = arrow.utcnow().shift(minutes=-20).datetime
stoploss_order_hanging = MagicMock(return_value={ stoploss_order_hanging = MagicMock(return_value={
'id': 100, 'id': 100,
@ -1456,7 +1457,7 @@ def test_handle_stoploss_on_exchange_trailing(
) )
cancel_order_mock = MagicMock() cancel_order_mock = MagicMock()
stoploss_order_mock = MagicMock(return_value={'id': 13434334}) stoploss_order_mock = MagicMock(return_value={'id': 'so1'})
mocker.patch('freqtrade.exchange.Binance.cancel_stoploss_order', cancel_order_mock) mocker.patch('freqtrade.exchange.Binance.cancel_stoploss_order', cancel_order_mock)
mocker.patch('freqtrade.exchange.Binance.stoploss', stoploss_order_mock) mocker.patch('freqtrade.exchange.Binance.stoploss', stoploss_order_mock)
@ -1569,6 +1570,7 @@ def test_handle_stoploss_on_exchange_trailing_error(
assert stoploss.call_count == 1 assert stoploss.call_count == 1
# Fail creating stoploss order # Fail creating stoploss order
trade.stoploss_last_update = arrow.utcnow().shift(minutes=-601).datetime
caplog.clear() caplog.clear()
cancel_mock = mocker.patch("freqtrade.exchange.Binance.cancel_stoploss_order", MagicMock()) cancel_mock = mocker.patch("freqtrade.exchange.Binance.cancel_stoploss_order", MagicMock())
mocker.patch("freqtrade.exchange.Binance.stoploss", side_effect=ExchangeError()) mocker.patch("freqtrade.exchange.Binance.stoploss", side_effect=ExchangeError())
@ -1657,6 +1659,7 @@ def test_handle_stoploss_on_exchange_custom_stop(
trade.is_open = True trade.is_open = True
trade.open_order_id = None trade.open_order_id = None
trade.stoploss_order_id = 100 trade.stoploss_order_id = 100
trade.stoploss_last_update = arrow.utcnow().shift(minutes=-601).datetime
stoploss_order_hanging = MagicMock(return_value={ stoploss_order_hanging = MagicMock(return_value={
'id': 100, 'id': 100,
@ -1685,7 +1688,7 @@ def test_handle_stoploss_on_exchange_custom_stop(
) )
cancel_order_mock = MagicMock() cancel_order_mock = MagicMock()
stoploss_order_mock = MagicMock(return_value={'id': 13434334}) stoploss_order_mock = MagicMock(return_value={'id': 'so1'})
mocker.patch('freqtrade.exchange.Binance.cancel_stoploss_order', cancel_order_mock) mocker.patch('freqtrade.exchange.Binance.cancel_stoploss_order', cancel_order_mock)
mocker.patch('freqtrade.exchange.Binance.stoploss', stoploss_order_mock) mocker.patch('freqtrade.exchange.Binance.stoploss', stoploss_order_mock)
@ -1727,8 +1730,7 @@ def test_handle_stoploss_on_exchange_custom_stop(
assert freqtrade.handle_trade(trade) is True assert freqtrade.handle_trade(trade) is True
def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, caplog, def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, limit_order) -> None:
limit_order) -> None:
enter_order = limit_order['buy'] enter_order = limit_order['buy']
exit_order = limit_order['sell'] exit_order = limit_order['sell']
@ -1784,6 +1786,7 @@ def test_tsl_on_exchange_compatible_with_edge(mocker, edge_conf, fee, caplog,
trade.is_open = True trade.is_open = True
trade.open_order_id = None trade.open_order_id = None
trade.stoploss_order_id = 100 trade.stoploss_order_id = 100
trade.stoploss_last_update = arrow.utcnow()
stoploss_order_hanging = MagicMock(return_value={ stoploss_order_hanging = MagicMock(return_value={
'id': 100, 'id': 100,