debug classifier with predict proba
This commit is contained in:
parent
23cc21ce59
commit
b1b76a2dbe
@ -358,12 +358,7 @@ class FreqaiDataDrawer:
|
||||
|
||||
dk.find_features(dataframe)
|
||||
|
||||
added_labels = []
|
||||
if dk.unique_classes:
|
||||
for label in dk.unique_classes:
|
||||
added_labels += dk.unique_classes[label]
|
||||
|
||||
full_labels = dk.label_list + added_labels
|
||||
full_labels = dk.label_list + dk.unique_class_list
|
||||
|
||||
for label in full_labels:
|
||||
dataframe[label] = 0
|
||||
|
@ -91,6 +91,7 @@ class FreqaiDataKitchen:
|
||||
self.thread_count = self.freqai_config.get("data_kitchen_thread_count", -1)
|
||||
self.train_dates: DataFrame = pd.DataFrame()
|
||||
self.unique_classes: Dict[str, list] = {}
|
||||
self.unique_class_list: list = []
|
||||
|
||||
def set_paths(
|
||||
self,
|
||||
@ -338,7 +339,7 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
|
||||
for label in df.columns:
|
||||
if df[label].dtype == object:
|
||||
if df[label].dtype == object or label in self.unique_class_list:
|
||||
continue
|
||||
df[label] = (
|
||||
(df[label] + 1)
|
||||
@ -995,6 +996,10 @@ class FreqaiDataKitchen:
|
||||
f = spy.stats.norm.fit(self.data_dictionary["train_labels"][label])
|
||||
self.data["labels_mean"][label], self.data["labels_std"][label] = f[0], f[1]
|
||||
|
||||
# incase targets are classifications
|
||||
for label in self.unique_class_list:
|
||||
self.data["labels_mean"][label], self.data["labels_std"][label] = 0, 0
|
||||
|
||||
return
|
||||
|
||||
def remove_features_from_df(self, dataframe: DataFrame) -> DataFrame:
|
||||
@ -1014,3 +1019,7 @@ class FreqaiDataKitchen:
|
||||
for key in self.label_list:
|
||||
if dataframe[key].dtype == object:
|
||||
self.unique_classes[key] = dataframe[key].dropna().unique()
|
||||
|
||||
if self.unique_classes:
|
||||
for label in self.unique_classes:
|
||||
self.unique_class_list += list(self.unique_classes[label])
|
||||
|
@ -320,6 +320,8 @@ class IFreqaiModel(ABC):
|
||||
# allows FreqUI to show full return values.
|
||||
pred_df, do_preds = self.predict(dataframe, dk)
|
||||
self.dd.set_initial_return_values(pair, dk, pred_df, do_preds)
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(pred_df, dk, pair)
|
||||
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
|
||||
return
|
||||
elif self.dk.check_if_model_expired(trained_timestamp):
|
||||
@ -336,6 +338,9 @@ class IFreqaiModel(ABC):
|
||||
# historical accuracy reasons.
|
||||
pred_df, do_preds = self.predict(dataframe.iloc[-self.CONV_WIDTH:], dk, first=False)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
if self.freqai_info.get('fit_live_predictions_candles', 0) and self.live:
|
||||
self.fit_live_predictions(dk)
|
||||
self.dd.append_model_predictions(pair, pred_df, do_preds, dk, len(dataframe))
|
||||
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
|
||||
|
||||
@ -503,7 +508,7 @@ class IFreqaiModel(ABC):
|
||||
self.dd.purge_old_models()
|
||||
|
||||
def set_initial_historic_predictions(
|
||||
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
|
||||
self, pred_df: DataFrame, dk: FreqaiDataKitchen, pair: str
|
||||
) -> None:
|
||||
"""
|
||||
This function is called only if the datadrawer failed to load an
|
||||
@ -528,12 +533,6 @@ class IFreqaiModel(ABC):
|
||||
:param: dk: FreqaiDataKitchen = object containing methods for data analysis
|
||||
:param: pair: str = current pair
|
||||
"""
|
||||
num_candles = self.freqai_info.get('fit_live_predictions_candles', 600)
|
||||
if not num_candles:
|
||||
num_candles = 600
|
||||
df_tail = df.tail(num_candles)
|
||||
trained_predictions = model.predict(df_tail)
|
||||
pred_df = DataFrame(trained_predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
||||
@ -560,9 +559,12 @@ class IFreqaiModel(ABC):
|
||||
"""
|
||||
import scipy as spy
|
||||
|
||||
# add classes from classifier label types if used
|
||||
full_labels = dk.label_list + dk.unique_class_list
|
||||
|
||||
num_candles = self.freqai_info.get("fit_live_predictions_candles", 100)
|
||||
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
|
||||
for label in dk.label_list:
|
||||
for label in full_labels:
|
||||
if self.dd.historic_predictions[dk.pair][label].dtype == object:
|
||||
continue
|
||||
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
|
||||
|
@ -62,15 +62,6 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
|
||||
if pair not in self.dd.historic_predictions:
|
||||
self.set_initial_historic_predictions(
|
||||
data_dictionary['train_features'], model, dk, pair)
|
||||
|
||||
if self.freqai_info.get('fit_live_predictions_candles', 0) and self.live:
|
||||
self.fit_live_predictions(dk)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
return model
|
||||
|
Loading…
Reference in New Issue
Block a user