Merge branch 'develop' of https://github.com/theluxaz/freqtrade into main
# Conflicts: # freqtrade/freqtradebot.py # freqtrade/optimize/backtesting.py
This commit is contained in:
@@ -11,7 +11,7 @@ from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
|
||||
from freqtrade.configuration import TimeRange, validate_config_consistency
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import trade_list_to_dataframe
|
||||
@@ -61,8 +61,7 @@ class Backtesting:
|
||||
self.config = config
|
||||
self.results: Optional[Dict[str, Any]] = None
|
||||
|
||||
# Reset keys for backtesting
|
||||
remove_credentials(self.config)
|
||||
config['dry_run'] = True
|
||||
self.strategylist: List[IStrategy] = []
|
||||
self.all_results: Dict[str, Dict] = {}
|
||||
|
||||
@@ -86,7 +85,7 @@ class Backtesting:
|
||||
"configuration or as cli argument `--timeframe 5m`")
|
||||
self.timeframe = str(self.config.get('timeframe'))
|
||||
self.timeframe_min = timeframe_to_minutes(self.timeframe)
|
||||
|
||||
self.init_backtest_detail()
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting.")
|
||||
@@ -109,14 +108,6 @@ class Backtesting:
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
|
||||
|
||||
Trade.use_db = False
|
||||
Trade.reset_trades()
|
||||
PairLocks.timeframe = self.config['timeframe']
|
||||
PairLocks.use_db = False
|
||||
PairLocks.reset_locks()
|
||||
|
||||
self.wallets = Wallets(self.config, self.exchange, log=False)
|
||||
|
||||
self.timerange = TimeRange.parse_timerange(
|
||||
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
@@ -125,9 +116,7 @@ class Backtesting:
|
||||
# Add maximum startup candle count to configuration for informative pairs support
|
||||
self.config['startup_candle_count'] = self.required_startup
|
||||
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
|
||||
|
||||
self.progress = BTProgress()
|
||||
self.abort = False
|
||||
self.init_backtest()
|
||||
|
||||
def __del__(self):
|
||||
self.cleanup()
|
||||
@@ -137,6 +126,28 @@ class Backtesting:
|
||||
PairLocks.use_db = True
|
||||
Trade.use_db = True
|
||||
|
||||
def init_backtest_detail(self):
|
||||
# Load detail timeframe if specified
|
||||
self.timeframe_detail = str(self.config.get('timeframe_detail', ''))
|
||||
if self.timeframe_detail:
|
||||
self.timeframe_detail_min = timeframe_to_minutes(self.timeframe_detail)
|
||||
if self.timeframe_min <= self.timeframe_detail_min:
|
||||
raise OperationalException(
|
||||
"Detail timeframe must be smaller than strategy timeframe.")
|
||||
|
||||
else:
|
||||
self.timeframe_detail_min = 0
|
||||
self.detail_data: Dict[str, DataFrame] = {}
|
||||
|
||||
def init_backtest(self):
|
||||
|
||||
self.prepare_backtest(False)
|
||||
|
||||
self.wallets = Wallets(self.config, self.exchange, log=False)
|
||||
|
||||
self.progress = BTProgress()
|
||||
self.abort = False
|
||||
|
||||
def _set_strategy(self, strategy: IStrategy):
|
||||
"""
|
||||
Load strategy into backtesting
|
||||
@@ -144,7 +155,7 @@ class Backtesting:
|
||||
self.strategy: IStrategy = strategy
|
||||
strategy.dp = self.dataprovider
|
||||
# Attach Wallets to Strategy baseclass
|
||||
IStrategy.wallets = self.wallets
|
||||
strategy.wallets = self.wallets
|
||||
# Set stoploss_on_exchange to false for backtesting,
|
||||
# since a "perfect" stoploss-sell is assumed anyway
|
||||
# And the regular "stoploss" function would not apply to that case
|
||||
@@ -188,6 +199,23 @@ class Backtesting:
|
||||
self.progress.set_new_value(1)
|
||||
return data, self.timerange
|
||||
|
||||
def load_bt_data_detail(self) -> None:
|
||||
"""
|
||||
Loads backtest detail data (smaller timeframe) if necessary.
|
||||
"""
|
||||
if self.timeframe_detail:
|
||||
self.detail_data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe_detail,
|
||||
timerange=self.timerange,
|
||||
startup_candles=0,
|
||||
fail_without_data=True,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
)
|
||||
else:
|
||||
self.detail_data = {}
|
||||
|
||||
def prepare_backtest(self, enable_protections):
|
||||
"""
|
||||
Backtesting setup method - called once for every call to "backtest()".
|
||||
@@ -199,7 +227,8 @@ class Backtesting:
|
||||
Trade.reset_trades()
|
||||
self.rejected_trades = 0
|
||||
self.dataprovider.clear_cache()
|
||||
self._load_protections(self.strategy)
|
||||
if enable_protections:
|
||||
self._load_protections(self.strategy)
|
||||
|
||||
def check_abort(self):
|
||||
"""
|
||||
@@ -320,10 +349,8 @@ class Backtesting:
|
||||
else:
|
||||
return sell_row[OPEN_IDX]
|
||||
|
||||
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
|
||||
|
||||
|
||||
|
||||
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
|
||||
sell_row: Tuple) -> Optional[LocalTrade]:
|
||||
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
|
||||
sell_candle_time, sell_row[BUY_IDX],
|
||||
@@ -353,6 +380,32 @@ class Backtesting:
|
||||
|
||||
return None
|
||||
|
||||
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
|
||||
if self.timeframe_detail and trade.pair in self.detail_data:
|
||||
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
sell_candle_end = sell_candle_time + timedelta(minutes=self.timeframe_min)
|
||||
|
||||
detail_data = self.detail_data[trade.pair]
|
||||
detail_data = detail_data.loc[
|
||||
(detail_data['date'] >= sell_candle_time) &
|
||||
(detail_data['date'] < sell_candle_end)
|
||||
].copy()
|
||||
if len(detail_data) == 0:
|
||||
# Fall back to "regular" data if no detail data was found for this candle
|
||||
return self._get_sell_trade_entry_for_candle(trade, sell_row)
|
||||
detail_data.loc[:, 'buy'] = sell_row[BUY_IDX]
|
||||
detail_data.loc[:, 'sell'] = sell_row[SELL_IDX]
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
|
||||
for det_row in detail_data[headers].values.tolist():
|
||||
res = self._get_sell_trade_entry_for_candle(trade, det_row)
|
||||
if res:
|
||||
return res
|
||||
|
||||
return None
|
||||
|
||||
else:
|
||||
return self._get_sell_trade_entry_for_candle(trade, sell_row)
|
||||
|
||||
def _enter_trade(self, pair: str, row: List) -> Optional[LocalTrade]:
|
||||
try:
|
||||
stake_amount = self.wallets.get_trade_stake_amount(pair, None)
|
||||
@@ -601,6 +654,7 @@ class Backtesting:
|
||||
data: Dict[str, Any] = {}
|
||||
|
||||
data, timerange = self.load_bt_data()
|
||||
self.load_bt_data_detail()
|
||||
logger.info("Dataload complete. Calculating indicators")
|
||||
|
||||
for strat in self.strategylist:
|
||||
|
@@ -7,7 +7,8 @@ import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
|
||||
from freqtrade.configuration import TimeRange, validate_config_consistency
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.optimize.optimize_reports import generate_edge_table
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
@@ -28,11 +29,12 @@ class EdgeCli:
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
|
||||
# Reset keys for edge
|
||||
remove_credentials(self.config)
|
||||
# Ensure using dry-run
|
||||
self.config['dry_run'] = True
|
||||
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
self.strategy = StrategyResolver.load_strategy(self.config)
|
||||
self.strategy.dp = DataProvider(config, None)
|
||||
|
||||
validate_config_consistency(self.config)
|
||||
|
||||
|
@@ -22,6 +22,7 @@ from pandas import DataFrame
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
@@ -30,7 +31,7 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
|
||||
|
||||
# Suppress scikit-learn FutureWarnings from skopt
|
||||
@@ -44,7 +45,7 @@ progressbar.streams.wrap_stdout()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
INITIAL_POINTS = 5
|
||||
|
||||
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
|
||||
# in the skopt model queue, to optimize memory consumption
|
||||
@@ -78,10 +79,10 @@ class Hyperopt:
|
||||
|
||||
if not self.config.get('hyperopt'):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
self.auto_hyperopt = True
|
||||
else:
|
||||
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
|
||||
self.auto_hyperopt = False
|
||||
raise OperationalException(
|
||||
"Using separate Hyperopt files has been removed in 2021.9. Please convert "
|
||||
"your existing Hyperopt file to the new Hyperoptable strategy interface")
|
||||
|
||||
self.backtesting._set_strategy(self.backtesting.strategylist[0])
|
||||
self.custom_hyperopt.strategy = self.backtesting.strategy
|
||||
@@ -103,31 +104,6 @@ class Hyperopt:
|
||||
self.num_epochs_saved = 0
|
||||
self.current_best_epoch: Optional[Dict[str, Any]] = None
|
||||
|
||||
if not self.auto_hyperopt:
|
||||
# Populate "fallback" functions here
|
||||
# (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
||||
logger.warning(
|
||||
"DEPRECATED: Using `populate_indicators()` in the hyperopt file is deprecated. "
|
||||
"Please move these methods to your strategy."
|
||||
)
|
||||
self.backtesting.strategy.populate_indicators = ( # type: ignore
|
||||
self.custom_hyperopt.populate_indicators) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||
logger.warning(
|
||||
"DEPRECATED: Using `populate_buy_trend()` in the hyperopt file is deprecated. "
|
||||
"Please move these methods to your strategy."
|
||||
)
|
||||
self.backtesting.strategy.populate_buy_trend = ( # type: ignore
|
||||
self.custom_hyperopt.populate_buy_trend) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
|
||||
logger.warning(
|
||||
"DEPRECATED: Using `populate_sell_trend()` in the hyperopt file is deprecated. "
|
||||
"Please move these methods to your strategy."
|
||||
)
|
||||
self.backtesting.strategy.populate_sell_trend = ( # type: ignore
|
||||
self.custom_hyperopt.populate_sell_trend) # type: ignore
|
||||
|
||||
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
self.max_open_trades = self.config['max_open_trades']
|
||||
@@ -256,7 +232,7 @@ class Hyperopt:
|
||||
"""
|
||||
Assign the dimensions in the hyperoptimization space.
|
||||
"""
|
||||
if self.auto_hyperopt and HyperoptTools.has_space(self.config, 'protection'):
|
||||
if HyperoptTools.has_space(self.config, 'protection'):
|
||||
# Protections can only be optimized when using the Parameter interface
|
||||
logger.debug("Hyperopt has 'protection' space")
|
||||
# Enable Protections if protection space is selected.
|
||||
@@ -265,7 +241,7 @@ class Hyperopt:
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'buy'):
|
||||
logger.debug("Hyperopt has 'buy' space")
|
||||
self.buy_space = self.custom_hyperopt.indicator_space()
|
||||
self.buy_space = self.custom_hyperopt.buy_indicator_space()
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'sell'):
|
||||
logger.debug("Hyperopt has 'sell' space")
|
||||
@@ -285,6 +261,15 @@ class Hyperopt:
|
||||
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
|
||||
+ self.roi_space + self.stoploss_space + self.trailing_space)
|
||||
|
||||
def assign_params(self, params_dict: Dict, category: str) -> None:
|
||||
"""
|
||||
Assign hyperoptable parameters
|
||||
"""
|
||||
for attr_name, attr in self.backtesting.strategy.enumerate_parameters(category):
|
||||
if attr.optimize:
|
||||
# noinspection PyProtectedMember
|
||||
attr.value = params_dict[attr_name]
|
||||
|
||||
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
|
||||
"""
|
||||
Used Optimize function.
|
||||
@@ -296,18 +281,13 @@ class Hyperopt:
|
||||
|
||||
# Apply parameters
|
||||
if HyperoptTools.has_space(self.config, 'buy'):
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.custom_hyperopt.buy_strategy_generator(params_dict))
|
||||
self.assign_params(params_dict, 'buy')
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'sell'):
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.custom_hyperopt.sell_strategy_generator(params_dict))
|
||||
self.assign_params(params_dict, 'sell')
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'protection'):
|
||||
for attr_name, attr in self.backtesting.strategy.enumerate_parameters('protection'):
|
||||
if attr.optimize:
|
||||
# noinspection PyProtectedMember
|
||||
attr.value = params_dict[attr_name]
|
||||
self.assign_params(params_dict, 'protection')
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'roi'):
|
||||
self.backtesting.strategy.minimal_roi = ( # type: ignore
|
||||
@@ -385,10 +365,20 @@ class Hyperopt:
|
||||
}
|
||||
|
||||
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
|
||||
estimator = self.custom_hyperopt.generate_estimator()
|
||||
|
||||
acq_optimizer = "sampling"
|
||||
if isinstance(estimator, str):
|
||||
if estimator not in ("GP", "RF", "ET", "GBRT"):
|
||||
raise OperationalException(f"Estimator {estimator} not supported.")
|
||||
else:
|
||||
acq_optimizer = "auto"
|
||||
|
||||
logger.info(f"Using estimator {estimator}.")
|
||||
return Optimizer(
|
||||
dimensions,
|
||||
base_estimator="ET",
|
||||
acq_optimizer="auto",
|
||||
base_estimator=estimator,
|
||||
acq_optimizer=acq_optimizer,
|
||||
n_initial_points=INITIAL_POINTS,
|
||||
acq_optimizer_kwargs={'n_jobs': cpu_count},
|
||||
random_state=self.random_state,
|
||||
@@ -517,11 +507,10 @@ class Hyperopt:
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
if self.current_best_epoch:
|
||||
if self.auto_hyperopt:
|
||||
HyperoptTools.try_export_params(
|
||||
self.config,
|
||||
self.backtesting.strategy.get_strategy_name(),
|
||||
self.current_best_epoch)
|
||||
HyperoptTools.try_export_params(
|
||||
self.config,
|
||||
self.backtesting.strategy.get_strategy_name(),
|
||||
self.current_best_epoch)
|
||||
|
||||
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
|
||||
self.print_json)
|
||||
|
@@ -4,15 +4,23 @@ This module implements a convenience auto-hyperopt class, which can be used toge
|
||||
that implement IHyperStrategy interface.
|
||||
"""
|
||||
from contextlib import suppress
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
from pandas import DataFrame
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
with suppress(ImportError):
|
||||
from skopt.space import Dimension
|
||||
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
from freqtrade.optimize.hyperopt_interface import EstimatorType, IHyperOpt
|
||||
|
||||
|
||||
def _format_exception_message(space: str) -> str:
|
||||
raise OperationalException(
|
||||
f"The '{space}' space is included into the hyperoptimization "
|
||||
f"but no parameter for this space was not found in your Strategy. "
|
||||
f"Please make sure to have parameters for this space enabled for optimization "
|
||||
f"or remove the '{space}' space from hyperoptimization.")
|
||||
|
||||
|
||||
class HyperOptAuto(IHyperOpt):
|
||||
@@ -22,26 +30,6 @@ class HyperOptAuto(IHyperOpt):
|
||||
sell_indicator_space methods, but other hyperopt methods can be overridden as well.
|
||||
"""
|
||||
|
||||
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
|
||||
for attr_name, attr in self.strategy.enumerate_parameters('buy'):
|
||||
if attr.optimize:
|
||||
# noinspection PyProtectedMember
|
||||
attr.value = params[attr_name]
|
||||
return self.strategy.populate_buy_trend(dataframe, metadata)
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
def populate_sell_trend(dataframe: DataFrame, metadata: dict):
|
||||
for attr_name, attr in self.strategy.enumerate_parameters('sell'):
|
||||
if attr.optimize:
|
||||
# noinspection PyProtectedMember
|
||||
attr.value = params[attr_name]
|
||||
return self.strategy.populate_sell_trend(dataframe, metadata)
|
||||
|
||||
return populate_sell_trend
|
||||
|
||||
def _get_func(self, name) -> Callable:
|
||||
"""
|
||||
Return a function defined in Strategy.HyperOpt class, or one defined in super() class.
|
||||
@@ -60,21 +48,22 @@ class HyperOptAuto(IHyperOpt):
|
||||
if attr.optimize:
|
||||
yield attr.get_space(attr_name)
|
||||
|
||||
def _get_indicator_space(self, category, fallback_method_name):
|
||||
def _get_indicator_space(self, category):
|
||||
# TODO: is this necessary, or can we call "generate_space" directly?
|
||||
indicator_space = list(self._generate_indicator_space(category))
|
||||
if len(indicator_space) > 0:
|
||||
return indicator_space
|
||||
else:
|
||||
return self._get_func(fallback_method_name)()
|
||||
_format_exception_message(category)
|
||||
|
||||
def indicator_space(self) -> List['Dimension']:
|
||||
return self._get_indicator_space('buy', 'indicator_space')
|
||||
def buy_indicator_space(self) -> List['Dimension']:
|
||||
return self._get_indicator_space('buy')
|
||||
|
||||
def sell_indicator_space(self) -> List['Dimension']:
|
||||
return self._get_indicator_space('sell', 'sell_indicator_space')
|
||||
return self._get_indicator_space('sell')
|
||||
|
||||
def protection_space(self) -> List['Dimension']:
|
||||
return self._get_indicator_space('protection', 'protection_space')
|
||||
return self._get_indicator_space('protection')
|
||||
|
||||
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
|
||||
return self._get_func('generate_roi_table')(params)
|
||||
@@ -90,3 +79,6 @@ class HyperOptAuto(IHyperOpt):
|
||||
|
||||
def trailing_space(self) -> List['Dimension']:
|
||||
return self._get_func('trailing_space')()
|
||||
|
||||
def generate_estimator(self) -> EstimatorType:
|
||||
return self._get_func('generate_estimator')()
|
||||
|
@@ -5,11 +5,11 @@ This module defines the interface to apply for hyperopt
|
||||
import logging
|
||||
import math
|
||||
from abc import ABC
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Dict, List, Union
|
||||
|
||||
from sklearn.base import RegressorMixin
|
||||
from skopt.space import Categorical, Dimension, Integer
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.misc import round_dict
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
@@ -18,12 +18,7 @@ from freqtrade.strategy import IStrategy
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _format_exception_message(method: str, space: str) -> str:
|
||||
return (f"The '{space}' space is included into the hyperoptimization "
|
||||
f"but {method}() method is not found in your "
|
||||
f"custom Hyperopt class. You should either implement this "
|
||||
f"method or remove the '{space}' space from hyperoptimization.")
|
||||
EstimatorType = Union[RegressorMixin, str]
|
||||
|
||||
|
||||
class IHyperOpt(ABC):
|
||||
@@ -45,36 +40,13 @@ class IHyperOpt(ABC):
|
||||
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
|
||||
IHyperOpt.timeframe = str(config['timeframe'])
|
||||
|
||||
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
def generate_estimator(self) -> EstimatorType:
|
||||
"""
|
||||
Create a buy strategy generator.
|
||||
Return base_estimator.
|
||||
Can be any of "GP", "RF", "ET", "GBRT" or an instance of a class
|
||||
inheriting from RegressorMixin (from sklearn).
|
||||
"""
|
||||
raise OperationalException(_format_exception_message('buy_strategy_generator', 'buy'))
|
||||
|
||||
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Create a sell strategy generator.
|
||||
"""
|
||||
raise OperationalException(_format_exception_message('sell_strategy_generator', 'sell'))
|
||||
|
||||
def protection_space(self) -> List[Dimension]:
|
||||
"""
|
||||
Create a protection space.
|
||||
Only supported by the Parameter interface.
|
||||
"""
|
||||
raise OperationalException(_format_exception_message('indicator_space', 'protection'))
|
||||
|
||||
def indicator_space(self) -> List[Dimension]:
|
||||
"""
|
||||
Create an indicator space.
|
||||
"""
|
||||
raise OperationalException(_format_exception_message('indicator_space', 'buy'))
|
||||
|
||||
def sell_indicator_space(self) -> List[Dimension]:
|
||||
"""
|
||||
Create a sell indicator space.
|
||||
"""
|
||||
raise OperationalException(_format_exception_message('sell_indicator_space', 'sell'))
|
||||
return 'ET'
|
||||
|
||||
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
|
41
freqtrade/optimize/hyperopt_loss_max_drawdown.py
Normal file
41
freqtrade/optimize/hyperopt_loss_max_drawdown.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""
|
||||
MaxDrawDownHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class MaxDrawDownHyperOptLoss(IHyperOptLoss):
|
||||
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation optimizes for max draw down and profit
|
||||
Less max drawdown more profit -> Lower return value
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
|
||||
"""
|
||||
Objective function.
|
||||
|
||||
Uses profit ratio weighted max_drawdown when drawdown is available.
|
||||
Otherwise directly optimizes profit ratio.
|
||||
"""
|
||||
total_profit = results['profit_abs'].sum()
|
||||
try:
|
||||
max_drawdown = calculate_max_drawdown(results, value_col='profit_abs')
|
||||
except ValueError:
|
||||
# No losing trade, therefore no drawdown.
|
||||
return -total_profit
|
||||
return -total_profit / max_drawdown[0]
|
@@ -7,6 +7,7 @@ from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import rapidjson
|
||||
import tabulate
|
||||
from colorama import Fore, Style
|
||||
@@ -298,8 +299,8 @@ class HyperoptTools():
|
||||
f"Objective: {results['loss']:.5f}")
|
||||
|
||||
@staticmethod
|
||||
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
|
||||
|
||||
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
|
||||
has_drawdown: bool) -> pd.DataFrame:
|
||||
trials['Best'] = ''
|
||||
|
||||
if 'results_metrics.winsdrawslosses' not in trials.columns:
|
||||
@@ -435,8 +436,7 @@ class HyperoptTools():
|
||||
return table
|
||||
|
||||
@staticmethod
|
||||
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
csv_file: str) -> None:
|
||||
def export_csv_file(config: dict, results: list, csv_file: str) -> None:
|
||||
"""
|
||||
Log result to csv-file
|
||||
"""
|
||||
|
@@ -464,6 +464,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
'max_open_trades_setting': (config['max_open_trades']
|
||||
if config['max_open_trades'] != float('inf') else -1),
|
||||
'timeframe': config['timeframe'],
|
||||
'timeframe_detail': config.get('timeframe_detail', ''),
|
||||
'timerange': config.get('timerange', ''),
|
||||
'enable_protections': config.get('enable_protections', False),
|
||||
'strategy_name': strategy,
|
||||
|
Reference in New Issue
Block a user