Merge branch 'develop' of https://github.com/theluxaz/freqtrade into main

# Conflicts:
#	freqtrade/freqtradebot.py
#	freqtrade/optimize/backtesting.py
This commit is contained in:
theluxaz
2021-10-13 02:01:26 +03:00
139 changed files with 3989 additions and 3843 deletions

View File

@@ -22,7 +22,7 @@ if __version__ == 'develop':
# subprocess.check_output(
# ['git', 'log', '--format="%h"', '-n 1'],
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception:
except Exception: # pragma: no cover
# git not available, ignore
try:
# Try Fallback to freqtrade_commit file (created by CI while building docker image)

View File

@@ -8,14 +8,14 @@ Note: Be careful with file-scoped imports in these subfiles.
"""
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data, start_download_data,
start_list_data)
from freqtrade.commands.data_commands import (start_convert_data, start_convert_trades,
start_download_data, start_list_data)
from freqtrade.commands.deploy_commands import (start_create_userdir, start_install_ui,
start_new_hyperopt, start_new_strategy)
start_new_strategy)
from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hyperopt_show
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_hyperopts,
start_list_markets, start_list_strategies,
start_list_timeframes, start_show_trades)
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_markets,
start_list_strategies, start_list_timeframes,
start_show_trades)
from freqtrade.commands.optimize_commands import start_backtesting, start_edge, start_hyperopt
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit

View File

@@ -22,7 +22,7 @@ ARGS_COMMON_OPTIMIZE = ["timeframe", "timerange", "dataformat_ohlcv",
"max_open_trades", "stake_amount", "fee", "pairs"]
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
"enable_protections", "dry_run_wallet",
"enable_protections", "dry_run_wallet", "timeframe_detail",
"strategy_list", "export", "exportfilename"]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
@@ -55,11 +55,11 @@ ARGS_BUILD_CONFIG = ["config"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "new_pairs_days", "timerange",
@@ -73,7 +73,7 @@ ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "timeframe", "plot_auto_open"]
ARGS_INSTALL_UI = ["erase_ui_only"]
ARGS_INSTALL_UI = ["erase_ui_only", 'ui_version']
ARGS_SHOW_TRADES = ["db_url", "trade_ids", "print_json"]
@@ -92,10 +92,10 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-data",
"list-hyperopts", "hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit", "show-trades"]
"hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit", "show-trades", "trades-to-ohlcv"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
class Arguments:
@@ -171,15 +171,14 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_backtesting, start_convert_data, start_create_userdir,
start_download_data, start_edge, start_hyperopt,
start_hyperopt_list, start_hyperopt_show, start_install_ui,
start_list_data, start_list_exchanges, start_list_hyperopts,
from freqtrade.commands import (start_backtesting, start_convert_data, start_convert_trades,
start_create_userdir, start_download_data, start_edge,
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
start_list_markets, start_list_strategies,
start_list_timeframes, start_new_config, start_new_hyperopt,
start_new_strategy, start_plot_dataframe, start_plot_profit,
start_show_trades, start_test_pairlist, start_trading,
start_webserver)
start_list_timeframes, start_new_config, start_new_strategy,
start_plot_dataframe, start_plot_profit, start_show_trades,
start_test_pairlist, start_trading, start_webserver)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
@@ -206,12 +205,6 @@ class Arguments:
build_config_cmd.set_defaults(func=start_new_config)
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
# add new-hyperopt subcommand
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
help="Create new hyperopt")
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
@@ -245,6 +238,15 @@ class Arguments:
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
# Add trades-to-ohlcv subcommand
convert_trade_data_cmd = subparsers.add_parser(
'trades-to-ohlcv',
help='Convert trade data to OHLCV data.',
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=start_convert_trades)
self._build_args(optionlist=ARGS_CONVERT_TRADES, parser=convert_trade_data_cmd)
# Add list-data subcommand
list_data_cmd = subparsers.add_parser(
'list-data',
@@ -300,15 +302,6 @@ class Arguments:
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
# Add list-hyperopts subcommand
list_hyperopts_cmd = subparsers.add_parser(
'list-hyperopts',
help='Print available hyperopt classes.',
parents=[_common_parser],
)
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
# Add list-markets subcommand
list_markets_cmd = subparsers.add_parser(
'list-markets',

View File

@@ -61,21 +61,27 @@ def ask_user_config() -> Dict[str, Any]:
"type": "text",
"name": "stake_currency",
"message": "Please insert your stake currency:",
"default": 'BTC',
"default": 'USDT',
},
{
"type": "text",
"name": "stake_amount",
"message": "Please insert your stake amount:",
"default": "0.01",
"message": f"Please insert your stake amount (Number or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "100",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
"filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"'
if val == UNLIMITED_STAKE_AMOUNT
else val
},
{
"type": "text",
"name": "max_open_trades",
"message": f"Please insert max_open_trades (Integer or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "3",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_int(val)
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_int(val),
"filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"'
if val == UNLIMITED_STAKE_AMOUNT
else val
},
{
"type": "text",
@@ -99,6 +105,8 @@ def ask_user_config() -> Dict[str, Any]:
"bittrex",
"kraken",
"ftx",
"kucoin",
"gateio",
Separator(),
"other",
],
@@ -122,6 +130,12 @@ def ask_user_config() -> Dict[str, Any]:
"message": "Insert Exchange Secret",
"when": lambda x: not x['dry_run']
},
{
"type": "password",
"name": "exchange_key_password",
"message": "Insert Exchange API Key password",
"when": lambda x: not x['dry_run'] and x['exchange_name'] == 'kucoin'
},
{
"type": "confirm",
"name": "telegram",
@@ -149,7 +163,8 @@ def ask_user_config() -> Dict[str, Any]:
{
"type": "text",
"name": "api_server_listen_addr",
"message": "Insert Api server Listen Address (best left untouched default!)",
"message": ("Insert Api server Listen Address (0.0.0.0 for docker, "
"otherwise best left untouched)"),
"default": "127.0.0.1",
"when": lambda x: x['api_server']
},

View File

@@ -1,7 +1,7 @@
"""
Definition of cli arguments used in arguments.py
"""
from argparse import ArgumentTypeError
from argparse import SUPPRESS, ArgumentTypeError
from freqtrade import __version__, constants
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN
@@ -135,6 +135,10 @@ AVAILABLE_CLI_OPTIONS = {
help='Override the value of the `stake_amount` configuration setting.',
),
# Backtesting
"timeframe_detail": Arg(
'--timeframe-detail',
help='Specify detail timeframe for backtesting (`1m`, `5m`, `30m`, `1h`, `1d`).',
),
"position_stacking": Arg(
'--eps', '--enable-position-stacking',
help='Allow buying the same pair multiple times (position stacking).',
@@ -199,13 +203,13 @@ AVAILABLE_CLI_OPTIONS = {
# Hyperopt
"hyperopt": Arg(
'--hyperopt',
help='Specify hyperopt class name which will be used by the bot.',
help=SUPPRESS,
metavar='NAME',
required=False,
),
"hyperopt_path": Arg(
'--hyperopt-path',
help='Specify additional lookup path for Hyperopt and Hyperopt Loss functions.',
help='Specify additional lookup path for Hyperopt Loss functions.',
metavar='PATH',
),
"epochs": Arg(
@@ -377,12 +381,12 @@ AVAILABLE_CLI_OPTIONS = {
),
"dataformat_ohlcv": Arg(
'--data-format-ohlcv',
help='Storage format for downloaded candle (OHLCV) data. (default: `%(default)s`).',
help='Storage format for downloaded candle (OHLCV) data. (default: `json`).',
choices=constants.AVAILABLE_DATAHANDLERS,
),
"dataformat_trades": Arg(
'--data-format-trades',
help='Storage format for downloaded trades data. (default: `%(default)s`).',
help='Storage format for downloaded trades data. (default: `jsongz`).',
choices=constants.AVAILABLE_DATAHANDLERS,
),
"exchange": Arg(
@@ -410,6 +414,12 @@ AVAILABLE_CLI_OPTIONS = {
action='store_true',
default=False,
),
"ui_version": Arg(
'--ui-version',
help=('Specify a specific version of FreqUI to install. '
'Not specifying this installs the latest version.'),
type=str,
),
# Templating options
"template": Arg(
'--template',

View File

@@ -89,6 +89,41 @@ def start_download_data(args: Dict[str, Any]) -> None:
f"on exchange {exchange.name}.")
def start_convert_trades(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
timerange = TimeRange()
# Remove stake-currency to skip checks which are not relevant for datadownload
config['stake_currency'] = ''
if 'pairs' not in config:
raise OperationalException(
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
# Manual validations of relevant settings
if not config['exchange'].get('skip_pair_validation', False):
exchange.validate_pairs(config['pairs'])
expanded_pairs = expand_pairlist(config['pairs'], list(exchange.markets))
logger.info(f"About to Convert pairs: {expanded_pairs}, "
f"intervals: {config['timeframes']} to {config['datadir']}")
for timeframe in config['timeframes']:
exchange.validate_timeframes(timeframe)
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=expanded_pairs, timeframes=config['timeframes'],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get('erase')),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
Convert data from one format to another

View File

@@ -7,7 +7,7 @@ import requests
from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import copy_sample_files, create_userdata_dir
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template, render_template_with_fallback
@@ -87,56 +87,6 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
raise OperationalException("`new-strategy` requires --strategy to be set.")
def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: str) -> None:
"""
Deploys a new hyperopt template to hyperopt_path
"""
fallback = 'full'
buy_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_guards_{fallback}.j2",
)
sell_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_guards_{fallback}.j2",
)
buy_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_space_{fallback}.j2",
)
sell_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_space_{fallback}.j2",
)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_guards,
"sell_guards": sell_guards,
"buy_space": buy_space,
"sell_space": sell_space,
})
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
hyperopt_path.write_text(strategy_text)
def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if 'hyperopt' in args and args['hyperopt']:
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args['hyperopt'] + '.py')
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Hyperopt Name.")
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
else:
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")
def clean_ui_subdir(directory: Path):
if directory.is_dir():
logger.info("Removing UI directory content.")
@@ -178,7 +128,7 @@ def download_and_install_ui(dest_folder: Path, dl_url: str, version: str):
f.write(version)
def get_ui_download_url() -> Tuple[str, str]:
def get_ui_download_url(version: Optional[str] = None) -> Tuple[str, str]:
base_url = 'https://api.github.com/repos/freqtrade/frequi/'
# Get base UI Repo path
@@ -186,8 +136,16 @@ def get_ui_download_url() -> Tuple[str, str]:
resp.raise_for_status()
r = resp.json()
latest_version = r[0]['name']
assets = r[0].get('assets', [])
if version:
tmp = [x for x in r if x['name'] == version]
if tmp:
latest_version = tmp[0]['name']
assets = tmp[0].get('assets', [])
else:
raise ValueError("UI-Version not found.")
else:
latest_version = r[0]['name']
assets = r[0].get('assets', [])
dl_url = ''
if assets and len(assets) > 0:
dl_url = assets[0]['browser_download_url']
@@ -206,7 +164,7 @@ def start_install_ui(args: Dict[str, Any]) -> None:
dest_folder = Path(__file__).parents[1] / 'rpc/api_server/ui/installed/'
# First make sure the assets are removed.
dl_url, latest_version = get_ui_download_url()
dl_url, latest_version = get_ui_download_url(args.get('ui_version'))
curr_version = read_ui_version(dest_folder)
if curr_version == latest_version and not args.get('erase_ui_only'):

View File

@@ -53,7 +53,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
if epochs and export_csv:
HyperoptTools.export_csv_file(
config, epochs, total_epochs, not config.get('hyperopt_list_best', False), export_csv
config, epochs, export_csv
)

View File

@@ -10,7 +10,7 @@ from colorama import init as colorama_init
from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, validate_exchanges
@@ -92,25 +92,6 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_hyperopts(args: Dict[str, Any]) -> None:
"""
Print files with HyperOpt custom classes available in the directory
"""
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('hyperopt_path', config['user_data_dir'] / USERPATH_HYPEROPTS))
hyperopt_objs = HyperOptResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
hyperopt_objs = sorted(hyperopt_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in hyperopt_objs]))
else:
_print_objs_tabular(hyperopt_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None:
"""
Print timeframes available on Exchange

View File

@@ -0,0 +1,19 @@
from datetime import datetime, timezone
from cachetools.ttl import TTLCache
class PeriodicCache(TTLCache):
"""
Special cache that expires at "straight" times
A timer with ttl of 3600 (1h) will expire at every full hour (:00).
"""
def __init__(self, maxsize, ttl, getsizeof=None):
def local_timer():
ts = datetime.now(timezone.utc).timestamp()
offset = (ts % ttl)
return ts - offset
# Init with smlight offset
super().__init__(maxsize=maxsize, ttl=ttl-1e-5, timer=local_timer, getsizeof=getsizeof)

View File

@@ -1,7 +1,8 @@
# flake8: noqa: F401
from freqtrade.configuration.check_exchange import check_exchange, remove_credentials
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.configuration.configuration import Configuration
from freqtrade.configuration.PeriodicCache import PeriodicCache
from freqtrade.configuration.timerange import TimeRange

View File

@@ -10,19 +10,6 @@ from freqtrade.exchange import (available_exchanges, is_exchange_known_ccxt,
logger = logging.getLogger(__name__)
def remove_credentials(config: Dict[str, Any]) -> None:
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.
Modifies the input dict!
"""
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
config['exchange']['password'] = ''
config['exchange']['uid'] = ''
config['dry_run'] = True
def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool:
"""
Check if the exchange name in the config file is supported by Freqtrade

View File

@@ -3,7 +3,6 @@ from typing import Any, Dict
from freqtrade.enums import RunMode
from .check_exchange import remove_credentials
from .config_validation import validate_config_consistency
from .configuration import Configuration
@@ -21,8 +20,8 @@ def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str
configuration = Configuration(args, method)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
remove_credentials(config)
# Ensure these modes are using Dry-run
config['dry_run'] = True
validate_config_consistency(config)
return config

View File

@@ -242,6 +242,9 @@ class Configuration:
except ValueError:
pass
self._args_to_config(config, argname='timeframe_detail',
logstring='Parameter --timeframe-detail detected, '
'using {} for intra-candle backtesting ...')
self._args_to_config(config, argname='stake_amount',
logstring='Parameter --stake-amount detected, '
'overriding stake_amount to: {} ...')

View File

@@ -24,7 +24,8 @@ ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily']
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
'MaxDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
@@ -69,9 +70,7 @@ DUST_PER_COIN = {
# Source files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGIES,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': USERPATH_NOTEBOOKS,
}
@@ -112,7 +111,7 @@ CONF_SCHEMA = {
},
'tradable_balance_ratio': {
'type': 'number',
'minimum': 0.1,
'minimum': 0.0,
'maximum': 1,
'default': 0.99
},
@@ -286,6 +285,15 @@ CONF_SCHEMA = {
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
},
'protection_trigger': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
'default': 'off'
},
'protection_trigger_global': {
'type': 'string',
'enum': TELEGRAM_SETTING_OPTIONS,
},
}
},
'reload': {'type': 'boolean'},

View File

@@ -149,6 +149,8 @@ class DataProvider:
Clear pair dataframe cache.
"""
self.__cached_pairs = {}
self.__cached_pairs_backtesting = {}
self.__slice_index = 0
# Exchange functions

View File

@@ -197,7 +197,8 @@ def _download_pair_history(pair: str, *,
timeframe=timeframe,
since_ms=since_ms if since_ms else
arrow.utcnow().shift(
days=-new_pairs_days).int_timestamp * 1000
days=-new_pairs_days).int_timestamp * 1000,
is_new_pair=data.empty
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,

View File

@@ -119,7 +119,7 @@ class Edge:
)
# Download informative pairs too
res = defaultdict(list)
for p, t in self.strategy.informative_pairs():
for p, t in self.strategy.gather_informative_pairs():
res[t].append(p)
for timeframe, inf_pairs in res.items():
timerange_startup = deepcopy(self._timerange)

View File

@@ -11,6 +11,8 @@ class RPCMessageType(Enum):
SELL = 'sell'
SELL_FILL = 'sell_fill'
SELL_CANCEL = 'sell_cancel'
PROTECTION_TRIGGER = 'protection_trigger'
PROTECTION_TRIGGER_GLOBAL = 'protection_trigger_global'
def __repr__(self):
return self.value

View File

@@ -1,6 +1,6 @@
# flake8: noqa: F401
# isort: off
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
# isort: on
from freqtrade.exchange.bibox import Bibox

View File

@@ -1,7 +1,8 @@
""" Binance exchange subclass """
import logging
from typing import Dict
from typing import Dict, List
import arrow
import ccxt
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
@@ -18,6 +19,7 @@ class Binance(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"order_time_in_force": ['gtc', 'fok', 'ioc'],
"time_in_force_parameter": "timeInForce",
"ohlcv_candle_limit": 1000,
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
@@ -89,3 +91,20 @@ class Binance(Exchange):
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, is_new_pair: bool
) -> List:
"""
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
Does not work for other exchanges, which don't return the earliest data when called with "0"
"""
if is_new_pair:
x = await self._async_get_candle_history(pair, timeframe, 0)
if x and x[2] and x[2][0] and x[2][0][0] > since_ms:
# Set starting date to first available candle.
since_ms = x[2][0][0]
logger.info(f"Candle-data for {pair} available starting with "
f"{arrow.get(since_ms // 1000).isoformat()}.")
return await super()._async_get_historic_ohlcv(
pair=pair, timeframe=timeframe, since_ms=since_ms, is_new_pair=is_new_pair)

View File

@@ -51,6 +51,19 @@ EXCHANGE_HAS_OPTIONAL = [
]
def remove_credentials(config) -> None:
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.
Modifies the input dict!
"""
if config.get('dry_run', False):
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
config['exchange']['password'] = ''
config['exchange']['uid'] = ''
def calculate_backoff(retrycount, max_retries):
"""
Calculate backoff

View File

@@ -26,9 +26,9 @@ from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFun
InvalidOrderException, OperationalException, PricingError,
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGES,
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED, retrier,
retrier_async)
from freqtrade.misc import deep_merge_dicts, safe_value_fallback2
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
remove_credentials, retrier, retrier_async)
from freqtrade.misc import chunks, deep_merge_dicts, safe_value_fallback2
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@@ -54,12 +54,16 @@ class Exchange:
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
_params: Dict = {}
# Additional headers - added to the ccxt object
_headers: Dict = {}
# Dict to specify which options each exchange implements
# This defines defaults, which can be selectively overridden by subclasses using _ft_has
# or by specifying them in the configuration.
_ft_has_default: Dict = {
"stoploss_on_exchange": False,
"order_time_in_force": ["gtc"],
"time_in_force_parameter": "timeInForce",
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_partial_candle": True,
@@ -100,6 +104,7 @@ class Exchange:
# Holds all open sell orders for dry_run
self._dry_run_open_orders: Dict[str, Any] = {}
remove_credentials(config)
if config['dry_run']:
logger.info('Instance is running with dry_run enabled')
@@ -169,7 +174,7 @@ class Exchange:
asyncio.get_event_loop().run_until_complete(self._api_async.close())
def _init_ccxt(self, exchange_config: Dict[str, Any], ccxt_module: CcxtModuleType = ccxt,
ccxt_kwargs: dict = None) -> ccxt.Exchange:
ccxt_kwargs: Dict = {}) -> ccxt.Exchange:
"""
Initialize ccxt with given config and return valid
ccxt instance.
@@ -188,6 +193,10 @@ class Exchange:
}
if ccxt_kwargs:
logger.info('Applying additional ccxt config: %s', ccxt_kwargs)
if self._headers:
# Inject static headers after the above output to not confuse users.
ccxt_kwargs = deep_merge_dicts({'headers': self._headers}, ccxt_kwargs)
if ccxt_kwargs:
ex_config.update(ccxt_kwargs)
try:
@@ -352,9 +361,16 @@ class Exchange:
def validate_stakecurrency(self, stake_currency: str) -> None:
"""
Checks stake-currency against available currencies on the exchange.
Only runs on startup. If markets have not been loaded, there's been a problem with
the connection to the exchange.
:param stake_currency: Stake-currency to validate
:raise: OperationalException if stake-currency is not available.
"""
if not self._markets:
raise OperationalException(
'Could not load markets, therefore cannot start. '
'Please investigate the above error for more details.'
)
quote_currencies = self.get_quote_currencies()
if stake_currency not in quote_currencies:
raise OperationalException(
@@ -464,7 +480,7 @@ class Exchange:
if startup_candles + 5 > candle_limit:
raise OperationalException(
f"This strategy requires {startup_candles} candles to start. "
f"{self.name} only provides {candle_limit} for {timeframe}.")
f"{self.name} only provides {candle_limit - 5} for {timeframe}.")
def exchange_has(self, endpoint: str) -> bool:
"""
@@ -507,7 +523,7 @@ class Exchange:
precision = self.markets[pair]['precision']['price']
missing = price % precision
if missing != 0:
price = price - missing + precision
price = round(price - missing + precision, 10)
else:
symbol_prec = self.markets[pair]['precision']['price']
big_price = price * pow(10, symbol_prec)
@@ -709,7 +725,8 @@ class Exchange:
params = self._params.copy()
if time_in_force != 'gtc' and ordertype != 'market':
params.update({'timeInForce': time_in_force})
param = self._ft_has.get('time_in_force_parameter', '')
params.update({param: time_in_force})
try:
# Set the precision for amount and price(rate) as accepted by the exchange
@@ -1041,7 +1058,7 @@ class Exchange:
ticker_rate = ticker[conf_strategy['price_side']]
if ticker['last'] and ticker_rate:
if side == 'buy' and ticker_rate > ticker['last']:
balance = conf_strategy['ask_last_balance']
balance = conf_strategy.get('ask_last_balance', 0.0)
ticker_rate = ticker_rate + balance * (ticker['last'] - ticker_rate)
elif side == 'sell' and ticker_rate < ticker['last']:
balance = conf_strategy.get('bid_last_balance', 0.0)
@@ -1178,7 +1195,7 @@ class Exchange:
# Historic data
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List:
since_ms: int, is_new_pair: bool = False) -> List:
"""
Get candle history using asyncio and returns the list of candles.
Handles all async work for this.
@@ -1190,7 +1207,7 @@ class Exchange:
"""
return asyncio.get_event_loop().run_until_complete(
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
since_ms=since_ms))
since_ms=since_ms, is_new_pair=is_new_pair))
def get_historic_ohlcv_as_df(self, pair: str, timeframe: str,
since_ms: int) -> DataFrame:
@@ -1205,11 +1222,12 @@ class Exchange:
return ohlcv_to_dataframe(ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=self._ohlcv_partial_candle)
async def _async_get_historic_ohlcv(self, pair: str,
timeframe: str,
since_ms: int) -> List:
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, is_new_pair: bool
) -> List:
"""
Download historic ohlcv
:param is_new_pair: used by binance subclass to allow "fast" new pair downloading
"""
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(timeframe)
@@ -1222,21 +1240,22 @@ class Exchange:
pair, timeframe, since) for since in
range(since_ms, arrow.utcnow().int_timestamp * 1000, one_call)]
results = await asyncio.gather(*input_coroutines, return_exceptions=True)
# Combine gathered results
data: List = []
for res in results:
if isinstance(res, Exception):
logger.warning("Async code raised an exception: %s", res.__class__.__name__)
continue
# Deconstruct tuple if it's not an exception
p, _, new_data = res
if p == pair:
data.extend(new_data)
# Chunk requests into batches of 100 to avoid overwelming ccxt Throttling
for input_coro in chunks(input_coroutines, 100):
results = await asyncio.gather(*input_coro, return_exceptions=True)
for res in results:
if isinstance(res, Exception):
logger.warning("Async code raised an exception: %s", res.__class__.__name__)
continue
# Deconstruct tuple if it's not an exception
p, _, new_data = res
if p == pair:
data.extend(new_data)
# Sort data again after extending the result - above calls return in "async order"
data = sorted(data, key=lambda x: x[0])
logger.info("Downloaded data for %s with length %s.", pair, len(data))
logger.info(f"Downloaded data for {pair} with length {len(data)}.")
return data
def refresh_latest_ohlcv(self, pair_list: ListPairsWithTimeframes, *,

View File

@@ -2,6 +2,7 @@
import logging
from typing import Dict
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
@@ -21,3 +22,12 @@ class Gateio(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
}
_headers = {'X-Gate-Channel-Id': 'freqtrade'}
def validate_ordertypes(self, order_types: Dict) -> None:
super().validate_ordertypes(order_types)
if any(v == 'market' for k, v in order_types.items()):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')

View File

@@ -21,4 +21,6 @@ class Kucoin(Exchange):
_ft_has: Dict = {
"l2_limit_range": [20, 100],
"l2_limit_range_required": False,
"order_time_in_force": ['gtc', 'fok', 'ioc'],
"time_in_force_parameter": "timeInForce",
}

View File

@@ -83,10 +83,10 @@ class FreqtradeBot(LoggingMixin):
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
# Attach Dataprovider to Strategy baseclass
IStrategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets
# Attach Dataprovider to strategy instance
self.strategy.dp = self.dataprovider
# Attach Wallets to strategy instance
self.strategy.wallets = self.wallets
# Initializing Edge only if enabled
self.edge = Edge(self.config, self.exchange, self.strategy) if \
@@ -99,7 +99,7 @@ class FreqtradeBot(LoggingMixin):
self.state = State[initial_state.upper()] if initial_state else State.STOPPED
# Protect sell-logic from forcesell and vice versa
self._sell_lock = Lock()
self._exit_lock = Lock()
LoggingMixin.__init__(self, logger, timeframe_to_seconds(self.strategy.timeframe))
def notify_status(self, msg: str) -> None:
@@ -139,7 +139,7 @@ class FreqtradeBot(LoggingMixin):
# Only update open orders on startup
# This will update the database after the initial migration
self.update_open_orders()
self.startup_update_open_orders()
def process(self) -> None:
"""
@@ -160,20 +160,20 @@ class FreqtradeBot(LoggingMixin):
# Refreshing candles
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
self.strategy.informative_pairs())
self.strategy.gather_informative_pairs())
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
self.strategy.analyze(self.active_pair_whitelist)
with self._sell_lock:
with self._exit_lock:
# Check and handle any timed out open orders
self.check_handle_timedout()
# Protect from collisions with forcesell.
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
# while selling is in process, since telegram messages arrive in an different thread.
with self._sell_lock:
with self._exit_lock:
trades = Trade.get_open_trades()
# First process current opened trades (positions)
self.exit_positions(trades)
@@ -237,7 +237,7 @@ class FreqtradeBot(LoggingMixin):
open_trades = len(Trade.get_open_trades())
return max(0, self.config['max_open_trades'] - open_trades)
def update_open_orders(self):
def startup_update_open_orders(self):
"""
Updates open orders based on order list kept in the database.
Mainly updates the state of orders - but may also close trades
@@ -296,9 +296,9 @@ class FreqtradeBot(LoggingMixin):
if sell_order:
self.refind_lost_order(trade)
else:
self.reupdate_buy_order_fees(trade)
self.reupdate_enter_order_fees(trade)
def reupdate_buy_order_fees(self, trade: Trade):
def reupdate_enter_order_fees(self, trade: Trade):
"""
Get buy order from database, and try to reupdate.
Handles trades where the initial fee-update did not work.
@@ -476,21 +476,21 @@ class FreqtradeBot(LoggingMixin):
time_in_force = self.strategy.order_time_in_force['buy']
if price:
buy_limit_requested = price
enter_limit_requested = price
else:
# Calculate price
proposed_buy_rate = self.exchange.get_rate(pair, refresh=True, side="buy")
proposed_enter_rate = self.exchange.get_rate(pair, refresh=True, side="buy")
custom_entry_price = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=proposed_buy_rate)(
default_retval=proposed_enter_rate)(
pair=pair, current_time=datetime.now(timezone.utc),
proposed_rate=proposed_buy_rate)
proposed_rate=proposed_enter_rate)
buy_limit_requested = self.get_valid_price(custom_entry_price, proposed_buy_rate)
enter_limit_requested = self.get_valid_price(custom_entry_price, proposed_enter_rate)
if not buy_limit_requested:
if not enter_limit_requested:
raise PricingError('Could not determine buy price.')
min_stake_amount = self.exchange.get_min_pair_stake_amount(pair, buy_limit_requested,
min_stake_amount = self.exchange.get_min_pair_stake_amount(pair, enter_limit_requested,
self.strategy.stoploss)
if not self.edge:
@@ -498,7 +498,7 @@ class FreqtradeBot(LoggingMixin):
stake_amount = strategy_safe_wrapper(self.strategy.custom_stake_amount,
default_retval=stake_amount)(
pair=pair, current_time=datetime.now(timezone.utc),
current_rate=buy_limit_requested, proposed_stake=stake_amount,
current_rate=enter_limit_requested, proposed_stake=stake_amount,
min_stake=min_stake_amount, max_stake=max_stake_amount)
stake_amount = self.wallets._validate_stake_amount(pair, stake_amount, min_stake_amount)
@@ -508,27 +508,27 @@ class FreqtradeBot(LoggingMixin):
logger.info(f"Buy signal found: about create a new trade for {pair} with stake_amount: "
f"{stake_amount} ...")
amount = stake_amount / buy_limit_requested
amount = stake_amount / enter_limit_requested
order_type = self.strategy.order_types['buy']
if forcebuy:
# Forcebuy can define a different ordertype
order_type = self.strategy.order_types.get('forcebuy', order_type)
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=amount, rate=buy_limit_requested,
pair=pair, order_type=order_type, amount=amount, rate=enter_limit_requested,
time_in_force=time_in_force, current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of buying {pair}")
return False
amount = self.exchange.amount_to_precision(pair, amount)
order = self.exchange.create_order(pair=pair, ordertype=order_type, side="buy",
amount=amount, rate=buy_limit_requested,
amount=amount, rate=enter_limit_requested,
time_in_force=time_in_force)
order_obj = Order.parse_from_ccxt_object(order, pair, 'buy')
order_id = order['id']
order_status = order.get('status', None)
# we assume the order is executed at the price requested
buy_limit_filled_price = buy_limit_requested
enter_limit_filled_price = enter_limit_requested
amount_requested = amount
if order_status == 'expired' or order_status == 'rejected':
@@ -551,13 +551,13 @@ class FreqtradeBot(LoggingMixin):
)
stake_amount = order['cost']
amount = safe_value_fallback(order, 'filled', 'amount')
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# in case of FOK the order may be filled immediately and fully
elif order_status == 'closed':
stake_amount = order['cost']
amount = safe_value_fallback(order, 'filled', 'amount')
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
@@ -569,8 +569,8 @@ class FreqtradeBot(LoggingMixin):
amount_requested=amount_requested,
fee_open=fee,
fee_close=fee,
open_rate=buy_limit_filled_price,
open_rate_requested=buy_limit_requested,
open_rate=enter_limit_filled_price,
open_rate_requested=enter_limit_requested,
open_date=datetime.utcnow(),
exchange=self.exchange.id,
open_order_id=order_id,
@@ -590,11 +590,11 @@ class FreqtradeBot(LoggingMixin):
# Updating wallets
self.wallets.update()
self._notify_buy(trade, order_type)
self._notify_enter(trade, order_type)
return True
def _notify_buy(self, trade: Trade, order_type: str) -> None:
def _notify_enter(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a buy occurred.
"""
@@ -617,7 +617,7 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def _notify_buy_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
def _notify_enter_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a buy cancel occurred.
"""
@@ -643,7 +643,7 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def _notify_buy_fill(self, trade: Trade) -> None:
def _notify_enter_fill(self, trade: Trade) -> None:
msg = {
'trade_id': trade.id,
'type': RPCMessageType.BUY_FILL,
@@ -746,7 +746,7 @@ class FreqtradeBot(LoggingMixin):
except InvalidOrderException as e:
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Selling the trade forcefully')
logger.warning('Exiting the trade forcefully')
self.execute_trade_exit(trade, trade.stop_loss, sell_reason=SellCheckTuple(
sell_type=SellType.EMERGENCY_SELL))
@@ -784,7 +784,7 @@ class FreqtradeBot(LoggingMixin):
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
reason='Auto lock')
self._notify_sell(trade, "stoploss")
self._notify_exit(trade, "stoploss")
return True
if trade.open_order_id or not trade.is_open:
@@ -853,20 +853,20 @@ class FreqtradeBot(LoggingMixin):
logger.warning(f"Could not create trailing stoploss order "
f"for pair {trade.pair}.")
def _check_and_execute_sell(self, trade: Trade, sell_rate: float,
def _check_and_execute_exit(self, trade: Trade, exit_rate: float,
buy: bool, sell: bool, sell_tag: Optional[str]) -> bool:
"""
Check and execute sell
Check and execute exit
"""
should_sell = self.strategy.should_sell(
trade, sell_rate, datetime.now(timezone.utc), buy, sell,
trade, exit_rate, datetime.now(timezone.utc), buy, sell,
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
)
if should_sell.sell_flag:
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}. Tag: {sell_tag if sell_tag is not None else "None"}')
self.execute_trade_exit(trade, sell_rate, should_sell,sell_tag)
self.execute_trade_exit(trade, exit_rate, should_sell,sell_tag)
return True
return False
@@ -909,7 +909,7 @@ class FreqtradeBot(LoggingMixin):
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['TIMEOUT'])
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['TIMEOUT'])
elif (order['side'] == 'sell' and (order['status'] == 'open' or fully_cancelled) and (
fully_cancelled
@@ -918,7 +918,7 @@ class FreqtradeBot(LoggingMixin):
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['TIMEOUT'])
self.handle_cancel_exit(trade, order, constants.CANCEL_REASON['TIMEOUT'])
def cancel_all_open_orders(self) -> None:
"""
@@ -934,13 +934,13 @@ class FreqtradeBot(LoggingMixin):
continue
if order['side'] == 'buy':
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
elif order['side'] == 'sell':
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
self.handle_cancel_exit(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
Trade.commit()
def handle_cancel_buy(self, trade: Trade, order: Dict, reason: str) -> bool:
def handle_cancel_enter(self, trade: Trade, order: Dict, reason: str) -> bool:
"""
Buy cancel - cancel order
:return: True if order was fully cancelled
@@ -997,11 +997,11 @@ class FreqtradeBot(LoggingMixin):
reason += f", {constants.CANCEL_REASON['PARTIALLY_FILLED']}"
self.wallets.update()
self._notify_buy_cancel(trade, order_type=self.strategy.order_types['buy'],
reason=reason)
self._notify_enter_cancel(trade, order_type=self.strategy.order_types['buy'],
reason=reason)
return was_trade_fully_canceled
def handle_cancel_sell(self, trade: Trade, order: Dict, reason: str) -> str:
def handle_cancel_exit(self, trade: Trade, order: Dict, reason: str) -> str:
"""
Sell cancel - cancel order and update trade
:return: Reason for cancel
@@ -1035,14 +1035,14 @@ class FreqtradeBot(LoggingMixin):
reason = constants.CANCEL_REASON['PARTIALLY_FILLED_KEEP_OPEN']
self.wallets.update()
self._notify_sell_cancel(
self._notify_exit_cancel(
trade,
order_type=self.strategy.order_types['sell'],
reason=reason
)
return reason
def _safe_sell_amount(self, pair: str, amount: float) -> float:
def _safe_exit_amount(self, pair: str, amount: float) -> float:
"""
Get sellable amount.
Should be trade.amount - but will fall back to the available amount if necessary.
@@ -1114,7 +1114,7 @@ class FreqtradeBot(LoggingMixin):
# but we allow this value to be changed)
order_type = self.strategy.order_types.get("forcesell", order_type)
amount = self._safe_sell_amount(trade.pair, trade.amount)
amount = self._safe_exit_amount(trade.pair, trade.amount)
time_in_force = self.strategy.order_time_in_force['sell']
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
@@ -1155,11 +1155,11 @@ class FreqtradeBot(LoggingMixin):
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
reason='Auto lock')
self._notify_sell(trade, order_type)
self._notify_exit(trade, order_type)
return True
def _notify_sell(self, trade: Trade, order_type: str, fill: bool = False) -> None:
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False) -> None:
"""
Sends rpc notification when a sell occurred.
"""
@@ -1201,7 +1201,7 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
def _notify_exit_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a sell cancel occurred.
"""
@@ -1222,7 +1222,7 @@ class FreqtradeBot(LoggingMixin):
'exchange': trade.exchange.capitalize(),
'pair': trade.pair,
'gain': gain,
'limit': profit_rate,
'limit': profit_rate or 0,
'order_type': order_type,
'amount': trade.amount,
'open_rate': trade.open_rate,
@@ -1231,7 +1231,7 @@ class FreqtradeBot(LoggingMixin):
'profit_ratio': profit_ratio,
'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date,
'close_date': trade.close_date or datetime.now(timezone.utc),
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
'reason': reason,
@@ -1296,16 +1296,28 @@ class FreqtradeBot(LoggingMixin):
# Updating wallets when order is closed
if not trade.is_open:
if not stoploss_order and not trade.open_order_id:
self._notify_sell(trade, '', True)
self.protections.stop_per_pair(trade.pair)
self.protections.global_stop()
self._notify_exit(trade, '', True)
self.handle_protections(trade.pair)
self.wallets.update()
elif not trade.open_order_id:
# Buy fill
self._notify_buy_fill(trade)
self._notify_enter_fill(trade)
return False
def handle_protections(self, pair: str) -> None:
prot_trig = self.protections.stop_per_pair(pair)
if prot_trig:
msg = {'type': RPCMessageType.PROTECTION_TRIGGER, }
msg.update(prot_trig.to_json())
self.rpc.send_msg(msg)
prot_trig_glb = self.protections.global_stop()
if prot_trig_glb:
msg = {'type': RPCMessageType.PROTECTION_TRIGGER_GLOBAL, }
msg.update(prot_trig_glb.to_json())
self.rpc.send_msg(msg)
def apply_fee_conditional(self, trade: Trade, trade_base_currency: str,
amount: float, fee_abs: float) -> float:
"""

View File

@@ -87,7 +87,7 @@ def setup_logging(config: Dict[str, Any]) -> None:
# syslog config. The messages should be equal for this.
handler_sl.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
logging.root.addHandler(handler_sl)
elif s[0] == 'journald':
elif s[0] == 'journald': # pragma: no cover
try:
from systemd.journal import JournaldLogHandler
except ImportError:

View File

@@ -9,7 +9,7 @@ from typing import Any, List
# check min. python version
if sys.version_info < (3, 7):
if sys.version_info < (3, 7): # pragma: no cover
sys.exit("Freqtrade requires Python version >= 3.7")
from freqtrade.commands import Arguments
@@ -46,7 +46,7 @@ def main(sysargv: List[str] = None) -> None:
"`freqtrade --help` or `freqtrade <command> --help`."
)
except SystemExit as e:
except SystemExit as e: # pragma: no cover
return_code = e
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
@@ -60,5 +60,5 @@ def main(sysargv: List[str] = None) -> None:
sys.exit(return_code)
if __name__ == '__main__':
if __name__ == '__main__': # pragma: no cover
main()

View File

@@ -11,7 +11,7 @@ from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.data import history
from freqtrade.data.btanalysis import trade_list_to_dataframe
@@ -61,8 +61,7 @@ class Backtesting:
self.config = config
self.results: Optional[Dict[str, Any]] = None
# Reset keys for backtesting
remove_credentials(self.config)
config['dry_run'] = True
self.strategylist: List[IStrategy] = []
self.all_results: Dict[str, Dict] = {}
@@ -86,7 +85,7 @@ class Backtesting:
"configuration or as cli argument `--timeframe 5m`")
self.timeframe = str(self.config.get('timeframe'))
self.timeframe_min = timeframe_to_minutes(self.timeframe)
self.init_backtest_detail()
self.pairlists = PairListManager(self.exchange, self.config)
if 'VolumePairList' in self.pairlists.name_list:
raise OperationalException("VolumePairList not allowed for backtesting.")
@@ -109,14 +108,6 @@ class Backtesting:
else:
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
Trade.use_db = False
Trade.reset_trades()
PairLocks.timeframe = self.config['timeframe']
PairLocks.use_db = False
PairLocks.reset_locks()
self.wallets = Wallets(self.config, self.exchange, log=False)
self.timerange = TimeRange.parse_timerange(
None if self.config.get('timerange') is None else str(self.config.get('timerange')))
@@ -125,9 +116,7 @@ class Backtesting:
# Add maximum startup candle count to configuration for informative pairs support
self.config['startup_candle_count'] = self.required_startup
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
self.progress = BTProgress()
self.abort = False
self.init_backtest()
def __del__(self):
self.cleanup()
@@ -137,6 +126,28 @@ class Backtesting:
PairLocks.use_db = True
Trade.use_db = True
def init_backtest_detail(self):
# Load detail timeframe if specified
self.timeframe_detail = str(self.config.get('timeframe_detail', ''))
if self.timeframe_detail:
self.timeframe_detail_min = timeframe_to_minutes(self.timeframe_detail)
if self.timeframe_min <= self.timeframe_detail_min:
raise OperationalException(
"Detail timeframe must be smaller than strategy timeframe.")
else:
self.timeframe_detail_min = 0
self.detail_data: Dict[str, DataFrame] = {}
def init_backtest(self):
self.prepare_backtest(False)
self.wallets = Wallets(self.config, self.exchange, log=False)
self.progress = BTProgress()
self.abort = False
def _set_strategy(self, strategy: IStrategy):
"""
Load strategy into backtesting
@@ -144,7 +155,7 @@ class Backtesting:
self.strategy: IStrategy = strategy
strategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets
strategy.wallets = self.wallets
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case
@@ -188,6 +199,23 @@ class Backtesting:
self.progress.set_new_value(1)
return data, self.timerange
def load_bt_data_detail(self) -> None:
"""
Loads backtest detail data (smaller timeframe) if necessary.
"""
if self.timeframe_detail:
self.detail_data = history.load_data(
datadir=self.config['datadir'],
pairs=self.pairlists.whitelist,
timeframe=self.timeframe_detail,
timerange=self.timerange,
startup_candles=0,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
else:
self.detail_data = {}
def prepare_backtest(self, enable_protections):
"""
Backtesting setup method - called once for every call to "backtest()".
@@ -199,7 +227,8 @@ class Backtesting:
Trade.reset_trades()
self.rejected_trades = 0
self.dataprovider.clear_cache()
self._load_protections(self.strategy)
if enable_protections:
self._load_protections(self.strategy)
def check_abort(self):
"""
@@ -320,10 +349,8 @@ class Backtesting:
else:
return sell_row[OPEN_IDX]
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
def _get_sell_trade_entry_for_candle(self, trade: LocalTrade,
sell_row: Tuple) -> Optional[LocalTrade]:
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
sell_candle_time, sell_row[BUY_IDX],
@@ -353,6 +380,32 @@ class Backtesting:
return None
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
if self.timeframe_detail and trade.pair in self.detail_data:
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
sell_candle_end = sell_candle_time + timedelta(minutes=self.timeframe_min)
detail_data = self.detail_data[trade.pair]
detail_data = detail_data.loc[
(detail_data['date'] >= sell_candle_time) &
(detail_data['date'] < sell_candle_end)
].copy()
if len(detail_data) == 0:
# Fall back to "regular" data if no detail data was found for this candle
return self._get_sell_trade_entry_for_candle(trade, sell_row)
detail_data.loc[:, 'buy'] = sell_row[BUY_IDX]
detail_data.loc[:, 'sell'] = sell_row[SELL_IDX]
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
for det_row in detail_data[headers].values.tolist():
res = self._get_sell_trade_entry_for_candle(trade, det_row)
if res:
return res
return None
else:
return self._get_sell_trade_entry_for_candle(trade, sell_row)
def _enter_trade(self, pair: str, row: List) -> Optional[LocalTrade]:
try:
stake_amount = self.wallets.get_trade_stake_amount(pair, None)
@@ -601,6 +654,7 @@ class Backtesting:
data: Dict[str, Any] = {}
data, timerange = self.load_bt_data()
self.load_bt_data_detail()
logger.info("Dataload complete. Calculating indicators")
for strat in self.strategylist:

View File

@@ -7,7 +7,8 @@ import logging
from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
@@ -28,11 +29,12 @@ class EdgeCli:
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
# Reset keys for edge
remove_credentials(self.config)
# Ensure using dry-run
self.config['dry_run'] = True
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.strategy = StrategyResolver.load_strategy(self.config)
self.strategy.dp = DataProvider(config, None)
validate_config_consistency(self.config)

View File

@@ -22,6 +22,7 @@ from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
@@ -30,7 +31,7 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
# Suppress scikit-learn FutureWarnings from skopt
@@ -44,7 +45,7 @@ progressbar.streams.wrap_stdout()
logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
INITIAL_POINTS = 5
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
# in the skopt model queue, to optimize memory consumption
@@ -78,10 +79,10 @@ class Hyperopt:
if not self.config.get('hyperopt'):
self.custom_hyperopt = HyperOptAuto(self.config)
self.auto_hyperopt = True
else:
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.auto_hyperopt = False
raise OperationalException(
"Using separate Hyperopt files has been removed in 2021.9. Please convert "
"your existing Hyperopt file to the new Hyperoptable strategy interface")
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
@@ -103,31 +104,6 @@ class Hyperopt:
self.num_epochs_saved = 0
self.current_best_epoch: Optional[Dict[str, Any]] = None
if not self.auto_hyperopt:
# Populate "fallback" functions here
# (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
logger.warning(
"DEPRECATED: Using `populate_indicators()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_indicators = ( # type: ignore
self.custom_hyperopt.populate_indicators) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
logger.warning(
"DEPRECATED: Using `populate_buy_trend()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_buy_trend = ( # type: ignore
self.custom_hyperopt.populate_buy_trend) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
logger.warning(
"DEPRECATED: Using `populate_sell_trend()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_sell_trend = ( # type: ignore
self.custom_hyperopt.populate_sell_trend) # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
@@ -256,7 +232,7 @@ class Hyperopt:
"""
Assign the dimensions in the hyperoptimization space.
"""
if self.auto_hyperopt and HyperoptTools.has_space(self.config, 'protection'):
if HyperoptTools.has_space(self.config, 'protection'):
# Protections can only be optimized when using the Parameter interface
logger.debug("Hyperopt has 'protection' space")
# Enable Protections if protection space is selected.
@@ -265,7 +241,7 @@ class Hyperopt:
if HyperoptTools.has_space(self.config, 'buy'):
logger.debug("Hyperopt has 'buy' space")
self.buy_space = self.custom_hyperopt.indicator_space()
self.buy_space = self.custom_hyperopt.buy_indicator_space()
if HyperoptTools.has_space(self.config, 'sell'):
logger.debug("Hyperopt has 'sell' space")
@@ -285,6 +261,15 @@ class Hyperopt:
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
+ self.roi_space + self.stoploss_space + self.trailing_space)
def assign_params(self, params_dict: Dict, category: str) -> None:
"""
Assign hyperoptable parameters
"""
for attr_name, attr in self.backtesting.strategy.enumerate_parameters(category):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
"""
Used Optimize function.
@@ -296,18 +281,13 @@ class Hyperopt:
# Apply parameters
if HyperoptTools.has_space(self.config, 'buy'):
self.backtesting.strategy.advise_buy = ( # type: ignore
self.custom_hyperopt.buy_strategy_generator(params_dict))
self.assign_params(params_dict, 'buy')
if HyperoptTools.has_space(self.config, 'sell'):
self.backtesting.strategy.advise_sell = ( # type: ignore
self.custom_hyperopt.sell_strategy_generator(params_dict))
self.assign_params(params_dict, 'sell')
if HyperoptTools.has_space(self.config, 'protection'):
for attr_name, attr in self.backtesting.strategy.enumerate_parameters('protection'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
self.assign_params(params_dict, 'protection')
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
@@ -385,10 +365,20 @@ class Hyperopt:
}
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
estimator = self.custom_hyperopt.generate_estimator()
acq_optimizer = "sampling"
if isinstance(estimator, str):
if estimator not in ("GP", "RF", "ET", "GBRT"):
raise OperationalException(f"Estimator {estimator} not supported.")
else:
acq_optimizer = "auto"
logger.info(f"Using estimator {estimator}.")
return Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
base_estimator=estimator,
acq_optimizer=acq_optimizer,
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.random_state,
@@ -517,11 +507,10 @@ class Hyperopt:
f"saved to '{self.results_file}'.")
if self.current_best_epoch:
if self.auto_hyperopt:
HyperoptTools.try_export_params(
self.config,
self.backtesting.strategy.get_strategy_name(),
self.current_best_epoch)
HyperoptTools.try_export_params(
self.config,
self.backtesting.strategy.get_strategy_name(),
self.current_best_epoch)
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
self.print_json)

View File

@@ -4,15 +4,23 @@ This module implements a convenience auto-hyperopt class, which can be used toge
that implement IHyperStrategy interface.
"""
from contextlib import suppress
from typing import Any, Callable, Dict, List
from typing import Callable, Dict, List
from pandas import DataFrame
from freqtrade.exceptions import OperationalException
with suppress(ImportError):
from skopt.space import Dimension
from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_interface import EstimatorType, IHyperOpt
def _format_exception_message(space: str) -> str:
raise OperationalException(
f"The '{space}' space is included into the hyperoptimization "
f"but no parameter for this space was not found in your Strategy. "
f"Please make sure to have parameters for this space enabled for optimization "
f"or remove the '{space}' space from hyperoptimization.")
class HyperOptAuto(IHyperOpt):
@@ -22,26 +30,6 @@ class HyperOptAuto(IHyperOpt):
sell_indicator_space methods, but other hyperopt methods can be overridden as well.
"""
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
for attr_name, attr in self.strategy.enumerate_parameters('buy'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params[attr_name]
return self.strategy.populate_buy_trend(dataframe, metadata)
return populate_buy_trend
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def populate_sell_trend(dataframe: DataFrame, metadata: dict):
for attr_name, attr in self.strategy.enumerate_parameters('sell'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params[attr_name]
return self.strategy.populate_sell_trend(dataframe, metadata)
return populate_sell_trend
def _get_func(self, name) -> Callable:
"""
Return a function defined in Strategy.HyperOpt class, or one defined in super() class.
@@ -60,21 +48,22 @@ class HyperOptAuto(IHyperOpt):
if attr.optimize:
yield attr.get_space(attr_name)
def _get_indicator_space(self, category, fallback_method_name):
def _get_indicator_space(self, category):
# TODO: is this necessary, or can we call "generate_space" directly?
indicator_space = list(self._generate_indicator_space(category))
if len(indicator_space) > 0:
return indicator_space
else:
return self._get_func(fallback_method_name)()
_format_exception_message(category)
def indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('buy', 'indicator_space')
def buy_indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('buy')
def sell_indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('sell', 'sell_indicator_space')
return self._get_indicator_space('sell')
def protection_space(self) -> List['Dimension']:
return self._get_indicator_space('protection', 'protection_space')
return self._get_indicator_space('protection')
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
return self._get_func('generate_roi_table')(params)
@@ -90,3 +79,6 @@ class HyperOptAuto(IHyperOpt):
def trailing_space(self) -> List['Dimension']:
return self._get_func('trailing_space')()
def generate_estimator(self) -> EstimatorType:
return self._get_func('generate_estimator')()

View File

@@ -5,11 +5,11 @@ This module defines the interface to apply for hyperopt
import logging
import math
from abc import ABC
from typing import Any, Callable, Dict, List
from typing import Dict, List, Union
from sklearn.base import RegressorMixin
from skopt.space import Categorical, Dimension, Integer
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import round_dict
from freqtrade.optimize.space import SKDecimal
@@ -18,12 +18,7 @@ from freqtrade.strategy import IStrategy
logger = logging.getLogger(__name__)
def _format_exception_message(method: str, space: str) -> str:
return (f"The '{space}' space is included into the hyperoptimization "
f"but {method}() method is not found in your "
f"custom Hyperopt class. You should either implement this "
f"method or remove the '{space}' space from hyperoptimization.")
EstimatorType = Union[RegressorMixin, str]
class IHyperOpt(ABC):
@@ -45,36 +40,13 @@ class IHyperOpt(ABC):
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
IHyperOpt.timeframe = str(config['timeframe'])
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def generate_estimator(self) -> EstimatorType:
"""
Create a buy strategy generator.
Return base_estimator.
Can be any of "GP", "RF", "ET", "GBRT" or an instance of a class
inheriting from RegressorMixin (from sklearn).
"""
raise OperationalException(_format_exception_message('buy_strategy_generator', 'buy'))
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
"""
Create a sell strategy generator.
"""
raise OperationalException(_format_exception_message('sell_strategy_generator', 'sell'))
def protection_space(self) -> List[Dimension]:
"""
Create a protection space.
Only supported by the Parameter interface.
"""
raise OperationalException(_format_exception_message('indicator_space', 'protection'))
def indicator_space(self) -> List[Dimension]:
"""
Create an indicator space.
"""
raise OperationalException(_format_exception_message('indicator_space', 'buy'))
def sell_indicator_space(self) -> List[Dimension]:
"""
Create a sell indicator space.
"""
raise OperationalException(_format_exception_message('sell_indicator_space', 'sell'))
return 'ET'
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
"""

View File

@@ -0,0 +1,41 @@
"""
MaxDrawDownHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss
class MaxDrawDownHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation optimizes for max draw down and profit
Less max drawdown more profit -> Lower return value
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function.
Uses profit ratio weighted max_drawdown when drawdown is available.
Otherwise directly optimizes profit ratio.
"""
total_profit = results['profit_abs'].sum()
try:
max_drawdown = calculate_max_drawdown(results, value_col='profit_abs')
except ValueError:
# No losing trade, therefore no drawdown.
return -total_profit
return -total_profit / max_drawdown[0]

View File

@@ -7,6 +7,7 @@ from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple
import numpy as np
import pandas as pd
import rapidjson
import tabulate
from colorama import Fore, Style
@@ -298,8 +299,8 @@ class HyperoptTools():
f"Objective: {results['loss']:.5f}")
@staticmethod
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
has_drawdown: bool) -> pd.DataFrame:
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
@@ -435,8 +436,7 @@ class HyperoptTools():
return table
@staticmethod
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
csv_file: str) -> None:
def export_csv_file(config: dict, results: list, csv_file: str) -> None:
"""
Log result to csv-file
"""

View File

@@ -464,6 +464,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'max_open_trades_setting': (config['max_open_trades']
if config['max_open_trades'] != float('inf') else -1),
'timeframe': config['timeframe'],
'timeframe_detail': config.get('timeframe_detail', ''),
'timerange': config.get('timerange', ''),
'enable_protections': config.get('enable_protections', False),
'strategy_name': strategy,

View File

@@ -2,7 +2,7 @@
This module contains the class to persist trades into SQLite
"""
import logging
from datetime import datetime, timezone
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from typing import Any, Dict, List, Optional
@@ -835,17 +835,21 @@ class Trade(_DECL_BASE, LocalTrade):
return total_open_stake_amount or 0
@staticmethod
def get_overall_performance() -> List[Dict[str, Any]]:
def get_overall_performance(minutes=None) -> List[Dict[str, Any]]:
"""
Returns List of dicts containing all Trades, including profit and trade count
NOTE: Not supported in Backtesting.
"""
filters = [Trade.is_open.is_(False)]
if minutes:
start_date = datetime.now(timezone.utc) - timedelta(minutes=minutes)
filters.append(Trade.close_date >= start_date)
pair_rates = Trade.query.with_entities(
Trade.pair,
func.sum(Trade.close_profit).label('profit_sum'),
func.sum(Trade.close_profit_abs).label('profit_sum_abs'),
func.count(Trade.pair).label('count')
).filter(Trade.is_open.is_(False))\
).filter(*filters)\
.group_by(Trade.pair) \
.order_by(desc('profit_sum_abs')) \
.all()

View File

@@ -30,7 +30,8 @@ class PairLocks():
PairLocks.locks = []
@staticmethod
def lock_pair(pair: str, until: datetime, reason: str = None, *, now: datetime = None) -> None:
def lock_pair(pair: str, until: datetime, reason: str = None, *,
now: datetime = None) -> PairLock:
"""
Create PairLock from now to "until".
Uses database by default, unless PairLocks.use_db is set to False,
@@ -52,6 +53,7 @@ class PairLocks():
PairLock.query.session.commit()
else:
PairLocks.locks.append(lock)
return lock
@staticmethod
def get_pair_locks(pair: Optional[str], now: Optional[datetime] = None) -> List[PairLock]:

View File

@@ -8,6 +8,7 @@ from typing import Any, Dict, List, Optional
import arrow
from pandas import DataFrame
from freqtrade.configuration import PeriodicCache
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural
from freqtrade.plugins.pairlist.IPairList import IPairList
@@ -18,14 +19,15 @@ logger = logging.getLogger(__name__)
class AgeFilter(IPairList):
# Checked symbols cache (dictionary of ticker symbol => timestamp)
_symbolsChecked: Dict[str, int] = {}
def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
# Checked symbols cache (dictionary of ticker symbol => timestamp)
self._symbolsChecked: Dict[str, int] = {}
self._symbolsCheckFailed = PeriodicCache(maxsize=1000, ttl=86_400)
self._min_days_listed = pairlistconfig.get('min_days_listed', 10)
self._max_days_listed = pairlistconfig.get('max_days_listed', None)
@@ -69,9 +71,12 @@ class AgeFilter(IPairList):
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new allowlist
"""
needed_pairs = [(p, '1d') for p in pairlist if p not in self._symbolsChecked]
needed_pairs = [
(p, '1d') for p in pairlist
if p not in self._symbolsChecked and p not in self._symbolsCheckFailed]
if not needed_pairs:
return pairlist
# Remove pairs that have been removed before
return [p for p in pairlist if p not in self._symbolsCheckFailed]
since_days = -(
self._max_days_listed if self._max_days_listed else self._min_days_listed
@@ -118,5 +123,6 @@ class AgeFilter(IPairList):
" or more than "
f"{self._max_days_listed} {plural(self._max_days_listed, 'day')}"
) if self._max_days_listed else ''), logger.info)
self._symbolsCheckFailed[pair] = arrow.utcnow().int_timestamp * 1000
return False
return False

View File

@@ -2,7 +2,7 @@
Performance pair list filter
"""
import logging
from typing import Dict, List
from typing import Any, Dict, List
import pandas as pd
@@ -15,6 +15,13 @@ logger = logging.getLogger(__name__)
class PerformanceFilter(IPairList):
def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._minutes = pairlistconfig.get('minutes', 0)
@property
def needstickers(self) -> bool:
"""
@@ -40,7 +47,7 @@ class PerformanceFilter(IPairList):
"""
# Get the trading performance for pairs from database
try:
performance = pd.DataFrame(Trade.get_overall_performance())
performance = pd.DataFrame(Trade.get_overall_performance(self._minutes))
except AttributeError:
# Performancefilter does not work in backtesting.
self.log_once("PerformanceFilter is not available in this mode.", logger.warning)

View File

@@ -123,7 +123,7 @@ class VolumePairList(IPairList):
filtered_tickers = [
v for k, v in tickers.items()
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
and v[self._sort_key] is not None)]
and (self._use_range or v[self._sort_key] is not None))]
pairlist = [s['symbol'] for s in filtered_tickers]
pairlist = self.filter_pairlist(pairlist, tickers)

View File

@@ -17,7 +17,7 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
if keep_invalid:
for pair_wc in wildcardpl:
try:
comp = re.compile(pair_wc)
comp = re.compile(pair_wc, re.IGNORECASE)
result_partial = [
pair for pair in available_pairs if re.fullmatch(comp, pair)
]
@@ -33,7 +33,7 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
else:
for pair_wc in wildcardpl:
try:
comp = re.compile(pair_wc)
comp = re.compile(pair_wc, re.IGNORECASE)
result += [
pair for pair in available_pairs if re.fullmatch(comp, pair)
]

View File

@@ -6,6 +6,7 @@ from datetime import datetime, timezone
from typing import Dict, List, Optional
from freqtrade.persistence import PairLocks
from freqtrade.persistence.models import PairLock
from freqtrade.plugins.protections import IProtection
from freqtrade.resolvers import ProtectionResolver
@@ -43,30 +44,28 @@ class ProtectionManager():
"""
return [{p.name: p.short_desc()} for p in self._protection_handlers]
def global_stop(self, now: Optional[datetime] = None) -> bool:
def global_stop(self, now: Optional[datetime] = None) -> Optional[PairLock]:
if not now:
now = datetime.now(timezone.utc)
result = False
result = None
for protection_handler in self._protection_handlers:
if protection_handler.has_global_stop:
result, until, reason = protection_handler.global_stop(now)
lock, until, reason = protection_handler.global_stop(now)
# Early stopping - first positive result blocks further trades
if result and until:
if lock and until:
if not PairLocks.is_global_lock(until):
PairLocks.lock_pair('*', until, reason, now=now)
result = True
result = PairLocks.lock_pair('*', until, reason, now=now)
return result
def stop_per_pair(self, pair, now: Optional[datetime] = None) -> bool:
def stop_per_pair(self, pair, now: Optional[datetime] = None) -> Optional[PairLock]:
if not now:
now = datetime.now(timezone.utc)
result = False
result = None
for protection_handler in self._protection_handlers:
if protection_handler.has_local_stop:
result, until, reason = protection_handler.stop_per_pair(pair, now)
if result and until:
lock, until, reason = protection_handler.stop_per_pair(pair, now)
if lock and until:
if not PairLocks.is_pair_locked(pair, until):
PairLocks.lock_pair(pair, until, reason, now=now)
result = True
result = PairLocks.lock_pair(pair, until, reason, now=now)
return result

View File

@@ -9,7 +9,6 @@ from typing import Dict
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN, USERPATH_HYPEROPTS
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.resolvers import IResolver
@@ -17,43 +16,6 @@ from freqtrade.resolvers import IResolver
logger = logging.getLogger(__name__)
class HyperOptResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt class
"""
object_type = IHyperOpt
object_type_str = "Hyperopt"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = None
@staticmethod
def load_hyperopt(config: Dict) -> IHyperOpt:
"""
Load the custom hyperopt class from config parameter
:param config: configuration dictionary
"""
if not config.get('hyperopt'):
raise OperationalException("No Hyperopt set. Please use `--hyperopt` to specify "
"the Hyperopt class to use.")
hyperopt_name = config['hyperopt']
hyperopt = HyperOptResolver.load_object(hyperopt_name, config,
kwargs={'config': config},
extra_dir=config.get('hyperopt_path'))
if not hasattr(hyperopt, 'populate_indicators'):
logger.info("Hyperopt class does not provide populate_indicators() method. "
"Using populate_indicators from the strategy.")
if not hasattr(hyperopt, 'populate_buy_trend'):
logger.info("Hyperopt class does not provide populate_buy_trend() method. "
"Using populate_buy_trend from the strategy.")
if not hasattr(hyperopt, 'populate_sell_trend'):
logger.info("Hyperopt class does not provide populate_sell_trend() method. "
"Using populate_sell_trend from the strategy.")
return hyperopt
class HyperOptLossResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt loss class

View File

@@ -4,6 +4,7 @@ from copy import deepcopy
from fastapi import APIRouter, BackgroundTasks, Depends
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.enums import BacktestState
from freqtrade.exceptions import DependencyException
from freqtrade.rpc.api_server.api_schemas import BacktestRequest, BacktestResponse
@@ -42,35 +43,40 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
# Reload strategy
lastconfig = ApiServer._bt_last_config
strat = StrategyResolver.load_strategy(btconfig)
validate_config_consistency(btconfig)
if (
not ApiServer._bt
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('dry_run_wallet') != btconfig.get('dry_run_wallet', 0)
or lastconfig.get('timeframe_detail') != btconfig.get('timeframe_detail')
or lastconfig.get('timerange') != btconfig['timerange']
):
from freqtrade.optimize.backtesting import Backtesting
ApiServer._bt = Backtesting(btconfig)
if ApiServer._bt.timeframe_detail:
ApiServer._bt.load_bt_data_detail()
else:
ApiServer._bt.config = btconfig
ApiServer._bt.init_backtest()
# Only reload data if timeframe changed.
if (
not ApiServer._bt_data
or not ApiServer._bt_timerange
or lastconfig.get('stake_amount') != btconfig.get('stake_amount')
or lastconfig.get('enable_protections') != btconfig.get('enable_protections')
or lastconfig.get('protections') != btconfig.get('protections', [])
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timerange') != btconfig['timerange']
):
lastconfig['timerange'] = btconfig['timerange']
lastconfig['protections'] = btconfig.get('protections', [])
lastconfig['enable_protections'] = btconfig.get('enable_protections')
lastconfig['dry_run_wallet'] = btconfig.get('dry_run_wallet')
lastconfig['timeframe'] = strat.timeframe
ApiServer._bt_data, ApiServer._bt_timerange = ApiServer._bt.load_bt_data()
lastconfig['timerange'] = btconfig['timerange']
lastconfig['timeframe'] = strat.timeframe
lastconfig['protections'] = btconfig.get('protections', [])
lastconfig['enable_protections'] = btconfig.get('enable_protections')
lastconfig['dry_run_wallet'] = btconfig.get('dry_run_wallet')
ApiServer._bt.abort = False
min_date, max_date = ApiServer._bt.backtest_one_strategy(
strat, ApiServer._bt_data, ApiServer._bt_timerange)
ApiServer._bt.results = generate_backtest_stats(
ApiServer._bt_data, ApiServer._bt.all_results,
min_date=min_date, max_date=max_date)

View File

@@ -46,6 +46,12 @@ class Balances(BaseModel):
value: float
stake: str
note: str
starting_capital: float
starting_capital_ratio: float
starting_capital_pct: float
starting_capital_fiat: float
starting_capital_fiat_ratio: float
starting_capital_fiat_pct: float
class Count(BaseModel):
@@ -324,6 +330,7 @@ class PairHistory(BaseModel):
class BacktestRequest(BaseModel):
strategy: str
timeframe: Optional[str]
timeframe_detail: Optional[str]
timerange: Optional[str]
max_open_trades: Optional[int]
stake_amount: Optional[Union[float, str]]
@@ -340,3 +347,8 @@ class BacktestResponse(BaseModel):
trade_count: Optional[float]
# TODO: Properly type backtestresult...
backtest_result: Optional[Dict[str, Any]]
class SysInfo(BaseModel):
cpu_pct: List[float]
ram_pct: float

View File

@@ -18,7 +18,8 @@ from freqtrade.rpc.api_server.api_schemas import (AvailablePairs, Balances, Blac
OpenTradeSchema, PairHistory, PerformanceEntry,
Ping, PlotConfig, Profit, ResultMsg, ShowConfig,
Stats, StatusMsg, StrategyListResponse,
StrategyResponse, Version, WhitelistResponse)
StrategyResponse, SysInfo, Version,
WhitelistResponse)
from freqtrade.rpc.api_server.deps import get_config, get_rpc, get_rpc_optional
from freqtrade.rpc.rpc import RPCException
@@ -259,3 +260,8 @@ def list_available_pairs(timeframe: Optional[str] = None, stake_currency: Option
'pair_interval': pair_interval,
}
return result
@router.get('/sysinfo', response_model=SysInfo, tags=['info'])
def sysinfo():
return RPC._rpc_sysinfo()

View File

@@ -5,6 +5,20 @@ import time
import uvicorn
def asyncio_setup() -> None: # pragma: no cover
# Set eventloop for win32 setups
# Reverts a change done in uvicorn 0.15.0 - which now sets the eventloop
# via policy.
import sys
if sys.version_info >= (3, 8) and sys.platform == "win32":
import asyncio
import selectors
selector = selectors.SelectSelector()
loop = asyncio.SelectorEventLoop(selector)
asyncio.set_event_loop(loop)
class UvicornServer(uvicorn.Server):
"""
Multithreaded server - as found in https://github.com/encode/uvicorn/issues/742
@@ -28,7 +42,7 @@ class UvicornServer(uvicorn.Server):
try:
import uvloop # noqa
except ImportError: # pragma: no cover
from uvicorn.loops.asyncio import asyncio_setup
asyncio_setup()
else:
asyncio.set_event_loop(uvloop.new_event_loop())

View File

@@ -8,6 +8,7 @@ from math import isnan
from typing import Any, Dict, List, Optional, Tuple, Union
import arrow
import psutil
from numpy import NAN, inf, int64, mean
from pandas import DataFrame
@@ -403,8 +404,11 @@ class RPC:
# Doing the sum is not right - overall profit needs to be based on initial capital
profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0
starting_balance = self._freqtrade.wallets.get_starting_balance()
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
profit_closed_ratio_fromstart = 0
profit_all_ratio_fromstart = 0
if starting_balance:
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
profit_all_fiat = self._fiat_converter.convert_amount(
profit_all_coin_sum,
@@ -455,6 +459,9 @@ class RPC:
raise RPCException('Error getting current tickers.')
self._freqtrade.wallets.update(require_update=False)
starting_capital = self._freqtrade.wallets.get_starting_balance()
starting_cap_fiat = self._fiat_converter.convert_amount(
starting_capital, stake_currency, fiat_display_currency) if self._fiat_converter else 0
for coin, balance in self._freqtrade.wallets.get_all_balances().items():
if not balance.total:
@@ -490,15 +497,25 @@ class RPC:
else:
raise RPCException('All balances are zero.')
symbol = fiat_display_currency
value = self._fiat_converter.convert_amount(total, stake_currency,
symbol) if self._fiat_converter else 0
value = self._fiat_converter.convert_amount(
total, stake_currency, fiat_display_currency) if self._fiat_converter else 0
starting_capital_ratio = 0.0
starting_capital_ratio = (total / starting_capital) - 1 if starting_capital else 0.0
starting_cap_fiat_ratio = (value / starting_cap_fiat) - 1 if starting_cap_fiat else 0.0
return {
'currencies': output,
'total': total,
'symbol': symbol,
'symbol': fiat_display_currency,
'value': value,
'stake': stake_currency,
'starting_capital': starting_capital,
'starting_capital_ratio': starting_capital_ratio,
'starting_capital_pct': round(starting_capital_ratio * 100, 2),
'starting_capital_fiat': starting_cap_fiat,
'starting_capital_fiat_ratio': starting_cap_fiat_ratio,
'starting_capital_fiat_pct': round(starting_cap_fiat_ratio * 100, 2),
'note': 'Simulated balances' if self._freqtrade.config['dry_run'] else ''
}
@@ -545,12 +562,12 @@ class RPC:
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
if order['side'] == 'buy':
fully_canceled = self._freqtrade.handle_cancel_buy(
fully_canceled = self._freqtrade.handle_cancel_enter(
trade, order, CANCEL_REASON['FORCE_SELL'])
if order['side'] == 'sell':
# Cancel order - so it is placed anew with a fresh price.
self._freqtrade.handle_cancel_sell(trade, order, CANCEL_REASON['FORCE_SELL'])
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_SELL'])
if not fully_canceled:
# Get current rate and execute sell
@@ -563,7 +580,7 @@ class RPC:
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
with self._freqtrade._sell_lock:
with self._freqtrade._exit_lock:
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.get_open_trades():
@@ -625,7 +642,7 @@ class RPC:
Handler for delete <id>.
Delete the given trade and close eventually existing open orders.
"""
with self._freqtrade._sell_lock:
with self._freqtrade._exit_lock:
c_count = 0
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:
@@ -885,3 +902,10 @@ class RPC:
'subplots' not in self._freqtrade.strategy.plot_config):
self._freqtrade.strategy.plot_config['subplots'] = {}
return self._freqtrade.strategy.plot_config
@staticmethod
def _rpc_sysinfo() -> Dict[str, Any]:
return {
"cpu_pct": psutil.cpu_percent(interval=1, percpu=True),
"ram_pct": psutil.virtual_memory().percent
}

View File

@@ -303,6 +303,50 @@ class Telegram(RPCHandler):
return message
def compose_message(self, msg: Dict[str, Any], msg_type: RPCMessageType) -> str:
if msg_type == RPCMessageType.BUY:
message = self._format_buy_msg(msg)
elif msg_type in (RPCMessageType.BUY_CANCEL, RPCMessageType.SELL_CANCEL):
msg['message_side'] = 'buy' if msg_type == RPCMessageType.BUY_CANCEL else 'sell'
message = ("\N{WARNING SIGN} *{exchange}:* "
"Cancelling open {message_side} Order for {pair} (#{trade_id}). "
"Reason: {reason}.".format(**msg))
elif msg_type == RPCMessageType.BUY_FILL:
message = ("\N{LARGE CIRCLE} *{exchange}:* "
"Buy order for {pair} (#{trade_id}) filled "
"for {open_rate}.".format(**msg))
elif msg_type == RPCMessageType.SELL_FILL:
message = ("\N{LARGE CIRCLE} *{exchange}:* "
"Sell order for {pair} (#{trade_id}) filled "
"for {close_rate}.".format(**msg))
elif msg_type == RPCMessageType.SELL:
message = self._format_sell_msg(msg)
elif msg_type == RPCMessageType.PROTECTION_TRIGGER:
message = (
"*Protection* triggered due to {reason}. "
"`{pair}` will be locked until `{lock_end_time}`."
).format(**msg)
elif msg_type == RPCMessageType.PROTECTION_TRIGGER_GLOBAL:
message = (
"*Protection* triggered due to {reason}. "
"*All pairs* will be locked until `{lock_end_time}`."
).format(**msg)
elif msg_type == RPCMessageType.STATUS:
message = '*Status:* `{status}`'.format(**msg)
elif msg_type == RPCMessageType.WARNING:
message = '\N{WARNING SIGN} *Warning:* `{status}`'.format(**msg)
elif msg_type == RPCMessageType.STARTUP:
message = '{status}'.format(**msg)
else:
raise NotImplementedError('Unknown message type: {}'.format(msg_type))
return message
def send_msg(self, msg: Dict[str, Any]) -> None:
""" Send a message to telegram channel """
@@ -327,37 +371,7 @@ class Telegram(RPCHandler):
# Notification disabled
return
if msg_type == RPCMessageType.BUY:
message = self._format_buy_msg(msg)
elif msg_type in (RPCMessageType.BUY_CANCEL, RPCMessageType.SELL_CANCEL):
msg['message_side'] = 'buy' if msg_type == RPCMessageType.BUY_CANCEL else 'sell'
message = ("\N{WARNING SIGN} *{exchange}:* "
"Cancelling open {message_side} Order for {pair} (#{trade_id}). "
"Reason: {reason}.".format(**msg))
elif msg_type == RPCMessageType.BUY_FILL:
message = ("\N{LARGE CIRCLE} *{exchange}:* "
"Buy order for {pair} (#{trade_id}) filled "
"for {open_rate}.".format(**msg))
elif msg_type == RPCMessageType.SELL_FILL:
message = ("\N{LARGE CIRCLE} *{exchange}:* "
"Sell order for {pair} (#{trade_id}) filled "
"for {close_rate}.".format(**msg))
elif msg_type == RPCMessageType.SELL:
message = self._format_sell_msg(msg)
elif msg_type == RPCMessageType.STATUS:
message = '*Status:* `{status}`'.format(**msg)
elif msg_type == RPCMessageType.WARNING:
message = '\N{WARNING SIGN} *Warning:* `{status}`'.format(**msg)
elif msg_type == RPCMessageType.STARTUP:
message = '{status}'.format(**msg)
else:
raise NotImplementedError('Unknown message type: {}'.format(msg_type))
message = self.compose_message(msg, msg_type)
self._send_msg(message, disable_notification=(noti == 'silent'))
@@ -647,12 +661,15 @@ class Telegram(RPCHandler):
output = ''
if self._config['dry_run']:
output += (
f"*Warning:* Simulated balances in Dry Mode.\n"
"This mode is still experimental!\n"
"Starting capital: "
f"`{self._config['dry_run_wallet']}` {self._config['stake_currency']}.\n"
)
output += "*Warning:* Simulated balances in Dry Mode.\n"
output += ("Starting capital: "
f"`{result['starting_capital']}` {self._config['stake_currency']}"
)
output += (f" `{result['starting_capital_fiat']}` "
f"{self._config['fiat_display_currency']}.\n"
) if result['starting_capital_fiat'] > 0 else '.\n'
total_dust_balance = 0
total_dust_currencies = 0
for curr in result['currencies']:
@@ -685,9 +702,12 @@ class Telegram(RPCHandler):
f"{round_coin_value(total_dust_balance, result['stake'], False)}`\n")
output += ("\n*Estimated Value*:\n"
f"\t`{result['stake']}: {result['total']: .8f}`\n"
f"\t`{result['stake']}: "
f"{round_coin_value(result['total'], result['stake'], False)}`"
f" `({result['starting_capital_pct']}%)`\n"
f"\t`{result['symbol']}: "
f"{round_coin_value(result['value'], result['symbol'], False)}`\n")
f"{round_coin_value(result['value'], result['symbol'], False)}`"
f" `({result['starting_capital_fiat_pct']}%)`\n")
self._send_msg(output, reload_able=True, callback_path="update_balance",
query=update.callback_query)
except RPCException as e:

View File

@@ -3,5 +3,7 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
IntParameter, RealParameter)
from freqtrade.strategy.informative_decorator import informative
from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
from freqtrade.strategy.strategy_helper import (merge_informative_pair, stoploss_from_absolute,
stoploss_from_open)

View File

@@ -0,0 +1,128 @@
from typing import Any, Callable, NamedTuple, Optional, Union
from pandas import DataFrame
from freqtrade.exceptions import OperationalException
from freqtrade.strategy.strategy_helper import merge_informative_pair
PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame]
class InformativeData(NamedTuple):
asset: Optional[str]
timeframe: str
fmt: Union[str, Callable[[Any], str], None]
ffill: bool
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[Any], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
_asset = asset
_timeframe = timeframe
_fmt = fmt
_ffill = ffill
def decorator(fn: PopulateIndicators):
informative_pairs = getattr(fn, '_ft_informative', [])
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
setattr(fn, '_ft_informative', informative_pairs)
return fn
return decorator
def _format_pair_name(config, pair: str) -> str:
return pair.format(stake_currency=config['stake_currency'],
stake=config['stake_currency']).upper()
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata: dict,
inf_data: InformativeData,
populate_indicators: PopulateIndicators):
asset = inf_data.asset or ''
timeframe = inf_data.timeframe
fmt = inf_data.fmt
config = strategy.config
if asset:
# Insert stake currency if needed.
asset = _format_pair_name(config, asset)
else:
# Not specifying an asset will define informative dataframe for current pair.
asset = metadata['pair']
if '/' in asset:
base, quote = asset.split('/')
else:
# When futures are supported this may need reevaluation.
# base, quote = asset, ''
raise OperationalException('Not implemented.')
# Default format. This optimizes for the common case: informative pairs using same stake
# currency. When quote currency matches stake currency, column name will omit base currency.
# This allows easily reconfiguring strategy to use different base currency. In a rare case
# where it is desired to keep quote currency in column name at all times user should specify
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
if not fmt:
fmt = '{column}_{timeframe}' # Informatives of current pair
if inf_data.asset:
fmt = '{base}_{quote}_' + fmt # Informatives of other pairs
inf_metadata = {'pair': asset, 'timeframe': timeframe}
inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe)
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
formatter: Any = None
if callable(fmt):
formatter = fmt # A custom user-specified formatter function.
else:
formatter = fmt.format # A default string formatter.
fmt_args = {
'BASE': base.upper(),
'QUOTE': quote.upper(),
'base': base.lower(),
'quote': quote.lower(),
'asset': asset,
'timeframe': timeframe,
}
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
inplace=True)
date_column = formatter(column='date', **fmt_args)
if date_column in dataframe.columns:
raise OperationalException(f'Duplicate column name {date_column} exists in '
f'dataframe! Ensure column names are unique!')
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
ffill=inf_data.ffill, append_timeframe=False,
date_column=date_column)
return dataframe

View File

@@ -19,6 +19,9 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date
from freqtrade.persistence import PairLocks, Trade
from freqtrade.strategy.hyper import HyperStrategyMixin
from freqtrade.strategy.informative_decorator import (InformativeData, PopulateIndicators,
_create_and_merge_informative_pair,
_format_pair_name)
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets
@@ -118,8 +121,10 @@ class IStrategy(ABC, HyperStrategyMixin):
# Class level variables (intentional) containing
# the dataprovider (dp) (access to other candles, historic data, ...)
# and wallets - access to the current balance.
dp: Optional[DataProvider] = None
dp: Optional[DataProvider]
wallets: Optional[Wallets] = None
# Filled from configuration
stake_currency: str
# container variable for strategy source code
__source__: str = ''
@@ -132,6 +137,24 @@ class IStrategy(ABC, HyperStrategyMixin):
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
super().__init__(config)
# Gather informative pairs from @informative-decorated methods.
self._ft_informative: List[Tuple[InformativeData, PopulateIndicators]] = []
for attr_name in dir(self.__class__):
cls_method = getattr(self.__class__, attr_name)
if not callable(cls_method):
continue
informative_data_list = getattr(cls_method, '_ft_informative', None)
if not isinstance(informative_data_list, list):
# Type check is required because mocker would return a mock object that evaluates to
# True, confusing this code.
continue
strategy_timeframe_minutes = timeframe_to_minutes(self.timeframe)
for informative_data in informative_data_list:
if timeframe_to_minutes(informative_data.timeframe) < strategy_timeframe_minutes:
raise OperationalException('Informative timeframe must be equal or higher than '
'strategy timeframe!')
self._ft_informative.append((informative_data, cls_method))
@abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
@@ -375,6 +398,23 @@ class IStrategy(ABC, HyperStrategyMixin):
# END - Intended to be overridden by strategy
###
def gather_informative_pairs(self) -> ListPairsWithTimeframes:
"""
Internal method which gathers all informative pairs (user or automatically defined).
"""
informative_pairs = self.informative_pairs()
for inf_data, _ in self._ft_informative:
if inf_data.asset:
pair_tf = (_format_pair_name(self.config, inf_data.asset), inf_data.timeframe)
informative_pairs.append(pair_tf)
else:
if not self.dp:
raise OperationalException('@informative decorator with unspecified asset '
'requires DataProvider instance.')
for pair in self.dp.current_whitelist():
informative_pairs.append((pair, inf_data.timeframe))
return list(set(informative_pairs))
def get_strategy_name(self) -> str:
"""
Returns strategy class name
@@ -777,10 +817,11 @@ class IStrategy(ABC, HyperStrategyMixin):
Does not run advise_buy or advise_sell!
Used by optimize operations only, not during dry / live runs.
Using .copy() to get a fresh copy of the dataframe for every strategy run.
Also copy on output to avoid PerformanceWarnings pandas 1.3.0 started to show.
Has positive effects on memory usage for whatever reason - also when
using only one strategy.
"""
return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair})
return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair}).copy()
for pair, pair_data in data.items()}
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
@@ -792,6 +833,12 @@ class IStrategy(ABC, HyperStrategyMixin):
:return: a Dataframe with all mandatory indicators for the strategies
"""
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
# call populate_indicators_Nm() which were tagged with @informative decorator.
for inf_data, populate_fn in self._ft_informative:
dataframe = _create_and_merge_informative_pair(
self, dataframe, metadata, inf_data, populate_fn)
if self._populate_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning)

View File

@@ -4,7 +4,9 @@ from freqtrade.exchange import timeframe_to_minutes
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
timeframe: str, timeframe_inf: str, ffill: bool = True,
append_timeframe: bool = True,
date_column: str = 'date') -> pd.DataFrame:
"""
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
@@ -24,6 +26,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
:param timeframe: Timeframe of the original pair sample.
:param timeframe_inf: Timeframe of the informative pair sample.
:param ffill: Forwardfill missing values - optional but usually required
:param append_timeframe: Rename columns by appending timeframe.
:param date_column: A custom date column name.
:return: Merged dataframe
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
"""
@@ -32,25 +36,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
minutes = timeframe_to_minutes(timeframe)
if minutes == minutes_inf:
# No need to forwardshift if the timeframes are identical
informative['date_merge'] = informative["date"]
informative['date_merge'] = informative[date_column]
elif minutes < minutes_inf:
# Subtract "small" timeframe so merging is not delayed by 1 small candle
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
informative['date_merge'] = (
informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm')
informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
pd.to_timedelta(minutes, 'm')
)
else:
raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
"This would create new rows, and can throw off your regular indicators.")
# Rename columns to be unique
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
date_merge = 'date_merge'
if append_timeframe:
date_merge = f'date_merge_{timeframe_inf}'
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
# Combine the 2 dataframes
# all indicators on the informative sample MUST be calculated before this point
dataframe = pd.merge(dataframe, informative, left_on='date',
right_on=f'date_merge_{timeframe_inf}', how='left')
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
right_on=date_merge, how='left')
dataframe = dataframe.drop(date_merge, axis=1)
if ffill:
dataframe = dataframe.ffill()
@@ -83,3 +91,28 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
# negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0)
def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
"""
Given current price and desired stop price, return a stop loss value that is relative to current
price.
The requested stop can be positive for a stop above the open price, or negative for
a stop below the open price. The return value is always >= 0.
Returns 0 if the resulting stop price would be above the current price.
:param stop_rate: Stop loss price.
:param current_rate: Current asset price.
:return: Positive stop loss value relative to current price
"""
# formula is undefined for current_rate 0, return maximum value
if current_rate == 0:
return 1
stoploss = 1 - (stop_rate / current_rate)
# negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0)

View File

@@ -1,3 +1,10 @@
{%set volume_pairlist = '{
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"min_value": 0,
"refresh_period": 1800
}' %}
{
"max_open_trades": {{ max_open_trades }},
"stake_currency": "{{ stake_currency }}",
@@ -29,7 +36,7 @@
},
{{ exchange | indent(4) }},
"pairlists": [
{"method": "StaticPairList"}
{{ '{"method": "StaticPairList"}' if exchange_name == 'bittrex' else volume_pairlist }}
],
"edge": {
"enabled": false,

View File

@@ -1,137 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class {{ hyperopt }}(IHyperOpt):
"""
This is a Hyperopt template to get you started.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
{{ buy_space | indent(12) }}
]
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ buy_guards | indent(12) }}
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
{{ sell_space | indent(12) }}
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ sell_guards | indent(12) }}
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend

View File

@@ -1,174 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# isort: skip_file
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class SampleHyperOpt(IHyperOpt):
"""
This is a sample Hyperopt to inspire you.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
An easier way to get a new hyperopt file is by using
`freqtrade new-hyperopt --hyperopt MyCoolHyperopt`.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend

View File

@@ -1,269 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# isort: skip_file
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class AdvancedSampleHyperOpt(IHyperOpt):
"""
This is a sample hyperopt to inspire you.
Feel free to customize it.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
This sample illustrates how to override these methods.
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
This method can also be loaded from the strategy, if it doesn't exist in the hyperopt class.
"""
dataframe['adx'] = ta.ADX(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
"""
# print(params)
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
# Check that volume is not 0
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
This implementation generates the default legacy Freqtrade ROI tables.
Change it if you need different number of steps in the generated
ROI tables or other structure of the ROI tables.
Please keep it aligned with parameters in the 'roi' optimization
hyperspace defined by the roi_space method.
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
Override it if you need some different ranges for the parameters in the
'roi' optimization hyperspace.
Please keep it aligned with the implementation of the
generate_roi_table method.
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
SKDecimal(0.01, 0.04, decimals=3, name='roi_p1'),
SKDecimal(0.01, 0.07, decimals=3, name='roi_p2'),
SKDecimal(0.01, 0.20, decimals=3, name='roi_p3'),
]
@staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Override it if you need some different range for the parameter in the
'stoploss' optimization hyperspace.
"""
return [
SKDecimal(-0.35, -0.02, decimals=3, name='stoploss'),
]
@staticmethod
def trailing_space() -> List[Dimension]:
"""
Create a trailing stoploss space.
You may override it in your custom Hyperopt class.
"""
return [
# It was decided to always set trailing_stop is to True if the 'trailing' hyperspace
# is used. Otherwise hyperopt will vary other parameters that won't have effect if
# trailing_stop is set False.
# This parameter is included into the hyperspace dimensions rather than assigning
# it explicitly in the code in order to have it printed in the results along with
# other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'),
SKDecimal(0.01, 0.35, decimals=3, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
SKDecimal(0.001, 0.1, decimals=3, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]

View File

@@ -2,40 +2,11 @@
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 200
},
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
"ALGO/BTC",
"ATOM/BTC",
"BAT/BTC",
"BCH/BTC",
"BRD/BTC",
"EOS/BTC",
"ETH/BTC",
"IOTA/BTC",
"LINK/BTC",
"LTC/BTC",
"NEO/BTC",
"NXS/BTC",
"XMR/BTC",
"XRP/BTC",
"XTZ/BTC"
],
"pair_blacklist": [
"BNB/BTC",
"BNB/BUSD",
"BNB/ETH",
"BNB/EUR",
"BNB/NGN",
"BNB/PAX",
"BNB/RUB",
"BNB/TRY",
"BNB/TUSD",
"BNB/USDC",
"BNB/USDS",
"BNB/USDT"
"BNB/.*"
]
}

View File

@@ -15,16 +15,6 @@
"rateLimit": 500
},
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"XRP/BTC",
"TRX/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
]

View File

@@ -2,10 +2,8 @@
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": true
},
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
],

View File

@@ -7,28 +7,10 @@
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 1000
// Enable the below for downoading data.
//"rateLimit": 3100
},
"pair_whitelist": [
"ADA/EUR",
"ATOM/EUR",
"BAT/EUR",
"BCH/EUR",
"BTC/EUR",
"DAI/EUR",
"DASH/EUR",
"EOS/EUR",
"ETC/EUR",
"ETH/EUR",
"LINK/EUR",
"LTC/EUR",
"QTUM/EUR",
"REP/EUR",
"WAVES/EUR",
"XLM/EUR",
"XMR/EUR",
"XRP/EUR",
"XTZ/EUR",
"ZEC/EUR"
],
"pair_blacklist": [

View File

@@ -0,0 +1,12 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"password": "{{ exchange_key_password }}",
"ccxt_config": {},
"ccxt_async_config": {},
"pair_whitelist": [
],
"pair_blacklist": [
]
}

View File

@@ -1,8 +0,0 @@
if params.get('mfi-enabled'):
conditions.append(dataframe['mfi'] < params['mfi-value'])
if params.get('fastd-enabled'):
conditions.append(dataframe['fastd'] < params['fastd-value'])
if params.get('adx-enabled'):
conditions.append(dataframe['adx'] > params['adx-value'])
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])

View File

@@ -1,2 +0,0 @@
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])

View File

@@ -1,9 +0,0 @@
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')

View File

@@ -1,3 +0,0 @@
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')

View File

@@ -1,8 +0,0 @@
if params.get('sell-mfi-enabled'):
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if params.get('sell-fastd-enabled'):
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if params.get('sell-adx-enabled'):
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if params.get('sell-rsi-enabled'):
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

View File

@@ -1,2 +0,0 @@
if params.get('sell-rsi-enabled'):
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

View File

@@ -1,11 +0,0 @@
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')

View File

@@ -1,5 +0,0 @@
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')

View File

@@ -32,8 +32,7 @@ def custom_stake_amount(self, pair: str, current_time: 'datetime', current_rate:
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: 'datetime',
current_rate: float, current_profit: float, dataframe: DataFrame,
**kwargs) -> float:
current_rate: float, current_profit: float, **kwargs) -> float:
"""
Custom stoploss logic, returning the new distance relative to current_rate (as ratio).
e.g. returning -0.05 would create a stoploss 5% below current_rate.
@@ -44,14 +43,13 @@ def custom_stoploss(self, pair: str, trade: 'Trade', current_time: 'datetime',
When not implemented by a strategy, returns the initial stoploss value
Only called when use_custom_stoploss is set to True.
:param pair: Pair that's about to be sold.
:param pair: Pair that's currently analyzed
:param trade: trade object.
:param current_time: datetime object, containing the current datetime
:param current_rate: Rate, calculated based on pricing settings in ask_strategy.
:param current_profit: Current profit (as ratio), calculated based on current_rate.
:param dataframe: Analyzed dataframe for this pair. Can contain future data in backtesting.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return float: New stoploss value, relative to the currentrate
:return float: New stoploss value, relative to the current_rate
"""
return self.stoploss