improve data persistence/mapping for live/dry. This accommodates quick reloads after crash and handles multi-pair cleanly
This commit is contained in:
@@ -19,6 +19,7 @@ from sklearn.model_selection import train_test_split
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
@@ -33,13 +34,13 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class FreqaiDataKitchen:
|
||||
"""
|
||||
Class designed to handle all the data for the IFreqaiModel class model.
|
||||
Class designed to analyze data for a single pair. Employed by the IFreqaiModel class.
|
||||
Functionalities include holding, saving, loading, and analyzing the data.
|
||||
author: Robert Caulk, rob.caulk@gmail.com
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any], dataframe: DataFrame, live: bool = False):
|
||||
self.full_dataframe = dataframe
|
||||
def __init__(self, config: Dict[str, Any], data_drawer: FreqaiDataDrawer, live: bool = False,
|
||||
pair: str = ''):
|
||||
self.data: Dict[Any, Any] = {}
|
||||
self.data_dictionary: Dict[Any, Any] = {}
|
||||
self.config = config
|
||||
@@ -53,10 +54,10 @@ class FreqaiDataKitchen:
|
||||
self.full_do_predict: npt.ArrayLike = np.array([])
|
||||
self.full_target_mean: npt.ArrayLike = np.array([])
|
||||
self.full_target_std: npt.ArrayLike = np.array([])
|
||||
self.model_path = Path()
|
||||
self.data_path = Path()
|
||||
self.model_filename: str = ""
|
||||
self.model_dictionary: Dict[Any, Any] = {}
|
||||
self.live = live
|
||||
self.pair = pair
|
||||
self.svm_model: linear_model.SGDOneClassSVM = None
|
||||
if not self.live:
|
||||
self.full_timerange = self.create_fulltimerange(self.config["timerange"],
|
||||
@@ -69,6 +70,8 @@ class FreqaiDataKitchen:
|
||||
config["freqai"]["backtest_period"],
|
||||
)
|
||||
|
||||
self.data_drawer = data_drawer
|
||||
|
||||
def assert_config(self, config: Dict[str, Any], live: bool) -> None:
|
||||
assert config.get('freqai'), "No Freqai parameters found in config file."
|
||||
assert config.get('freqai', {}).get('train_period'), ("No Freqai train_period found in"
|
||||
@@ -88,18 +91,18 @@ class FreqaiDataKitchen:
|
||||
assert config.get('freqai', {}).get('feature_parameters'), ("No Freqai feature_parameters"
|
||||
"found in config file.")
|
||||
|
||||
def set_paths(self) -> None:
|
||||
def set_paths(self, trained_timestamp: int = None) -> None:
|
||||
self.full_path = Path(self.config['user_data_dir'] /
|
||||
"models" /
|
||||
str(self.freqai_config.get('live_full_backtestrange') +
|
||||
self.freqai_config.get('identifier')))
|
||||
|
||||
self.model_path = Path(self.full_path / str("sub-train" + "-" +
|
||||
str(self.freqai_config.get('live_trained_timerange'))))
|
||||
self.data_path = Path(self.full_path / str("sub-train" + "-" + self.pair.split("/")[0] +
|
||||
str(trained_timestamp)))
|
||||
|
||||
return
|
||||
|
||||
def save_data(self, model: Any) -> None:
|
||||
def save_data(self, model: Any, coin: str = '') -> None:
|
||||
"""
|
||||
Saves all data associated with a model for a single sub-train time range
|
||||
:params:
|
||||
@@ -107,10 +110,10 @@ class FreqaiDataKitchen:
|
||||
predictions
|
||||
"""
|
||||
|
||||
if not self.model_path.is_dir():
|
||||
self.model_path.mkdir(parents=True, exist_ok=True)
|
||||
if not self.data_path.is_dir():
|
||||
self.data_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
save_path = Path(self.model_path)
|
||||
save_path = Path(self.data_path)
|
||||
|
||||
# Save the trained model
|
||||
dump(model, save_path / str(self.model_filename + "_model.joblib"))
|
||||
@@ -118,7 +121,7 @@ class FreqaiDataKitchen:
|
||||
if self.svm_model is not None:
|
||||
dump(self.svm_model, save_path / str(self.model_filename + "_svm_model.joblib"))
|
||||
|
||||
self.data["model_path"] = str(self.model_path)
|
||||
self.data["data_path"] = str(self.data_path)
|
||||
self.data["model_filename"] = str(self.model_filename)
|
||||
self.data["training_features_list"] = list(self.data_dictionary["train_features"].columns)
|
||||
# store the metadata
|
||||
@@ -131,7 +134,10 @@ class FreqaiDataKitchen:
|
||||
)
|
||||
|
||||
if self.live:
|
||||
self.model_dictionary[self.model_filename] = model
|
||||
self.data_drawer.model_dictionary[self.model_filename] = model
|
||||
self.data_drawer.pair_dict[coin]['model_filename'] = self.model_filename
|
||||
self.data_drawer.pair_dict[coin]['data_path'] = str(self.data_path)
|
||||
self.data_drawer.save_drawer_to_disk()
|
||||
|
||||
# TODO add a helper function to let user save/load any data they are custom adding. We
|
||||
# do not want them having to edit the default save/load methods here. Below is an example
|
||||
@@ -148,19 +154,23 @@ class FreqaiDataKitchen:
|
||||
|
||||
return
|
||||
|
||||
def load_data(self) -> Any:
|
||||
def load_data(self, coin: str = '') -> Any:
|
||||
"""
|
||||
loads all data required to make a prediction on a sub-train time range
|
||||
:returns:
|
||||
:model: User trained model which can be inferenced for new predictions
|
||||
"""
|
||||
|
||||
with open(self.model_path / str(self.model_filename + "_metadata.json"), "r") as fp:
|
||||
if self.live:
|
||||
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
|
||||
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
|
||||
|
||||
with open(self.data_path / str(self.model_filename + "_metadata.json"), "r") as fp:
|
||||
self.data = json.load(fp)
|
||||
self.training_features_list = self.data["training_features_list"]
|
||||
|
||||
self.data_dictionary["train_features"] = pd.read_pickle(
|
||||
self.model_path / str(self.model_filename + "_trained_df.pkl")
|
||||
self.data_path / str(self.model_filename + "_trained_df.pkl")
|
||||
)
|
||||
|
||||
# TODO add a helper function to let user save/load any data they are custom adding. We
|
||||
@@ -169,34 +179,34 @@ class FreqaiDataKitchen:
|
||||
|
||||
# if self.freqai_config.get('feature_parameters','determine_statistical_distributions'):
|
||||
# self.data_dictionary["upper_quantiles"] = pd.read_pickle(
|
||||
# self.model_path / str(self.model_filename + "_upper_quantiles.pkl")
|
||||
# self.data_path / str(self.model_filename + "_upper_quantiles.pkl")
|
||||
# )
|
||||
|
||||
# self.data_dictionary["lower_quantiles"] = pd.read_pickle(
|
||||
# self.model_path / str(self.model_filename + "_lower_quantiles.pkl")
|
||||
# self.data_path / str(self.model_filename + "_lower_quantiles.pkl")
|
||||
# )
|
||||
|
||||
self.model_path = Path(self.data["model_path"])
|
||||
self.model_filename = self.data["model_filename"]
|
||||
# self.data_path = Path(self.data["data_path"])
|
||||
# self.model_filename = self.data["model_filename"]
|
||||
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if self.live and self.model_filename in self.model_dictionary:
|
||||
model = self.model_dictionary[self.model_filename]
|
||||
if self.live and self.model_filename in self.data_drawer.model_dictionary:
|
||||
model = self.data_drawer.model_dictionary[self.model_filename]
|
||||
else:
|
||||
model = load(self.model_path / str(self.model_filename + "_model.joblib"))
|
||||
model = load(self.data_path / str(self.model_filename + "_model.joblib"))
|
||||
|
||||
if Path(self.model_path / str(self.model_filename +
|
||||
if Path(self.data_path / str(self.model_filename +
|
||||
"_svm_model.joblib")).resolve().exists():
|
||||
self.svm_model = load(self.model_path / str(self.model_filename + "_svm_model.joblib"))
|
||||
self.svm_model = load(self.data_path / str(self.model_filename + "_svm_model.joblib"))
|
||||
|
||||
assert model, (
|
||||
f"Unable to load model, ensure model exists at "
|
||||
f"{self.model_path} "
|
||||
f"{self.data_path} "
|
||||
)
|
||||
|
||||
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
|
||||
self.pca = pk.load(
|
||||
open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "rb")
|
||||
open(self.data_path / str(self.model_filename + "_pca_object.pkl"), "rb")
|
||||
)
|
||||
|
||||
return model
|
||||
@@ -539,9 +549,9 @@ class FreqaiDataKitchen:
|
||||
|
||||
logger.info(f'PCA reduced total features from {n_components} to {n_keep_components}')
|
||||
|
||||
if not self.model_path.is_dir():
|
||||
self.model_path.mkdir(parents=True, exist_ok=True)
|
||||
pk.dump(pca2, open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "wb"))
|
||||
if not self.data_path.is_dir():
|
||||
self.data_path.mkdir(parents=True, exist_ok=True)
|
||||
pk.dump(pca2, open(self.data_path / str(self.model_filename + "_pca_object.pkl"), "wb"))
|
||||
|
||||
return None
|
||||
|
||||
@@ -717,40 +727,51 @@ class FreqaiDataKitchen:
|
||||
|
||||
return full_timerange
|
||||
|
||||
def check_if_new_training_required(self, trained_timerange: TimeRange,
|
||||
metadata: dict) -> Tuple[bool, TimeRange]:
|
||||
def check_if_new_training_required(self, trained_timestamp: int) -> Tuple[bool, TimeRange]:
|
||||
|
||||
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||
|
||||
if trained_timerange.startts != 0:
|
||||
elapsed_time = (time - trained_timerange.stopts) / SECONDS_IN_DAY
|
||||
trained_timerange = TimeRange()
|
||||
if trained_timestamp != 0:
|
||||
elapsed_time = (time - trained_timestamp) / SECONDS_IN_DAY
|
||||
retrain = elapsed_time > self.freqai_config.get('backtest_period')
|
||||
if retrain:
|
||||
trained_timerange.startts += self.freqai_config.get(
|
||||
'backtest_period', 0) * SECONDS_IN_DAY
|
||||
trained_timerange.stopts += self.freqai_config.get(
|
||||
'backtest_period', 0) * SECONDS_IN_DAY
|
||||
trained_timerange.startts = int(time - self.freqai_config.get(
|
||||
'backtest_period', 0) * SECONDS_IN_DAY)
|
||||
trained_timerange.stopts = int(time)
|
||||
else: # user passed no live_trained_timerange in config
|
||||
trained_timerange = TimeRange()
|
||||
trained_timerange.startts = int(time - self.freqai_config.get('train_period') *
|
||||
SECONDS_IN_DAY)
|
||||
trained_timerange.stopts = int(time)
|
||||
retrain = True
|
||||
|
||||
if retrain:
|
||||
coin, _ = metadata['pair'].split("/")
|
||||
# set the new model_path
|
||||
self.model_path = Path(self.full_path / str("sub-train" + "-" +
|
||||
str(int(trained_timerange.stopts))))
|
||||
# if retrain:
|
||||
# coin, _ = metadata['pair'].split("/")
|
||||
# # set the new data_path
|
||||
# self.data_path = Path(self.full_path / str("sub-train" + "-" +
|
||||
# str(int(trained_timerange.stopts))))
|
||||
|
||||
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
||||
# this is not persistent at the moment TODO
|
||||
self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
# enables persistence, but not fully implemented into save/load data yer
|
||||
self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
# self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
||||
# # this is not persistent at the moment TODO
|
||||
# self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
# # enables persistence, but not fully implemented into save/load data yer
|
||||
# self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
|
||||
return retrain, trained_timerange
|
||||
|
||||
def set_new_model_names(self, metadata: dict, trained_timerange: TimeRange):
|
||||
|
||||
coin, _ = metadata['pair'].split("/")
|
||||
# set the new data_path
|
||||
self.data_path = Path(self.full_path / str("sub-train" + "-" +
|
||||
metadata['pair'].split("/")[0] +
|
||||
str(int(trained_timerange.stopts))))
|
||||
|
||||
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
||||
# this is not persistent at the moment TODO
|
||||
self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
# enables persistence, but not fully implemented into save/load data yer
|
||||
self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
|
||||
def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict) -> None:
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
|
||||
|
Reference in New Issue
Block a user