refactor Analyze class methods to base Strategy class
This commit is contained in:
@@ -7,7 +7,7 @@ from freqtrade.strategy.interface import IStrategy
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def import_strategy(strategy: IStrategy) -> IStrategy:
|
||||
def import_strategy(strategy: IStrategy, config: dict) -> IStrategy:
|
||||
"""
|
||||
Imports given Strategy instance to global scope
|
||||
of freqtrade.strategy and returns an instance of it
|
||||
@@ -29,4 +29,4 @@ def import_strategy(strategy: IStrategy) -> IStrategy:
|
||||
# Modify global scope to declare class
|
||||
globals()[name] = clazz
|
||||
|
||||
return clazz()
|
||||
return clazz(config)
|
||||
|
@@ -2,11 +2,30 @@
|
||||
IStrategy interface
|
||||
This module defines the interface to apply for strategies
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.analyze import parse_ticker_dataframe
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SignalType(Enum):
|
||||
"""
|
||||
Enum to distinguish between buy and sell signals
|
||||
"""
|
||||
BUY = "buy"
|
||||
SELL = "sell"
|
||||
|
||||
|
||||
class IStrategy(ABC):
|
||||
"""
|
||||
@@ -23,6 +42,9 @@ class IStrategy(ABC):
|
||||
stoploss: float
|
||||
ticker_interval: str
|
||||
|
||||
def __init__(self, config: dict):
|
||||
self.config = config
|
||||
|
||||
@abstractmethod
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
@@ -46,3 +68,169 @@ class IStrategy(ABC):
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
|
||||
def analyze_ticker(self, ticker_history: List[Dict]) -> DataFrame:
|
||||
"""
|
||||
Parses the given ticker history and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
:return DataFrame with ticker data and indicator data
|
||||
"""
|
||||
dataframe = parse_ticker_dataframe(ticker_history)
|
||||
dataframe = self.populate_indicators(dataframe)
|
||||
dataframe = self.populate_buy_trend(dataframe)
|
||||
dataframe = self.populate_sell_trend(dataframe)
|
||||
return dataframe
|
||||
|
||||
def get_signal(self, exchange: Exchange, pair: str, interval: str) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Calculates current signal based several technical analysis indicators
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param interval: Interval to use (in min)
|
||||
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
||||
"""
|
||||
ticker_hist = exchange.get_ticker_history(pair, interval)
|
||||
if not ticker_hist:
|
||||
logger.warning('Empty ticker history for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
try:
|
||||
dataframe = self.analyze_ticker(ticker_hist)
|
||||
except ValueError as error:
|
||||
logger.warning(
|
||||
'Unable to analyze ticker for pair %s: %s',
|
||||
pair,
|
||||
str(error)
|
||||
)
|
||||
return False, False
|
||||
except Exception as error:
|
||||
logger.exception(
|
||||
'Unexpected error when analyzing ticker for pair %s: %s',
|
||||
pair,
|
||||
str(error)
|
||||
)
|
||||
return False, False
|
||||
|
||||
if dataframe.empty:
|
||||
logger.warning('Empty dataframe for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
latest = dataframe.iloc[-1]
|
||||
|
||||
# Check if dataframe is out of date
|
||||
signal_date = arrow.get(latest['date'])
|
||||
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
|
||||
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
|
||||
logger.warning(
|
||||
'Outdated history for pair %s. Last tick is %s minutes old',
|
||||
pair,
|
||||
(arrow.utcnow() - signal_date).seconds // 60
|
||||
)
|
||||
return False, False
|
||||
|
||||
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
|
||||
logger.debug(
|
||||
'trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'],
|
||||
pair,
|
||||
str(buy),
|
||||
str(sell)
|
||||
)
|
||||
return buy, sell
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool, sell: bool) -> bool:
|
||||
"""
|
||||
This function evaluate if on the condition required to trigger a sell has been reached
|
||||
if the threshold is reached and updates the trade record.
|
||||
:return: True if trade should be sold, False otherwise
|
||||
"""
|
||||
current_profit = trade.calc_profit_percent(rate)
|
||||
if self.stop_loss_reached(current_rate=rate, trade=trade, current_time=date,
|
||||
current_profit=current_profit):
|
||||
return True
|
||||
|
||||
experimental = self.config.get('experimental', {})
|
||||
|
||||
if buy and experimental.get('ignore_roi_if_buy_signal', False):
|
||||
logger.debug('Buy signal still active - not selling.')
|
||||
return False
|
||||
|
||||
# Check if minimal roi has been reached and no longer in buy conditions (avoiding a fee)
|
||||
if self.min_roi_reached(trade=trade, current_profit=current_profit, current_time=date):
|
||||
logger.debug('Required profit reached. Selling..')
|
||||
return True
|
||||
|
||||
if experimental.get('sell_profit_only', False):
|
||||
logger.debug('Checking if trade is profitable..')
|
||||
if trade.calc_profit(rate=rate) <= 0:
|
||||
return False
|
||||
if sell and not buy and experimental.get('use_sell_signal', False):
|
||||
logger.debug('Sell signal received. Selling..')
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
|
||||
current_profit: float) -> bool:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
"""
|
||||
|
||||
trailing_stop = self.config.get('trailing_stop', False)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.stoploss, initial=True)
|
||||
|
||||
# evaluate if the stoploss was hit
|
||||
if self.stoploss is not None and trade.stop_loss >= current_rate:
|
||||
|
||||
if trailing_stop:
|
||||
logger.debug(
|
||||
f"HIT STOP: current price at {current_rate:.6f}, "
|
||||
f"stop loss is {trade.stop_loss:.6f}, "
|
||||
f"initial stop loss was at {trade.initial_stop_loss:.6f}, "
|
||||
f"trade opened at {trade.open_rate:.6f}")
|
||||
logger.debug(f"trailing stop saved {trade.stop_loss - trade.initial_stop_loss:.6f}")
|
||||
|
||||
logger.debug('Stop loss hit.')
|
||||
return True
|
||||
|
||||
# update the stop loss afterwards, after all by definition it's supposed to be hanging
|
||||
if trailing_stop:
|
||||
|
||||
# check if we have a special stop loss for positive condition
|
||||
# and if profit is positive
|
||||
stop_loss_value = self.stoploss
|
||||
if 'trailing_stop_positive' in self.config and current_profit > 0:
|
||||
|
||||
# Ignore mypy error check in configuration that this is a float
|
||||
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
|
||||
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
|
||||
f"since we have profit {current_profit}")
|
||||
|
||||
trade.adjust_stop_loss(current_rate, stop_loss_value)
|
||||
|
||||
return False
|
||||
|
||||
def min_roi_reached(self, trade: Trade, current_profit: float, current_time: datetime) -> bool:
|
||||
"""
|
||||
Based an earlier trade and current price and ROI configuration, decides whether bot should
|
||||
sell
|
||||
:return True if bot should sell at current rate
|
||||
"""
|
||||
|
||||
# Check if time matches and current rate is above threshold
|
||||
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
|
||||
for duration, threshold in self.minimal_roi.items():
|
||||
if time_diff <= duration:
|
||||
return False
|
||||
if current_profit > threshold:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def tickerdata_to_dataframe(self, tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Creates a dataframe and populates indicators for given ticker data
|
||||
"""
|
||||
return {pair: self.populate_indicators(parse_ticker_dataframe(pair_data))
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
|
@@ -34,6 +34,7 @@ class StrategyResolver(object):
|
||||
# Verify the strategy is in the configuration, otherwise fallback to the default strategy
|
||||
strategy_name = config.get('strategy') or constants.DEFAULT_STRATEGY
|
||||
self.strategy: IStrategy = self._load_strategy(strategy_name,
|
||||
config=config,
|
||||
extra_dir=config.get('strategy_path'))
|
||||
|
||||
# Set attributes
|
||||
@@ -62,10 +63,11 @@ class StrategyResolver(object):
|
||||
self.strategy.stoploss = float(self.strategy.stoploss)
|
||||
|
||||
def _load_strategy(
|
||||
self, strategy_name: str, extra_dir: Optional[str] = None) -> IStrategy:
|
||||
self, strategy_name: str, config: dict, extra_dir: Optional[str] = None) -> IStrategy:
|
||||
"""
|
||||
Search and loads the specified strategy.
|
||||
:param strategy_name: name of the module to import
|
||||
:param config: configuration for the strategy
|
||||
:param extra_dir: additional directory to search for the given strategy
|
||||
:return: Strategy instance or None
|
||||
"""
|
||||
@@ -81,10 +83,10 @@ class StrategyResolver(object):
|
||||
|
||||
for path in abs_paths:
|
||||
try:
|
||||
strategy = self._search_strategy(path, strategy_name)
|
||||
strategy = self._search_strategy(path, strategy_name=strategy_name, config=config)
|
||||
if strategy:
|
||||
logger.info('Using resolved strategy %s from \'%s\'', strategy_name, path)
|
||||
return import_strategy(strategy)
|
||||
return import_strategy(strategy, config=config)
|
||||
except FileNotFoundError:
|
||||
logger.warning('Path "%s" does not exist', path)
|
||||
|
||||
@@ -114,7 +116,7 @@ class StrategyResolver(object):
|
||||
return next(valid_strategies_gen, None)
|
||||
|
||||
@staticmethod
|
||||
def _search_strategy(directory: str, strategy_name: str) -> Optional[IStrategy]:
|
||||
def _search_strategy(directory: str, strategy_name: str, config: dict) -> Optional[IStrategy]:
|
||||
"""
|
||||
Search for the strategy_name in the given directory
|
||||
:param directory: relative or absolute directory path
|
||||
@@ -130,5 +132,5 @@ class StrategyResolver(object):
|
||||
os.path.abspath(os.path.join(directory, entry)), strategy_name
|
||||
)
|
||||
if strategy:
|
||||
return strategy()
|
||||
return strategy(config)
|
||||
return None
|
||||
|
Reference in New Issue
Block a user