Merge branch 'develop' into spice-rack
This commit is contained in:
@@ -62,9 +62,9 @@ ARGS_BUILD_CONFIG = ["config"]
|
||||
|
||||
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
|
||||
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase", "exchange"]
|
||||
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "exchange", "trading_mode",
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes", "trading_mode",
|
||||
"candle_types"]
|
||||
|
||||
ARGS_CONVERT_TRADES = ["pairs", "timeframes", "exchange", "dataformat_ohlcv", "dataformat_trades"]
|
||||
|
@@ -211,6 +211,7 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
)
|
||||
# Force JWT token to be a random string
|
||||
answers['api_server_jwt_key'] = secrets.token_hex()
|
||||
answers['api_server_ws_token'] = secrets.token_urlsafe(25)
|
||||
|
||||
return answers
|
||||
|
||||
|
@@ -69,7 +69,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
metavar='PATH',
|
||||
),
|
||||
"datadir": Arg(
|
||||
'-d', '--datadir',
|
||||
'-d', '--datadir', '--data-dir',
|
||||
help='Path to directory with historical backtesting data.',
|
||||
metavar='PATH',
|
||||
),
|
||||
@@ -440,7 +440,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
"dataformat_trades": Arg(
|
||||
'--data-format-trades',
|
||||
help='Storage format for downloaded trades data. (default: `jsongz`).',
|
||||
choices=constants.AVAILABLE_DATAHANDLERS,
|
||||
choices=constants.AVAILABLE_DATAHANDLERS_TRADES,
|
||||
),
|
||||
"show_timerange": Arg(
|
||||
'--show-timerange',
|
||||
|
@@ -36,24 +36,24 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
|
||||
"""
|
||||
fallback = 'full'
|
||||
indicators = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/indicators_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/indicators_{fallback}.j2",
|
||||
templatefile=f"strategy_subtemplates/indicators_{subtemplate}.j2",
|
||||
templatefallbackfile=f"strategy_subtemplates/indicators_{fallback}.j2",
|
||||
)
|
||||
buy_trend = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/buy_trend_{fallback}.j2",
|
||||
templatefile=f"strategy_subtemplates/buy_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"strategy_subtemplates/buy_trend_{fallback}.j2",
|
||||
)
|
||||
sell_trend = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/sell_trend_{fallback}.j2",
|
||||
templatefile=f"strategy_subtemplates/sell_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"strategy_subtemplates/sell_trend_{fallback}.j2",
|
||||
)
|
||||
plot_config = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/plot_config_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/plot_config_{fallback}.j2",
|
||||
templatefile=f"strategy_subtemplates/plot_config_{subtemplate}.j2",
|
||||
templatefallbackfile=f"strategy_subtemplates/plot_config_{fallback}.j2",
|
||||
)
|
||||
additional_methods = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/strategy_methods_{subtemplate}.j2",
|
||||
templatefallbackfile="subtemplates/strategy_methods_empty.j2",
|
||||
templatefile=f"strategy_subtemplates/strategy_methods_{subtemplate}.j2",
|
||||
templatefallbackfile="strategy_subtemplates/strategy_methods_empty.j2",
|
||||
)
|
||||
|
||||
strategy_text = render_template(templatefile='base_strategy.py.j2',
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import (available_exchanges, is_exchange_known_ccxt,
|
||||
@@ -10,7 +10,7 @@ from freqtrade.exchange import (available_exchanges, is_exchange_known_ccxt,
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool:
|
||||
def check_exchange(config: Config, check_for_bad: bool = True) -> bool:
|
||||
"""
|
||||
Check if the exchange name in the config file is supported by Freqtrade
|
||||
:param check_for_bad: if True, check the exchange against the list of known 'bad'
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from collections import Counter
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict
|
||||
|
||||
@@ -85,6 +86,7 @@ def validate_config_consistency(conf: Dict[str, Any], preliminary: bool = False)
|
||||
_validate_unlimited_amount(conf)
|
||||
_validate_ask_orderbook(conf)
|
||||
_validate_freqai_hyperopt(conf)
|
||||
_validate_consumers(conf)
|
||||
validate_migrated_strategy_settings(conf)
|
||||
|
||||
# validate configuration before returning
|
||||
@@ -332,6 +334,23 @@ def _validate_freqai_hyperopt(conf: Dict[str, Any]) -> None:
|
||||
'Using analyze-per-epoch parameter is not supported with a FreqAI strategy.')
|
||||
|
||||
|
||||
def _validate_consumers(conf: Dict[str, Any]) -> None:
|
||||
emc_conf = conf.get('external_message_consumer', {})
|
||||
if emc_conf.get('enabled', False):
|
||||
if len(emc_conf.get('producers', [])) < 1:
|
||||
raise OperationalException("You must specify at least 1 Producer to connect to.")
|
||||
|
||||
producer_names = [p['name'] for p in emc_conf.get('producers', [])]
|
||||
duplicates = [item for item, count in Counter(producer_names).items() if count > 1]
|
||||
if duplicates:
|
||||
raise OperationalException(
|
||||
f"Producer names must be unique. Duplicate: {', '.join(duplicates)}")
|
||||
if conf.get('process_only_new_candles', True):
|
||||
# Warning here or require it?
|
||||
logger.warning("To receive best performance with external data, "
|
||||
"please set `process_only_new_candles` to False")
|
||||
|
||||
|
||||
def _strategy_settings(conf: Dict[str, Any]) -> None:
|
||||
|
||||
process_deprecated_setting(conf, None, 'use_sell_signal', None, 'use_exit_signal')
|
||||
|
@@ -13,6 +13,7 @@ from freqtrade.configuration.deprecated_settings import process_temporary_deprec
|
||||
from freqtrade.configuration.directory_operations import create_datadir, create_userdata_dir
|
||||
from freqtrade.configuration.environment_vars import enironment_vars_to_dict
|
||||
from freqtrade.configuration.load_config import load_file, load_from_files
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import NON_UTIL_MODES, TRADING_MODES, CandleType, RunMode, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.loggers import setup_logging
|
||||
@@ -30,10 +31,10 @@ class Configuration:
|
||||
|
||||
def __init__(self, args: Dict[str, Any], runmode: RunMode = None) -> None:
|
||||
self.args = args
|
||||
self.config: Optional[Dict[str, Any]] = None
|
||||
self.config: Optional[Config] = None
|
||||
self.runmode = runmode
|
||||
|
||||
def get_config(self) -> Dict[str, Any]:
|
||||
def get_config(self) -> Config:
|
||||
"""
|
||||
Return the config. Use this method to get the bot config
|
||||
:return: Dict: Bot config
|
||||
@@ -65,7 +66,7 @@ class Configuration:
|
||||
:return: Configuration dictionary
|
||||
"""
|
||||
# Load all configs
|
||||
config: Dict[str, Any] = load_from_files(self.args.get("config", []))
|
||||
config: Config = load_from_files(self.args.get("config", []))
|
||||
|
||||
# Load environment variables
|
||||
env_data = enironment_vars_to_dict()
|
||||
@@ -108,7 +109,7 @@ class Configuration:
|
||||
|
||||
return config
|
||||
|
||||
def _process_logging_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_logging_options(self, config: Config) -> None:
|
||||
"""
|
||||
Extract information for sys.argv and load logging configuration:
|
||||
the -v/--verbose, --logfile options
|
||||
@@ -121,7 +122,7 @@ class Configuration:
|
||||
|
||||
setup_logging(config)
|
||||
|
||||
def _process_trading_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_trading_options(self, config: Config) -> None:
|
||||
if config['runmode'] not in TRADING_MODES:
|
||||
return
|
||||
|
||||
@@ -137,7 +138,7 @@ class Configuration:
|
||||
|
||||
logger.info(f'Using DB: "{parse_db_uri_for_logging(config["db_url"])}"')
|
||||
|
||||
def _process_common_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_common_options(self, config: Config) -> None:
|
||||
|
||||
# Set strategy if not specified in config and or if it's non default
|
||||
if self.args.get('strategy') or not config.get('strategy'):
|
||||
@@ -161,7 +162,7 @@ class Configuration:
|
||||
if 'sd_notify' in self.args and self.args['sd_notify']:
|
||||
config['internals'].update({'sd_notify': True})
|
||||
|
||||
def _process_datadir_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_datadir_options(self, config: Config) -> None:
|
||||
"""
|
||||
Extract information for sys.argv and load directory configurations
|
||||
--user-data, --datadir
|
||||
@@ -195,7 +196,7 @@ class Configuration:
|
||||
config['exportfilename'] = (config['user_data_dir']
|
||||
/ 'backtest_results')
|
||||
|
||||
def _process_optimize_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_optimize_options(self, config: Config) -> None:
|
||||
|
||||
# This will override the strategy configuration
|
||||
self._args_to_config(config, argname='timeframe',
|
||||
@@ -380,7 +381,7 @@ class Configuration:
|
||||
self._args_to_config(config, argname="hyperopt_ignore_missing_space",
|
||||
logstring="Paramter --ignore-missing-space detected: {}")
|
||||
|
||||
def _process_plot_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_plot_options(self, config: Config) -> None:
|
||||
|
||||
self._args_to_config(config, argname='pairs',
|
||||
logstring='Using pairs {}')
|
||||
@@ -432,7 +433,7 @@ class Configuration:
|
||||
self._args_to_config(config, argname='show_timerange',
|
||||
logstring='Detected --show-timerange')
|
||||
|
||||
def _process_data_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_data_options(self, config: Config) -> None:
|
||||
self._args_to_config(config, argname='new_pairs_days',
|
||||
logstring='Detected --new-pairs-days: {}')
|
||||
self._args_to_config(config, argname='trading_mode',
|
||||
@@ -443,7 +444,7 @@ class Configuration:
|
||||
self._args_to_config(config, argname='candle_types',
|
||||
logstring='Detected --candle-types: {}')
|
||||
|
||||
def _process_analyze_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_analyze_options(self, config: Config) -> None:
|
||||
self._args_to_config(config, argname='analysis_groups',
|
||||
logstring='Analysis reason groups: {}')
|
||||
|
||||
@@ -456,7 +457,7 @@ class Configuration:
|
||||
self._args_to_config(config, argname='indicator_list',
|
||||
logstring='Analysis indicator list: {}')
|
||||
|
||||
def _process_runmode(self, config: Dict[str, Any]) -> None:
|
||||
def _process_runmode(self, config: Config) -> None:
|
||||
|
||||
self._args_to_config(config, argname='dry_run',
|
||||
logstring='Parameter --dry-run detected, '
|
||||
@@ -469,7 +470,7 @@ class Configuration:
|
||||
|
||||
config.update({'runmode': self.runmode})
|
||||
|
||||
def _process_freqai_options(self, config: Dict[str, Any]) -> None:
|
||||
def _process_freqai_options(self, config: Config) -> None:
|
||||
|
||||
self._args_to_config(config, argname='freqaimodel',
|
||||
logstring='Using freqaimodel class name: {}')
|
||||
@@ -479,7 +480,7 @@ class Configuration:
|
||||
|
||||
return
|
||||
|
||||
def _args_to_config(self, config: Dict[str, Any], argname: str,
|
||||
def _args_to_config(self, config: Config, argname: str,
|
||||
logstring: str, logfun: Optional[Callable] = None,
|
||||
deprecated_msg: Optional[str] = None) -> None:
|
||||
"""
|
||||
@@ -502,7 +503,7 @@ class Configuration:
|
||||
if deprecated_msg:
|
||||
warnings.warn(f"DEPRECATED: {deprecated_msg}", DeprecationWarning)
|
||||
|
||||
def _resolve_pairs_list(self, config: Dict[str, Any]) -> None:
|
||||
def _resolve_pairs_list(self, config: Config) -> None:
|
||||
"""
|
||||
Helper for download script.
|
||||
Takes first found:
|
||||
|
@@ -3,15 +3,16 @@ Functions to handle deprecated settings
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_conflicting_settings(config: Dict[str, Any],
|
||||
def check_conflicting_settings(config: Config,
|
||||
section_old: Optional[str], name_old: str,
|
||||
section_new: Optional[str], name_new: str) -> None:
|
||||
section_new_config = config.get(section_new, {}) if section_new else config
|
||||
@@ -28,7 +29,7 @@ def check_conflicting_settings(config: Dict[str, Any],
|
||||
)
|
||||
|
||||
|
||||
def process_removed_setting(config: Dict[str, Any],
|
||||
def process_removed_setting(config: Config,
|
||||
section1: str, name1: str,
|
||||
section2: Optional[str], name2: str) -> None:
|
||||
"""
|
||||
@@ -47,7 +48,7 @@ def process_removed_setting(config: Dict[str, Any],
|
||||
)
|
||||
|
||||
|
||||
def process_deprecated_setting(config: Dict[str, Any],
|
||||
def process_deprecated_setting(config: Config,
|
||||
section_old: Optional[str], name_old: str,
|
||||
section_new: Optional[str], name_new: str
|
||||
) -> None:
|
||||
@@ -69,7 +70,7 @@ def process_deprecated_setting(config: Dict[str, Any],
|
||||
del section_old_config[name_old]
|
||||
|
||||
|
||||
def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
|
||||
def process_temporary_deprecated_settings(config: Config) -> None:
|
||||
|
||||
# Kept for future deprecated / moved settings
|
||||
# check_conflicting_settings(config, 'ask_strategy', 'use_sell_signal',
|
||||
|
@@ -1,16 +1,16 @@
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
from freqtrade.constants import USER_DATA_FILES
|
||||
from freqtrade.constants import USER_DATA_FILES, Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> Path:
|
||||
def create_datadir(config: Config, datadir: Optional[str] = None) -> Path:
|
||||
|
||||
folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data")
|
||||
if not datadir:
|
||||
|
@@ -10,7 +10,7 @@ from typing import Any, Dict, List
|
||||
|
||||
import rapidjson
|
||||
|
||||
from freqtrade.constants import MINIMAL_CONFIG
|
||||
from freqtrade.constants import MINIMAL_CONFIG, Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
|
||||
@@ -80,7 +80,7 @@ def load_from_files(files: List[str], base_path: Path = None, level: int = 0) ->
|
||||
Recursively load configuration files if specified.
|
||||
Sub-files are assumed to be relative to the initial config.
|
||||
"""
|
||||
config: Dict[str, Any] = {}
|
||||
config: Config = {}
|
||||
if level > 5:
|
||||
raise OperationalException("Config loop detected.")
|
||||
|
||||
|
@@ -3,7 +3,7 @@
|
||||
"""
|
||||
bot constants
|
||||
"""
|
||||
from typing import List, Literal, Tuple
|
||||
from typing import Any, Dict, List, Literal, Tuple
|
||||
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
@@ -36,7 +36,8 @@ AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
|
||||
'PrecisionFilter', 'PriceFilter', 'RangeStabilityFilter',
|
||||
'ShuffleFilter', 'SpreadFilter', 'VolatilityFilter']
|
||||
AVAILABLE_PROTECTIONS = ['CooldownPeriod', 'LowProfitPairs', 'MaxDrawdown', 'StoplossGuard']
|
||||
AVAILABLE_DATAHANDLERS = ['json', 'jsongz', 'hdf5']
|
||||
AVAILABLE_DATAHANDLERS_TRADES = ['json', 'jsongz', 'hdf5']
|
||||
AVAILABLE_DATAHANDLERS = AVAILABLE_DATAHANDLERS_TRADES + ['feather', 'parquet']
|
||||
BACKTEST_BREAKDOWNS = ['day', 'week', 'month']
|
||||
BACKTEST_CACHE_AGE = ['none', 'day', 'week', 'month']
|
||||
BACKTEST_CACHE_DEFAULT = 'day'
|
||||
@@ -243,6 +244,7 @@ CONF_SCHEMA = {
|
||||
'exchange': {'$ref': '#/definitions/exchange'},
|
||||
'edge': {'$ref': '#/definitions/edge'},
|
||||
'freqai': {'$ref': '#/definitions/freqai'},
|
||||
'external_message_consumer': {'$ref': '#/definitions/external_message_consumer'},
|
||||
'experimental': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
@@ -289,11 +291,12 @@ CONF_SCHEMA = {
|
||||
'warning': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
|
||||
'startup': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
|
||||
'entry': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
|
||||
'entry_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
|
||||
'entry_fill': {'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
'default': 'off'
|
||||
},
|
||||
'entry_fill': {
|
||||
'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
'default': 'off'
|
||||
},
|
||||
'entry_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS, },
|
||||
'exit': {
|
||||
'type': ['string', 'object'],
|
||||
'additionalProperties': {
|
||||
@@ -301,12 +304,12 @@ CONF_SCHEMA = {
|
||||
'enum': TELEGRAM_SETTING_OPTIONS
|
||||
}
|
||||
},
|
||||
'exit_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
|
||||
'exit_fill': {
|
||||
'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
'default': 'on'
|
||||
},
|
||||
'exit_cancel': {'type': 'string', 'enum': TELEGRAM_SETTING_OPTIONS},
|
||||
'protection_trigger': {
|
||||
'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
@@ -315,14 +318,17 @@ CONF_SCHEMA = {
|
||||
'protection_trigger_global': {
|
||||
'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
'default': 'on'
|
||||
},
|
||||
'show_candle': {
|
||||
'type': 'string',
|
||||
'enum': ['off', 'ohlc'],
|
||||
'default': 'off'
|
||||
},
|
||||
'strategy_msg': {
|
||||
'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
'default': 'on'
|
||||
},
|
||||
}
|
||||
},
|
||||
@@ -400,6 +406,7 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'username': {'type': 'string'},
|
||||
'password': {'type': 'string'},
|
||||
'ws_token': {'type': ['string', 'array'], 'items': {'type': 'string'}},
|
||||
'jwt_secret_key': {'type': 'string'},
|
||||
'CORS_origins': {'type': 'array', 'items': {'type': 'string'}},
|
||||
'verbosity': {'type': 'string', 'enum': ['error', 'info']},
|
||||
@@ -428,7 +435,7 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'dataformat_trades': {
|
||||
'type': 'string',
|
||||
'enum': AVAILABLE_DATAHANDLERS,
|
||||
'enum': AVAILABLE_DATAHANDLERS_TRADES,
|
||||
'default': 'jsongz'
|
||||
},
|
||||
'position_adjustment_enable': {'type': 'boolean'},
|
||||
@@ -484,6 +491,47 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'required': ['process_throttle_secs', 'allowed_risk']
|
||||
},
|
||||
'external_message_consumer': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'enabled': {'type': 'boolean', 'default': False},
|
||||
'producers': {
|
||||
'type': 'array',
|
||||
'items': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'name': {'type': 'string'},
|
||||
'host': {'type': 'string'},
|
||||
'port': {
|
||||
'type': 'integer',
|
||||
'default': 8080,
|
||||
'minimum': 0,
|
||||
'maximum': 65535
|
||||
},
|
||||
'ws_token': {'type': 'string'},
|
||||
},
|
||||
'required': ['name', 'host', 'ws_token']
|
||||
}
|
||||
},
|
||||
'wait_timeout': {'type': 'integer', 'minimum': 0},
|
||||
'sleep_time': {'type': 'integer', 'minimum': 0},
|
||||
'ping_timeout': {'type': 'integer', 'minimum': 0},
|
||||
'remove_entry_exit_signals': {'type': 'boolean', 'default': False},
|
||||
'initial_candle_limit': {
|
||||
'type': 'integer',
|
||||
'minimum': 0,
|
||||
'maximum': 1500,
|
||||
'default': 1500
|
||||
},
|
||||
'message_size_limit': { # In megabytes
|
||||
'type': 'integer',
|
||||
'minimum': 1,
|
||||
'maxmium': 20,
|
||||
'default': 8,
|
||||
}
|
||||
},
|
||||
'required': ['producers']
|
||||
},
|
||||
"freqai": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
@@ -504,6 +552,7 @@ CONF_SCHEMA = {
|
||||
"weight_factor": {"type": "number", "default": 0},
|
||||
"principal_component_analysis": {"type": "boolean", "default": False},
|
||||
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False},
|
||||
"plot_feature_importance": {"type": "boolean", "default": False},
|
||||
"svm_params": {"type": "object",
|
||||
"properties": {
|
||||
"shuffle": {"type": "boolean", "default": False},
|
||||
@@ -603,3 +652,5 @@ LongShort = Literal['long', 'short']
|
||||
EntryExit = Literal['entry', 'exit']
|
||||
BuySell = Literal['buy', 'sell']
|
||||
MakerTaker = Literal['maker', 'taker']
|
||||
|
||||
Config = Dict[str, Any]
|
||||
|
@@ -5,12 +5,12 @@ import itertools
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from operator import itemgetter
|
||||
from typing import Any, Dict, List
|
||||
from typing import Dict, List
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, TradeList
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, DEFAULT_TRADES_COLUMNS, Config, TradeList
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
|
||||
@@ -237,7 +237,7 @@ def trades_to_ohlcv(trades: TradeList, timeframe: str) -> DataFrame:
|
||||
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
|
||||
|
||||
|
||||
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
|
||||
def convert_trades_format(config: Config, convert_from: str, convert_to: str, erase: bool):
|
||||
"""
|
||||
Convert trades from one format to another format.
|
||||
:param config: Config dictionary
|
||||
@@ -263,7 +263,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
|
||||
|
||||
def convert_ohlcv_format(
|
||||
config: Dict[str, Any],
|
||||
config: Config,
|
||||
convert_from: str,
|
||||
convert_to: str,
|
||||
erase: bool,
|
||||
@@ -292,6 +292,7 @@ def convert_ohlcv_format(
|
||||
timeframe,
|
||||
candle_type=candle_type
|
||||
))
|
||||
config['pairs'] = sorted(set(config['pairs']))
|
||||
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
|
||||
|
||||
for timeframe in timeframes:
|
||||
@@ -302,7 +303,7 @@ def convert_ohlcv_format(
|
||||
drop_incomplete=False,
|
||||
startup_candles=0,
|
||||
candle_type=candle_type)
|
||||
logger.info(f"Converting {len(data)} {candle_type} candles for {pair}")
|
||||
logger.info(f"Converting {len(data)} {timeframe} {candle_type} candles for {pair}")
|
||||
if len(data) > 0:
|
||||
trg.ohlcv_store(
|
||||
pair=pair,
|
||||
|
@@ -12,11 +12,12 @@ from typing import Any, Dict, List, Optional, Tuple
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.enums import CandleType, RunMode
|
||||
from freqtrade.enums import CandleType, RPCMessageType, RunMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
||||
from freqtrade.rpc import RPCManager
|
||||
from freqtrade.util import PeriodicCache
|
||||
|
||||
|
||||
@@ -28,17 +29,33 @@ MAX_DATAFRAME_CANDLES = 1000
|
||||
|
||||
class DataProvider:
|
||||
|
||||
def __init__(self, config: dict, exchange: Optional[Exchange], pairlists=None) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
config: Config,
|
||||
exchange: Optional[Exchange],
|
||||
pairlists=None,
|
||||
rpc: Optional[RPCManager] = None
|
||||
) -> None:
|
||||
self._config = config
|
||||
self._exchange = exchange
|
||||
self._pairlists = pairlists
|
||||
self.__rpc = rpc
|
||||
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
|
||||
self.__slice_index: Optional[int] = None
|
||||
self.__cached_pairs_backtesting: Dict[PairWithTimeframe, DataFrame] = {}
|
||||
self.__producer_pairs_df: Dict[str,
|
||||
Dict[PairWithTimeframe, Tuple[DataFrame, datetime]]] = {}
|
||||
self.__producer_pairs: Dict[str, List[str]] = {}
|
||||
self._msg_queue: deque = deque()
|
||||
|
||||
self._default_candle_type = self._config.get('candle_type_def', CandleType.SPOT)
|
||||
self._default_timeframe = self._config.get('timeframe', '1h')
|
||||
|
||||
self.__msg_cache = PeriodicCache(
|
||||
maxsize=1000, ttl=timeframe_to_seconds(self._config.get('timeframe', '1h')))
|
||||
maxsize=1000, ttl=timeframe_to_seconds(self._default_timeframe))
|
||||
|
||||
self.producers = self._config.get('external_message_consumer', {}).get('producers', [])
|
||||
self.external_data_enabled = len(self.producers) > 0
|
||||
|
||||
def _set_dataframe_max_index(self, limit_index: int):
|
||||
"""
|
||||
@@ -63,9 +80,110 @@ class DataProvider:
|
||||
:param dataframe: analyzed dataframe
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
"""
|
||||
self.__cached_pairs[(pair, timeframe, candle_type)] = (
|
||||
pair_key = (pair, timeframe, candle_type)
|
||||
self.__cached_pairs[pair_key] = (
|
||||
dataframe, datetime.now(timezone.utc))
|
||||
|
||||
# For multiple producers we will want to merge the pairlists instead of overwriting
|
||||
def _set_producer_pairs(self, pairlist: List[str], producer_name: str = "default"):
|
||||
"""
|
||||
Set the pairs received to later be used.
|
||||
|
||||
:param pairlist: List of pairs
|
||||
"""
|
||||
self.__producer_pairs[producer_name] = pairlist
|
||||
|
||||
def get_producer_pairs(self, producer_name: str = "default") -> List[str]:
|
||||
"""
|
||||
Get the pairs cached from the producer
|
||||
|
||||
:returns: List of pairs
|
||||
"""
|
||||
return self.__producer_pairs.get(producer_name, []).copy()
|
||||
|
||||
def _emit_df(
|
||||
self,
|
||||
pair_key: PairWithTimeframe,
|
||||
dataframe: DataFrame
|
||||
) -> None:
|
||||
"""
|
||||
Send this dataframe as an ANALYZED_DF message to RPC
|
||||
|
||||
:param pair_key: PairWithTimeframe tuple
|
||||
:param data: Tuple containing the DataFrame and the datetime it was cached
|
||||
"""
|
||||
if self.__rpc:
|
||||
self.__rpc.send_msg(
|
||||
{
|
||||
'type': RPCMessageType.ANALYZED_DF,
|
||||
'data': {
|
||||
'key': pair_key,
|
||||
'df': dataframe,
|
||||
'la': datetime.now(timezone.utc)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
def _add_external_df(
|
||||
self,
|
||||
pair: str,
|
||||
dataframe: DataFrame,
|
||||
last_analyzed: datetime,
|
||||
timeframe: str,
|
||||
candle_type: CandleType,
|
||||
producer_name: str = "default"
|
||||
) -> None:
|
||||
"""
|
||||
Add the pair data to this class from an external source.
|
||||
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
"""
|
||||
pair_key = (pair, timeframe, candle_type)
|
||||
|
||||
if producer_name not in self.__producer_pairs_df:
|
||||
self.__producer_pairs_df[producer_name] = {}
|
||||
|
||||
_last_analyzed = datetime.now(timezone.utc) if not last_analyzed else last_analyzed
|
||||
|
||||
self.__producer_pairs_df[producer_name][pair_key] = (dataframe, _last_analyzed)
|
||||
logger.debug(f"External DataFrame for {pair_key} from {producer_name} added.")
|
||||
|
||||
def get_producer_df(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: Optional[str] = None,
|
||||
candle_type: Optional[CandleType] = None,
|
||||
producer_name: str = "default"
|
||||
) -> Tuple[DataFrame, datetime]:
|
||||
"""
|
||||
Get the pair data from producers.
|
||||
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:returns: Tuple of the DataFrame and last analyzed timestamp
|
||||
"""
|
||||
_timeframe = self._default_timeframe if not timeframe else timeframe
|
||||
_candle_type = self._default_candle_type if not candle_type else candle_type
|
||||
|
||||
pair_key = (pair, _timeframe, _candle_type)
|
||||
|
||||
# If we have no data from this Producer yet
|
||||
if producer_name not in self.__producer_pairs_df:
|
||||
# We don't have this data yet, return empty DataFrame and datetime (01-01-1970)
|
||||
return (DataFrame(), datetime.fromtimestamp(0, tz=timezone.utc))
|
||||
|
||||
# If we do have data from that Producer, but no data on this pair_key
|
||||
if pair_key not in self.__producer_pairs_df[producer_name]:
|
||||
# We don't have this data yet, return empty DataFrame and datetime (01-01-1970)
|
||||
return (DataFrame(), datetime.fromtimestamp(0, tz=timezone.utc))
|
||||
|
||||
# We have it, return this data
|
||||
df, la = self.__producer_pairs_df[producer_name][pair_key]
|
||||
return (df.copy(), la)
|
||||
|
||||
def add_pairlisthandler(self, pairlists) -> None:
|
||||
"""
|
||||
Allow adding pairlisthandler after initialization
|
||||
@@ -90,8 +208,10 @@ class DataProvider:
|
||||
if saved_pair not in self.__cached_pairs_backtesting:
|
||||
timerange = TimeRange.parse_timerange(None if self._config.get(
|
||||
'timerange') is None else str(self._config.get('timerange')))
|
||||
# Move informative start time respecting startup_candle_count
|
||||
startup_candles = self.get_required_startup(str(timeframe))
|
||||
|
||||
# It is not necessary to add the training candles, as they
|
||||
# were already added at the beginning of the backtest.
|
||||
startup_candles = self.get_required_startup(str(timeframe), False)
|
||||
tf_seconds = timeframe_to_seconds(str(timeframe))
|
||||
timerange.subtract_start(tf_seconds * startup_candles)
|
||||
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
|
||||
@@ -105,7 +225,7 @@ class DataProvider:
|
||||
)
|
||||
return self.__cached_pairs_backtesting[saved_pair].copy()
|
||||
|
||||
def get_required_startup(self, timeframe: str) -> int:
|
||||
def get_required_startup(self, timeframe: str, add_train_candles: bool = True) -> int:
|
||||
freqai_config = self._config.get('freqai', {})
|
||||
if not freqai_config.get('enabled', False):
|
||||
return self._config.get('startup_candle_count', 0)
|
||||
@@ -115,7 +235,9 @@ class DataProvider:
|
||||
# make sure the startupcandles is at least the set maximum indicator periods
|
||||
self._config['startup_candle_count'] = max(startup_candles, max(indicator_periods))
|
||||
tf_seconds = timeframe_to_seconds(timeframe)
|
||||
train_candles = freqai_config['train_period_days'] * 86400 / tf_seconds
|
||||
train_candles = 0
|
||||
if add_train_candles:
|
||||
train_candles = freqai_config['train_period_days'] * 86400 / tf_seconds
|
||||
total_candles = int(self._config['startup_candle_count'] + train_candles)
|
||||
logger.info(f'Increasing startup_candle_count for freqai to {total_candles}')
|
||||
return total_candles
|
||||
|
130
freqtrade/data/history/featherdatahandler.py
Normal file
130
freqtrade/data/history/featherdatahandler.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from pandas import DataFrame, read_feather, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FeatherDataHandler(IDataHandler):
|
||||
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
def ohlcv_store(
|
||||
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
|
||||
"""
|
||||
Store data in json format "values".
|
||||
format looks as follows:
|
||||
[[<date>,<open>,<high>,<low>,<close>]]
|
||||
:param pair: Pair - used to generate filename
|
||||
:param timeframe: Timeframe - used to generate filename
|
||||
:param data: Dataframe containing OHLCV data
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: None
|
||||
"""
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
|
||||
self.create_dir_if_needed(filename)
|
||||
|
||||
data.reset_index(drop=True).loc[:, self._columns].to_feather(
|
||||
filename, compression_level=9, compression='lz4')
|
||||
|
||||
def _ohlcv_load(self, pair: str, timeframe: str,
|
||||
timerange: Optional[TimeRange], candle_type: CandleType
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
Implements the loading and conversion to a Pandas dataframe.
|
||||
Timerange trimming and dataframe validation happens outside of this method.
|
||||
:param pair: Pair to load data
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange.
|
||||
Optionally implemented by subclasses to avoid loading
|
||||
all data where possible.
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: DataFrame with ohlcv data, or empty DataFrame
|
||||
"""
|
||||
filename = self._pair_data_filename(
|
||||
self._datadir, pair, timeframe, candle_type=candle_type)
|
||||
if not filename.exists():
|
||||
# Fallback mode for 1M files
|
||||
filename = self._pair_data_filename(
|
||||
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=self._columns)
|
||||
|
||||
pairdata = read_feather(filename)
|
||||
pairdata.columns = self._columns
|
||||
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
|
||||
'low': 'float', 'close': 'float', 'volume': 'float'})
|
||||
pairdata['date'] = to_datetime(pairdata['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
return pairdata
|
||||
|
||||
def ohlcv_append(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
data: DataFrame,
|
||||
candle_type: CandleType
|
||||
) -> None:
|
||||
"""
|
||||
Append data to existing data structures
|
||||
:param pair: Pair
|
||||
:param timeframe: Timeframe this ohlcv data is for
|
||||
:param data: Data to append.
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
# filename = self._pair_trades_filename(self._datadir, pair)
|
||||
|
||||
raise NotImplementedError()
|
||||
# array = pa.array(data)
|
||||
# array
|
||||
# feather.write_feather(data, filename)
|
||||
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
# filename = self._pair_trades_filename(self._datadir, pair)
|
||||
# tradesdata = misc.file_load_json(filename)
|
||||
|
||||
# if not tradesdata:
|
||||
# return []
|
||||
|
||||
# return tradesdata
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
return "feather"
|
@@ -1,7 +1,5 @@
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -20,26 +18,6 @@ class HDF5DataHandler(IDataHandler):
|
||||
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
for the specified timeframe
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:param timeframe: Timeframe to search pairs for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: List of Pairs
|
||||
"""
|
||||
candle = ""
|
||||
if candle_type != CandleType.SPOT:
|
||||
datadir = datadir.joinpath('futures')
|
||||
candle = f"-{candle_type}"
|
||||
|
||||
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + candle + '.h5)', p.name)
|
||||
for p in datadir.glob(f"*{timeframe}{candle}.h5")]
|
||||
# Check if regex found something and only return these results
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
def ohlcv_store(
|
||||
self, pair: str, timeframe: str, data: pd.DataFrame, candle_type: CandleType) -> None:
|
||||
"""
|
||||
@@ -103,6 +81,7 @@ class HDF5DataHandler(IDataHandler):
|
||||
raise ValueError("Wrong dataframe format")
|
||||
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
|
||||
'low': 'float', 'close': 'float', 'volume': 'float'})
|
||||
pairdata = pairdata.reset_index(drop=True)
|
||||
return pairdata
|
||||
|
||||
def ohlcv_append(
|
||||
@@ -121,18 +100,6 @@ class HDF5DataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def trades_get_pairs(cls, datadir: Path) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs for which trade data is available in this
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Pairs
|
||||
"""
|
||||
_tmp = [re.search(r'^(\S+)(?=\-trades.h5)', p.name)
|
||||
for p in datadir.glob("*trades.h5")]
|
||||
# Check if regex found something and only return these results to avoid exceptions.
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
|
@@ -26,7 +26,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class IDataHandler(ABC):
|
||||
|
||||
_OHLCV_REGEX = r'^([a-zA-Z_-]+)\-(\d+[a-zA-Z]{1,2})\-?([a-zA-Z_]*)?(?=\.)'
|
||||
_OHLCV_REGEX = r'^([a-zA-Z_\d-]+)\-(\d+[a-zA-Z]{1,2})\-?([a-zA-Z_]*)?(?=\.)'
|
||||
|
||||
def __init__(self, datadir: Path) -> None:
|
||||
self._datadir = datadir
|
||||
@@ -61,7 +61,6 @@ class IDataHandler(ABC):
|
||||
) for match in _tmp if match and len(match.groups()) > 1]
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
@@ -71,6 +70,15 @@ class IDataHandler(ABC):
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: List of Pairs
|
||||
"""
|
||||
candle = ""
|
||||
if candle_type != CandleType.SPOT:
|
||||
datadir = datadir.joinpath('futures')
|
||||
candle = f"-{candle_type}"
|
||||
ext = cls._get_file_extension()
|
||||
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + candle + f'.{ext})', p.name)
|
||||
for p in datadir.glob(f"*{timeframe}{candle}.{ext}")]
|
||||
# Check if regex found something and only return these results
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
@abstractmethod
|
||||
def ohlcv_store(
|
||||
@@ -144,13 +152,17 @@ class IDataHandler(ABC):
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def trades_get_pairs(cls, datadir: Path) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs for which trade data is available in this
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Pairs
|
||||
"""
|
||||
_ext = cls._get_file_extension()
|
||||
_tmp = [re.search(r'^(\S+)(?=\-trades.' + _ext + ')', p.name)
|
||||
for p in datadir.glob(f"*trades.{_ext}")]
|
||||
# Check if regex found something and only return these results to avoid exceptions.
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
@abstractmethod
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
@@ -255,7 +267,7 @@ class IDataHandler(ABC):
|
||||
Rebuild pair name from filename
|
||||
Assumes a asset name of max. 7 length to also support BTC-PERP and BTC-PERP:USD names.
|
||||
"""
|
||||
res = re.sub(r'^(([A-Za-z]{1,10})|^([A-Za-z\-]{1,6}))(_)', r'\g<1>/', pair, 1)
|
||||
res = re.sub(r'^(([A-Za-z\d]{1,10})|^([A-Za-z\-]{1,6}))(_)', r'\g<1>/', pair, 1)
|
||||
res = re.sub('_', ':', res, 1)
|
||||
return res
|
||||
|
||||
@@ -363,6 +375,12 @@ def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
|
||||
elif datatype == 'hdf5':
|
||||
from .hdf5datahandler import HDF5DataHandler
|
||||
return HDF5DataHandler
|
||||
elif datatype == 'feather':
|
||||
from .featherdatahandler import FeatherDataHandler
|
||||
return FeatherDataHandler
|
||||
elif datatype == 'parquet':
|
||||
from .parquetdatahandler import ParquetDataHandler
|
||||
return ParquetDataHandler
|
||||
else:
|
||||
raise ValueError(f"No datahandler for datatype {datatype} available.")
|
||||
|
||||
|
@@ -1,7 +1,5 @@
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame, read_json, to_datetime
|
||||
@@ -23,26 +21,6 @@ class JsonDataHandler(IDataHandler):
|
||||
_use_zip = False
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str, candle_type: CandleType) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
for the specified timeframe
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:param timeframe: Timeframe to search pairs for
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: List of Pairs
|
||||
"""
|
||||
candle = ""
|
||||
if candle_type != CandleType.SPOT:
|
||||
datadir = datadir.joinpath('futures')
|
||||
candle = f"-{candle_type}"
|
||||
|
||||
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + candle + '.json)', p.name)
|
||||
for p in datadir.glob(f"*{timeframe}{candle}.{cls._get_file_extension()}")]
|
||||
# Check if regex found something and only return these results
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
def ohlcv_store(
|
||||
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
|
||||
"""
|
||||
@@ -119,18 +97,6 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def trades_get_pairs(cls, datadir: Path) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs for which trade data is available in this
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Pairs
|
||||
"""
|
||||
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
|
||||
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
|
||||
# Check if regex found something and only return these results to avoid exceptions.
|
||||
return [cls.rebuild_pair_from_filename(match[0]) for match in _tmp if match]
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
|
129
freqtrade/data/history/parquetdatahandler.py
Normal file
129
freqtrade/data/history/parquetdatahandler.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from pandas import DataFrame, read_parquet, to_datetime
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS, TradeList
|
||||
from freqtrade.enums import CandleType
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ParquetDataHandler(IDataHandler):
|
||||
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
def ohlcv_store(
|
||||
self, pair: str, timeframe: str, data: DataFrame, candle_type: CandleType) -> None:
|
||||
"""
|
||||
Store data in json format "values".
|
||||
format looks as follows:
|
||||
[[<date>,<open>,<high>,<low>,<close>]]
|
||||
:param pair: Pair - used to generate filename
|
||||
:param timeframe: Timeframe - used to generate filename
|
||||
:param data: Dataframe containing OHLCV data
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: None
|
||||
"""
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
|
||||
self.create_dir_if_needed(filename)
|
||||
|
||||
data.reset_index(drop=True).loc[:, self._columns].to_parquet(filename)
|
||||
|
||||
def _ohlcv_load(self, pair: str, timeframe: str,
|
||||
timerange: Optional[TimeRange], candle_type: CandleType
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
Implements the loading and conversion to a Pandas dataframe.
|
||||
Timerange trimming and dataframe validation happens outside of this method.
|
||||
:param pair: Pair to load data
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange.
|
||||
Optionally implemented by subclasses to avoid loading
|
||||
all data where possible.
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
:return: DataFrame with ohlcv data, or empty DataFrame
|
||||
"""
|
||||
filename = self._pair_data_filename(
|
||||
self._datadir, pair, timeframe, candle_type=candle_type)
|
||||
if not filename.exists():
|
||||
# Fallback mode for 1M files
|
||||
filename = self._pair_data_filename(
|
||||
self._datadir, pair, timeframe, candle_type=candle_type, no_timeframe_modify=True)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=self._columns)
|
||||
|
||||
pairdata = read_parquet(filename)
|
||||
pairdata.columns = self._columns
|
||||
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
|
||||
'low': 'float', 'close': 'float', 'volume': 'float'})
|
||||
pairdata['date'] = to_datetime(pairdata['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
return pairdata
|
||||
|
||||
def ohlcv_append(
|
||||
self,
|
||||
pair: str,
|
||||
timeframe: str,
|
||||
data: DataFrame,
|
||||
candle_type: CandleType
|
||||
) -> None:
|
||||
"""
|
||||
Append data to existing data structures
|
||||
:param pair: Pair
|
||||
:param timeframe: Timeframe this ohlcv data is for
|
||||
:param data: Data to append.
|
||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
# filename = self._pair_trades_filename(self._datadir, pair)
|
||||
|
||||
raise NotImplementedError()
|
||||
# array = pa.array(data)
|
||||
# array
|
||||
# feather.write_feather(data, filename)
|
||||
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
# filename = self._pair_trades_filename(self._datadir, pair)
|
||||
# tradesdata = misc.file_load_json(filename)
|
||||
|
||||
# if not tradesdata:
|
||||
# return []
|
||||
|
||||
# return tradesdata
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
return "parquet"
|
@@ -11,7 +11,7 @@ import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, UNLIMITED_STAKE_AMOUNT, Config
|
||||
from freqtrade.data.history import get_timerange, load_data, refresh_data
|
||||
from freqtrade.enums import CandleType, ExitType, RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -42,10 +42,9 @@ class Edge:
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
config: Dict = {}
|
||||
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
|
||||
def __init__(self, config: Config, exchange, strategy) -> None:
|
||||
|
||||
self.config = config
|
||||
self.exchange = exchange
|
||||
|
@@ -6,7 +6,7 @@ from freqtrade.enums.exittype import ExitType
|
||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||
from freqtrade.enums.marginmode import MarginMode
|
||||
from freqtrade.enums.ordertypevalue import OrderTypeValues
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType
|
||||
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
|
||||
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
|
||||
from freqtrade.enums.state import State
|
||||
|
@@ -1,7 +1,7 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class RPCMessageType(Enum):
|
||||
class RPCMessageType(str, Enum):
|
||||
STATUS = 'status'
|
||||
WARNING = 'warning'
|
||||
STARTUP = 'startup'
|
||||
@@ -19,8 +19,19 @@ class RPCMessageType(Enum):
|
||||
|
||||
STRATEGY_MSG = 'strategy_msg'
|
||||
|
||||
WHITELIST = 'whitelist'
|
||||
ANALYZED_DF = 'analyzed_df'
|
||||
|
||||
def __repr__(self):
|
||||
return self.value
|
||||
|
||||
def __str__(self):
|
||||
return self.value
|
||||
|
||||
|
||||
# Enum for parsing requests from ws consumers
|
||||
class RPCRequestType(str, Enum):
|
||||
SUBSCRIBE = 'subscribe'
|
||||
|
||||
WHITELIST = 'whitelist'
|
||||
ANALYZED_DF = 'analyzed_df'
|
||||
|
@@ -1,5 +1,4 @@
|
||||
""" Binance exchange subclass """
|
||||
import json
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
@@ -12,7 +11,7 @@ from freqtrade.enums import CandleType, MarginMode, TradingMode
|
||||
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
from freqtrade.misc import deep_merge_dicts, json_load
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -200,7 +199,7 @@ class Binance(Exchange):
|
||||
Path(__file__).parent / 'binance_leverage_tiers.json'
|
||||
)
|
||||
with open(leverage_tiers_path) as json_file:
|
||||
return json.load(json_file)
|
||||
return json_load(json_file)
|
||||
else:
|
||||
try:
|
||||
return self._api.fetch_leverage_tiers()
|
||||
|
@@ -19209,4 +19209,4 @@
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
@@ -21,7 +21,8 @@ from dateutil import parser
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
|
||||
EntryExit, ListPairsWithTimeframes, MakerTaker, PairWithTimeframe)
|
||||
Config, EntryExit, ListPairsWithTimeframes, MakerTaker,
|
||||
PairWithTimeframe)
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
|
||||
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
|
||||
@@ -91,7 +92,7 @@ class Exchange:
|
||||
# TradingMode.SPOT always supported and not required in this list
|
||||
]
|
||||
|
||||
def __init__(self, config: Dict[str, Any], validate: bool = True,
|
||||
def __init__(self, config: Config, validate: bool = True,
|
||||
load_leverage_tiers: bool = False) -> None:
|
||||
"""
|
||||
Initializes this module with the given config,
|
||||
@@ -108,7 +109,7 @@ class Exchange:
|
||||
self._loop_lock = Lock()
|
||||
self.loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(self.loop)
|
||||
self._config: Dict = {}
|
||||
self._config: Config = {}
|
||||
|
||||
self._config.update(config)
|
||||
|
||||
@@ -2890,7 +2891,7 @@ def amount_to_contracts(amount: float, contract_size: Optional[float]) -> float:
|
||||
:return: num-contracts
|
||||
"""
|
||||
if contract_size and contract_size != 1:
|
||||
return amount / contract_size
|
||||
return float(FtPrecise(amount) / FtPrecise(contract_size))
|
||||
else:
|
||||
return amount
|
||||
|
||||
@@ -2904,7 +2905,7 @@ def contracts_to_amount(num_contracts: float, contract_size: Optional[float]) ->
|
||||
"""
|
||||
|
||||
if contract_size and contract_size != 1:
|
||||
return num_contracts * contract_size
|
||||
return float(FtPrecise(num_contracts) * FtPrecise(contract_size))
|
||||
else:
|
||||
return num_contracts
|
||||
|
||||
|
@@ -71,6 +71,7 @@ class Okx(Exchange):
|
||||
try:
|
||||
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
|
||||
accounts = self._api.fetch_accounts()
|
||||
self._log_exchange_response('fetch_accounts', accounts)
|
||||
if len(accounts) > 0:
|
||||
self.net_only = accounts[0].get('info', {}).get('posMode') == 'net_mode'
|
||||
except ccxt.DDoSProtection as e:
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from time import time
|
||||
from typing import Any, Tuple
|
||||
|
||||
import numpy as np
|
||||
@@ -32,7 +33,9 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info("-------------------- Starting training " f"{pair} --------------------")
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
@@ -45,10 +48,10 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
|
||||
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
@@ -57,13 +60,16 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from time import time
|
||||
from typing import Any, Tuple
|
||||
|
||||
import numpy as np
|
||||
@@ -31,7 +32,9 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info("-------------------- Starting training " f"{pair} --------------------")
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
@@ -44,10 +47,10 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
|
||||
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
@@ -56,13 +59,16 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
||||
|
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from time import time
|
||||
from typing import Any
|
||||
|
||||
from pandas import DataFrame
|
||||
@@ -28,7 +29,9 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info("-------------------- Starting training " f"{pair} --------------------")
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
@@ -41,10 +44,10 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
start_date = unfiltered_df["date"].iloc[0].strftime("%Y-%m-%d")
|
||||
end_date = unfiltered_df["date"].iloc[-1].strftime("%Y-%m-%d")
|
||||
logger.info(f"-------------------- Training on data from {start_date} to "
|
||||
f"{end_date}--------------------")
|
||||
f"{end_date} --------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
|
||||
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
@@ -53,12 +56,15 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f'Training model on {len(dk.data_dictionary["train_features"].columns)}' " features"
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
||||
|
@@ -1,4 +1,3 @@
|
||||
|
||||
from joblib import Parallel
|
||||
from sklearn.multioutput import MultiOutputRegressor, _fit_estimator
|
||||
from sklearn.utils.fixes import delayed
|
||||
|
@@ -16,6 +16,7 @@ from numpy.typing import NDArray
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
@@ -27,9 +28,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class pair_info(TypedDict):
|
||||
model_filename: str
|
||||
first: bool
|
||||
trained_timestamp: int
|
||||
priority: int
|
||||
data_path: str
|
||||
extras: dict
|
||||
|
||||
@@ -58,7 +57,7 @@ class FreqaiDataDrawer:
|
||||
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
|
||||
"""
|
||||
|
||||
def __init__(self, full_path: Path, config: dict, follow_mode: bool = False):
|
||||
def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
|
||||
|
||||
self.config = config
|
||||
self.freqai_info = config.get("freqai", {})
|
||||
@@ -91,7 +90,7 @@ class FreqaiDataDrawer:
|
||||
self.old_DBSCAN_eps: Dict[str, float] = {}
|
||||
self.empty_pair_dict: pair_info = {
|
||||
"model_filename": "", "trained_timestamp": 0,
|
||||
"priority": 1, "first": True, "data_path": "", "extras": {}}
|
||||
"data_path": "", "extras": {}}
|
||||
|
||||
def load_drawer_from_disk(self):
|
||||
"""
|
||||
@@ -216,7 +215,6 @@ class FreqaiDataDrawer:
|
||||
self.pair_dict[pair] = self.empty_pair_dict.copy()
|
||||
model_filename = ""
|
||||
trained_timestamp = 0
|
||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||
|
||||
if not data_path_set and self.follow_mode:
|
||||
logger.warning(
|
||||
@@ -236,18 +234,9 @@ class FreqaiDataDrawer:
|
||||
return
|
||||
else:
|
||||
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
|
||||
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
|
||||
|
||||
return
|
||||
|
||||
def pair_to_end_of_training_queue(self, pair: str) -> None:
|
||||
# march all pairs up in the queue
|
||||
with self.pair_dict_lock:
|
||||
for p in self.pair_dict:
|
||||
self.pair_dict[p]["priority"] -= 1
|
||||
# send pair to end of queue
|
||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||
|
||||
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
|
||||
"""
|
||||
Set the initial return values to the historical predictions dataframe. This avoids needing
|
||||
@@ -441,6 +430,16 @@ class FreqaiDataDrawer:
|
||||
|
||||
return
|
||||
|
||||
def load_metadata(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Load only metadata into datakitchen to increase performance during
|
||||
presaved backtesting (prediction file loading).
|
||||
"""
|
||||
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
|
||||
dk.data = json.load(fp)
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
|
||||
def load_data(self, coin: str, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
loads all data required to make a prediction on a sub-train time range
|
||||
|
@@ -18,6 +18,7 @@ from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
@@ -57,7 +58,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
config: Config,
|
||||
live: bool = False,
|
||||
pair: str = "",
|
||||
):
|
||||
@@ -466,27 +467,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
return df
|
||||
|
||||
def remove_training_from_backtesting(
|
||||
self
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Function which takes the backtesting time range and
|
||||
remove training data from dataframe, keeping only the
|
||||
startup_candle_count candles
|
||||
"""
|
||||
startup_candle_count = self.config.get('startup_candle_count', 0)
|
||||
tf = self.config['timeframe']
|
||||
tr = self.config["timerange"]
|
||||
|
||||
backtesting_timerange = TimeRange.parse_timerange(tr)
|
||||
if startup_candle_count > 0 and backtesting_timerange:
|
||||
backtesting_timerange.subtract_start(timeframe_to_seconds(tf) * startup_candle_count)
|
||||
|
||||
start = datetime.fromtimestamp(backtesting_timerange.startts, tz=timezone.utc)
|
||||
df = self.return_dataframe
|
||||
df = df.loc[df["date"] >= start, :]
|
||||
return df
|
||||
|
||||
def principal_component_analysis(self) -> None:
|
||||
"""
|
||||
Performs Principal Component Analysis on the data for dimensionality reduction
|
||||
@@ -775,12 +755,22 @@ class FreqaiDataKitchen:
|
||||
|
||||
def compute_inlier_metric(self, set_='train') -> None:
|
||||
"""
|
||||
|
||||
Compute inlier metric from backwards distance distributions.
|
||||
This metric defines how well features from a timepoint fit
|
||||
into previous timepoints.
|
||||
"""
|
||||
|
||||
def normalise(dataframe: DataFrame, key: str) -> DataFrame:
|
||||
if set_ == 'train':
|
||||
min_value = dataframe.min()
|
||||
max_value = dataframe.max()
|
||||
self.data[f'{key}_min'] = min_value
|
||||
self.data[f'{key}_max'] = max_value
|
||||
else:
|
||||
min_value = self.data[f'{key}_min']
|
||||
max_value = self.data[f'{key}_max']
|
||||
return (dataframe - min_value) / (max_value - min_value)
|
||||
|
||||
no_prev_pts = self.freqai_config["feature_parameters"]["inlier_metric_window"]
|
||||
|
||||
if set_ == 'train':
|
||||
@@ -825,7 +815,12 @@ class FreqaiDataKitchen:
|
||||
inliers = pd.DataFrame(index=distances.index)
|
||||
for key in distances.keys():
|
||||
current_distances = distances[key].dropna()
|
||||
fit_params = stats.weibull_min.fit(current_distances)
|
||||
current_distances = normalise(current_distances, key)
|
||||
if set_ == 'train':
|
||||
fit_params = stats.weibull_min.fit(current_distances)
|
||||
self.data[f'{key}_fit_params'] = fit_params
|
||||
else:
|
||||
fit_params = self.data[f'{key}_fit_params']
|
||||
quantiles = stats.weibull_min.cdf(current_distances, *fit_params)
|
||||
|
||||
df_inlier = pd.DataFrame(
|
||||
@@ -979,8 +974,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
|
||||
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1)
|
||||
|
||||
# self.return_dataframe = self.remove_training_from_backtesting()
|
||||
self.full_df = DataFrame()
|
||||
|
||||
return
|
||||
|
@@ -3,6 +3,7 @@ import shutil
|
||||
import threading
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from threading import Lock
|
||||
@@ -14,12 +15,13 @@ from numpy.typing import NDArray
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.utils import plot_feature_importance
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
@@ -50,7 +52,7 @@ class IFreqaiModel(ABC):
|
||||
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
|
||||
self.config = config
|
||||
self.assert_config(self.config)
|
||||
@@ -63,7 +65,7 @@ class IFreqaiModel(ABC):
|
||||
self.first = True
|
||||
self.set_full_path()
|
||||
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
|
||||
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", False)
|
||||
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
|
||||
if self.save_backtest_models:
|
||||
logger.info('Backtesting module configured to save all models.')
|
||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||
@@ -80,6 +82,7 @@ class IFreqaiModel(ABC):
|
||||
self.pair_it = 0
|
||||
self.pair_it_train = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.train_queue = self._set_train_queue()
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
self.analysis_lock = Lock()
|
||||
@@ -99,7 +102,7 @@ class IFreqaiModel(ABC):
|
||||
"""
|
||||
return ({})
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
def assert_config(self, config: Config) -> None:
|
||||
|
||||
if not config.get("freqai", {}):
|
||||
raise OperationalException("No freqai parameters found in configuration file.")
|
||||
@@ -181,29 +184,40 @@ class IFreqaiModel(ABC):
|
||||
"""
|
||||
while not self._stop_event.is_set():
|
||||
time.sleep(1)
|
||||
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
|
||||
pair = self.train_queue[0]
|
||||
|
||||
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
|
||||
# ensure pair is avaialble in dp
|
||||
if pair not in strategy.dp.current_whitelist():
|
||||
self.train_queue.popleft()
|
||||
logger.warning(f'{pair} not in current whitelist, removing from train queue.')
|
||||
continue
|
||||
|
||||
if self.dd.pair_dict[pair]["priority"] != 1:
|
||||
continue
|
||||
dk = FreqaiDataKitchen(self.config, self.live, pair)
|
||||
dk.set_paths(pair, trained_timestamp)
|
||||
(
|
||||
retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange,
|
||||
) = dk.check_if_new_training_required(trained_timestamp)
|
||||
dk.set_paths(pair, new_trained_timerange.stopts)
|
||||
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
|
||||
|
||||
if retrain:
|
||||
self.train_timer('start')
|
||||
dk = FreqaiDataKitchen(self.config, self.live, pair)
|
||||
dk.set_paths(pair, trained_timestamp)
|
||||
(
|
||||
retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange,
|
||||
) = dk.check_if_new_training_required(trained_timestamp)
|
||||
dk.set_paths(pair, new_trained_timerange.stopts)
|
||||
|
||||
if retrain:
|
||||
self.train_timer('start')
|
||||
try:
|
||||
self.extract_data_and_train_model(
|
||||
new_trained_timerange, pair, strategy, dk, data_load_timerange
|
||||
)
|
||||
self.train_timer('stop')
|
||||
except Exception as msg:
|
||||
logger.warning(f'Training {pair} raised exception {msg}, skipping.')
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
self.train_timer('stop')
|
||||
|
||||
# only rotate the queue after the first has been trained.
|
||||
self.train_queue.rotate(-1)
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
def start_backtesting(
|
||||
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
|
||||
@@ -230,7 +244,8 @@ class IFreqaiModel(ABC):
|
||||
# following tr_train. Both of these windows slide through the
|
||||
# entire backtest
|
||||
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
|
||||
(_, _, _) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||
pair = metadata["pair"]
|
||||
(_, _, _) = self.dd.get_pair_dict_info(pair)
|
||||
train_it += 1
|
||||
total_trains = len(dk.backtesting_timeranges)
|
||||
self.training_timerange = tr_train
|
||||
@@ -245,37 +260,37 @@ class IFreqaiModel(ABC):
|
||||
tr_train.stopts,
|
||||
tz=timezone.utc).strftime(DATETIME_PRINT_FORMAT)
|
||||
logger.info(
|
||||
f"Training {metadata['pair']}, {self.pair_it}/{self.total_pairs} pairs"
|
||||
f"Training {pair}, {self.pair_it}/{self.total_pairs} pairs"
|
||||
f" from {tr_train_startts_str} to {tr_train_stopts_str}, {train_it}/{total_trains} "
|
||||
"trains"
|
||||
)
|
||||
|
||||
trained_timestamp_int = int(trained_timestamp.stopts)
|
||||
dk.data_path = Path(
|
||||
dk.full_path
|
||||
/
|
||||
f"sub-train-{metadata['pair'].split('/')[0]}_{trained_timestamp_int}"
|
||||
dk.full_path / f"sub-train-{pair.split('/')[0]}_{trained_timestamp_int}"
|
||||
)
|
||||
|
||||
dk.set_new_model_names(metadata["pair"], trained_timestamp)
|
||||
dk.set_new_model_names(pair, trained_timestamp)
|
||||
|
||||
if dk.check_if_backtest_prediction_exists():
|
||||
self.dd.load_metadata(dk)
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
append_df = dk.get_backtesting_prediction()
|
||||
dk.append_predictions(append_df)
|
||||
else:
|
||||
if not self.model_exists(
|
||||
metadata["pair"], dk, trained_timestamp=trained_timestamp_int
|
||||
pair, dk, trained_timestamp=trained_timestamp_int
|
||||
):
|
||||
dk.find_features(dataframe_train)
|
||||
self.model = self.train(dataframe_train, metadata["pair"], dk)
|
||||
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = int(
|
||||
self.model = self.train(dataframe_train, pair, dk)
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = int(
|
||||
trained_timestamp.stopts)
|
||||
|
||||
if self.save_backtest_models:
|
||||
logger.info('Saving backtest model to disk.')
|
||||
self.dd.save_data(self.model, metadata["pair"], dk)
|
||||
self.dd.save_data(self.model, pair, dk)
|
||||
else:
|
||||
self.model = self.dd.load_data(metadata["pair"], dk)
|
||||
self.model = self.dd.load_data(pair, dk)
|
||||
|
||||
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
|
||||
|
||||
@@ -416,14 +431,16 @@ class IFreqaiModel(ABC):
|
||||
if "training_features_list_raw" in dk.data:
|
||||
feature_list = dk.data["training_features_list_raw"]
|
||||
else:
|
||||
feature_list = dk.training_features_list
|
||||
feature_list = dk.data['training_features_list']
|
||||
if dk.training_features_list != feature_list:
|
||||
raise OperationalException(
|
||||
"Trying to access pretrained model with `identifier` "
|
||||
"but found different features furnished by current strategy."
|
||||
"Change `identifier` to train from scratch, or ensure the"
|
||||
"strategy is furnishing the same features as the pretrained"
|
||||
"model"
|
||||
"model. In case of --strategy-list, please be aware that FreqAI "
|
||||
"requires all strategies to maintain identical "
|
||||
"populate_any_indicator() functions"
|
||||
)
|
||||
|
||||
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
|
||||
@@ -557,11 +574,11 @@ class IFreqaiModel(ABC):
|
||||
|
||||
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
|
||||
dk.set_new_model_names(pair, new_trained_timerange)
|
||||
self.dd.pair_dict[pair]["first"] = False
|
||||
if self.dd.pair_dict[pair]["priority"] == 1 and self.scanning:
|
||||
self.dd.pair_to_end_of_training_queue(pair)
|
||||
self.dd.save_data(model, pair, dk)
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("plot_feature_importance", False):
|
||||
plot_feature_importance(model, pair, dk)
|
||||
|
||||
if self.freqai_info.get("purge_old_models", False):
|
||||
self.dd.purge_old_models()
|
||||
|
||||
@@ -685,6 +702,32 @@ class IFreqaiModel(ABC):
|
||||
|
||||
return init_model
|
||||
|
||||
def _set_train_queue(self):
|
||||
"""
|
||||
Sets train queue from existing train timestamps if they exist
|
||||
otherwise it sets the train queue based on the provided whitelist.
|
||||
"""
|
||||
current_pairlist = self.config.get("exchange", {}).get("pair_whitelist")
|
||||
if not self.dd.pair_dict:
|
||||
logger.info('Set fresh train queue from whitelist. '
|
||||
f'Queue: {current_pairlist}')
|
||||
return deque(current_pairlist)
|
||||
|
||||
best_queue = deque()
|
||||
|
||||
pair_dict_sorted = sorted(self.dd.pair_dict.items(),
|
||||
key=lambda k: k[1]['trained_timestamp'])
|
||||
for pair in pair_dict_sorted:
|
||||
if pair[0] in current_pairlist:
|
||||
best_queue.append(pair[0])
|
||||
for pair in current_pairlist:
|
||||
if pair not in best_queue:
|
||||
best_queue.appendleft(pair)
|
||||
|
||||
logger.info('Set existing queue from trained timestamps. '
|
||||
f'Best approximation queue: {best_queue}')
|
||||
return best_queue
|
||||
|
||||
def spice_rack(self, indicator: str, dataframe: DataFrame,
|
||||
metadata: dict, strategy: IStrategy) -> NDArray:
|
||||
if not self.spice_rack_open:
|
||||
|
@@ -10,11 +10,13 @@ from scipy.signal import argrelextrema
|
||||
from technical import qtpylib
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import market_is_active
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
from freqtrade.strategy import merge_informative_pair
|
||||
|
||||
@@ -22,7 +24,7 @@ from freqtrade.strategy import merge_informative_pair
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||
def download_all_data_for_training(dp: DataProvider, config: Config) -> None:
|
||||
"""
|
||||
Called only once upon start of bot to download the necessary data for
|
||||
populating indicators and training the model.
|
||||
@@ -56,9 +58,7 @@ def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||
)
|
||||
|
||||
|
||||
def get_required_data_timerange(
|
||||
config: dict
|
||||
) -> TimeRange:
|
||||
def get_required_data_timerange(config: Config) -> TimeRange:
|
||||
"""
|
||||
Used to compute the required data download time range
|
||||
for auto data-download in FreqAI
|
||||
@@ -226,7 +226,7 @@ def setup_freqai_spice_rack(config: dict, exchange: Optional[Exchange]) -> Dict[
|
||||
return config
|
||||
|
||||
# Keep below for when we wish to download heterogeneously lengthed data for FreqAI.
|
||||
# def download_all_data_for_training(dp: DataProvider, config: dict) -> None:
|
||||
# def download_all_data_for_training(dp: DataProvider, config: Config) -> None:
|
||||
# """
|
||||
# Called only once upon start of bot to download the necessary data for
|
||||
# populating indicators and training a FreqAI model.
|
||||
@@ -272,3 +272,58 @@ def setup_freqai_spice_rack(config: dict, exchange: Optional[Exchange]) -> Dict[
|
||||
# trading_mode=config.get("trading_mode", "spot"),
|
||||
# prepend=config.get("prepend_data", False),
|
||||
# )
|
||||
|
||||
|
||||
def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
|
||||
count_max: int = 25) -> None:
|
||||
"""
|
||||
Plot Best and worst features by importance for a single sub-train.
|
||||
:param model: Any = A model which was `fit` using a common library
|
||||
such as catboost or lightgbm
|
||||
:param pair: str = pair e.g. BTC/USD
|
||||
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
|
||||
:param count_max: int = the amount of features to be loaded per column
|
||||
"""
|
||||
from freqtrade.plot.plotting import go, make_subplots, store_plot_file
|
||||
|
||||
# Extract feature importance from model
|
||||
models = {}
|
||||
if 'FreqaiMultiOutputRegressor' in str(model.__class__):
|
||||
for estimator, label in zip(model.estimators_, dk.label_list):
|
||||
models[label] = estimator
|
||||
else:
|
||||
models[dk.label_list[0]] = model
|
||||
|
||||
for label in models:
|
||||
mdl = models[label]
|
||||
if "catboost.core" in str(mdl.__class__):
|
||||
feature_importance = mdl.get_feature_importance()
|
||||
elif "lightgbm.sklearn" or "xgb" in str(mdl.__class__):
|
||||
feature_importance = mdl.feature_importances_
|
||||
else:
|
||||
logger.info('Model type not support for generating feature importances.')
|
||||
return
|
||||
|
||||
# Data preparation
|
||||
fi_df = pd.DataFrame({
|
||||
"feature_names": np.array(dk.training_features_list),
|
||||
"feature_importance": np.array(feature_importance)
|
||||
})
|
||||
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
|
||||
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
|
||||
|
||||
# Plotting
|
||||
def add_feature_trace(fig, fi_df, col):
|
||||
return fig.add_trace(
|
||||
go.Bar(
|
||||
x=fi_df["feature_importance"],
|
||||
y=fi_df["feature_names"],
|
||||
orientation='h', showlegend=False
|
||||
), row=1, col=col
|
||||
)
|
||||
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
|
||||
fig = add_feature_trace(fig, fi_df_top, 1)
|
||||
fig = add_feature_trace(fig, fi_df_worst, 2)
|
||||
fig.update_layout(title_text=f"Best and worst features by importance {pair}")
|
||||
label = label.replace('&', '').replace('%', '') # escape two FreqAI specific characters
|
||||
store_plot_file(fig, f"{dk.model_filename}-{label}.html", dk.data_path)
|
||||
|
@@ -11,9 +11,9 @@ from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from schedule import Scheduler
|
||||
|
||||
from freqtrade import __version__, constants
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import validate_config_consistency
|
||||
from freqtrade.constants import BuySell, LongShort
|
||||
from freqtrade.constants import BuySell, Config, LongShort
|
||||
from freqtrade.data.converter import order_book_to_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
@@ -29,6 +29,7 @@ from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from freqtrade.plugins.protectionmanager import ProtectionManager
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.rpc import RPCManager
|
||||
from freqtrade.rpc.external_message_consumer import ExternalMessageConsumer
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.util import FtPrecise
|
||||
@@ -44,7 +45,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
This is from here the bot start its logic.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
"""
|
||||
Init all variables and objects the bot needs to work
|
||||
:param config: configuration dict, you can use Configuration.get_config()
|
||||
@@ -52,8 +53,6 @@ class FreqtradeBot(LoggingMixin):
|
||||
"""
|
||||
self.active_pair_whitelist: List[str] = []
|
||||
|
||||
logger.info('Starting freqtrade %s', __version__)
|
||||
|
||||
# Init bot state
|
||||
self.state = State.STOPPED
|
||||
|
||||
@@ -74,6 +73,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
PairLocks.timeframe = self.config['timeframe']
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
# RPC runs in separate threads, can start handling external commands just after
|
||||
# initialization, even before Freqtradebot has a chance to start its throttling,
|
||||
# so anything in the Freqtradebot instance should be ready (initialized), including
|
||||
@@ -81,9 +82,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
# Keep this at the end of this initialization method.
|
||||
self.rpc: RPCManager = RPCManager(self)
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
|
||||
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists, self.rpc)
|
||||
|
||||
# Attach Dataprovider to strategy instance
|
||||
self.strategy.dp = self.dataprovider
|
||||
@@ -94,6 +93,10 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
||||
# Init ExternalMessageConsumer if enabled
|
||||
self.emc = ExternalMessageConsumer(self.config, self.dataprovider) if \
|
||||
self.config.get('external_message_consumer', {}).get('enabled', False) else None
|
||||
|
||||
self.active_pair_whitelist = self._refresh_active_whitelist()
|
||||
|
||||
# Set initial bot state from config
|
||||
@@ -153,9 +156,11 @@ class FreqtradeBot(LoggingMixin):
|
||||
finally:
|
||||
self.strategy.ft_bot_cleanup()
|
||||
|
||||
self.rpc.cleanup()
|
||||
Trade.commit()
|
||||
self.exchange.close()
|
||||
self.rpc.cleanup()
|
||||
if self.emc:
|
||||
self.emc.shutdown()
|
||||
Trade.commit()
|
||||
self.exchange.close()
|
||||
|
||||
def startup(self) -> None:
|
||||
"""
|
||||
@@ -256,6 +261,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
pairs that have open trades.
|
||||
"""
|
||||
# Refresh whitelist
|
||||
_prev_whitelist = self.pairlists.whitelist
|
||||
self.pairlists.refresh_pairlist()
|
||||
_whitelist = self.pairlists.whitelist
|
||||
|
||||
@@ -268,6 +274,11 @@ class FreqtradeBot(LoggingMixin):
|
||||
# Extend active-pair whitelist with pairs of open trades
|
||||
# It ensures that candle (OHLCV) data are downloaded for open trades as well
|
||||
_whitelist.extend([trade.pair for trade in trades if trade.pair not in _whitelist])
|
||||
|
||||
# Called last to include the included pairs
|
||||
if _prev_whitelist != _whitelist:
|
||||
self.rpc.send_msg({'type': RPCMessageType.WHITELIST, 'data': _whitelist})
|
||||
|
||||
return _whitelist
|
||||
|
||||
def get_free_open_trades(self) -> int:
|
||||
@@ -596,7 +607,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
amount = trade.amount
|
||||
|
||||
if amount == 0.0:
|
||||
logger.info("Amount to sell is 0.0 due to exchange limits - not selling.")
|
||||
logger.info("Amount to exit is 0.0 due to exchange limits - not exiting.")
|
||||
return
|
||||
|
||||
remaining = (trade.amount - amount) * current_exit_rate
|
||||
@@ -923,7 +934,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
'stake_amount': trade.stake_amount,
|
||||
'stake_currency': self.config['stake_currency'],
|
||||
'fiat_currency': self.config.get('fiat_display_currency', None),
|
||||
'amount': order.safe_amount_after_fee if fill else order.amount,
|
||||
'amount': order.safe_amount_after_fee if fill else (order.amount or trade.amount),
|
||||
'open_date': trade.open_date or datetime.utcnow(),
|
||||
'current_rate': current_rate,
|
||||
'sub_trade': sub_trade,
|
||||
@@ -1599,14 +1610,14 @@ class FreqtradeBot(LoggingMixin):
|
||||
# second condition is for mypy only; order will always be passed during sub trade
|
||||
if sub_trade and order is not None:
|
||||
amount = order.safe_filled if fill else order.amount
|
||||
profit_rate = order.safe_price
|
||||
order_rate: float = order.safe_price
|
||||
|
||||
profit = trade.calc_profit(rate=profit_rate, amount=amount, open_rate=trade.open_rate)
|
||||
profit_ratio = trade.calc_profit_ratio(profit_rate, amount, trade.open_rate)
|
||||
profit = trade.calc_profit(rate=order_rate, amount=amount, open_rate=trade.open_rate)
|
||||
profit_ratio = trade.calc_profit_ratio(order_rate, amount, trade.open_rate)
|
||||
else:
|
||||
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit = trade.calc_profit(rate=profit_rate) + (0.0 if fill else trade.realized_profit)
|
||||
profit_ratio = trade.calc_profit_ratio(profit_rate)
|
||||
order_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit = trade.calc_profit(rate=order_rate) + (0.0 if fill else trade.realized_profit)
|
||||
profit_ratio = trade.calc_profit_ratio(order_rate)
|
||||
amount = trade.amount
|
||||
gain = "profit" if profit_ratio > 0 else "loss"
|
||||
|
||||
@@ -1619,11 +1630,12 @@ class FreqtradeBot(LoggingMixin):
|
||||
'leverage': trade.leverage,
|
||||
'direction': 'Short' if trade.is_short else 'Long',
|
||||
'gain': gain,
|
||||
'limit': profit_rate,
|
||||
'limit': order_rate, # Deprecated
|
||||
'order_rate': order_rate,
|
||||
'order_type': order_type,
|
||||
'amount': amount,
|
||||
'open_rate': trade.open_rate,
|
||||
'close_rate': profit_rate,
|
||||
'close_rate': order_rate,
|
||||
'current_rate': current_rate,
|
||||
'profit_amount': profit,
|
||||
'profit_ratio': profit_ratio,
|
||||
|
@@ -2,8 +2,8 @@ import logging
|
||||
import sys
|
||||
from logging import Formatter
|
||||
from logging.handlers import BufferingHandler, RotatingFileHandler, SysLogHandler
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
@@ -73,7 +73,7 @@ def setup_logging_pre() -> None:
|
||||
)
|
||||
|
||||
|
||||
def setup_logging(config: Dict[str, Any]) -> None:
|
||||
def setup_logging(config: Config) -> None:
|
||||
"""
|
||||
Process -v/--verbose, --logfile options
|
||||
"""
|
||||
|
@@ -12,6 +12,7 @@ from typing import Any, List
|
||||
if sys.version_info < (3, 8): # pragma: no cover
|
||||
sys.exit("Freqtrade requires Python version >= 3.8")
|
||||
|
||||
from freqtrade import __version__
|
||||
from freqtrade.commands import Arguments
|
||||
from freqtrade.exceptions import FreqtradeException, OperationalException
|
||||
from freqtrade.loggers import setup_logging_pre
|
||||
@@ -34,6 +35,7 @@ def main(sysargv: List[str] = None) -> None:
|
||||
|
||||
# Call subcommand.
|
||||
if 'func' in args:
|
||||
logger.info(f'freqtrade {__version__}')
|
||||
return_code = args['func'](args)
|
||||
else:
|
||||
# No subcommand was issued.
|
||||
|
@@ -10,9 +10,11 @@ from typing import Any, Iterator, List
|
||||
from typing.io import IO
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import pandas
|
||||
import rapidjson
|
||||
|
||||
from freqtrade.constants import DECIMAL_PER_COIN_FALLBACK, DECIMALS_PER_COIN
|
||||
from freqtrade.enums import SignalTagType, SignalType
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -249,3 +251,41 @@ def parse_db_uri_for_logging(uri: str):
|
||||
return uri
|
||||
pwd = parsed_db_uri.netloc.split(':')[1].split('@')[0]
|
||||
return parsed_db_uri.geturl().replace(f':{pwd}@', ':*****@')
|
||||
|
||||
|
||||
def dataframe_to_json(dataframe: pandas.DataFrame) -> str:
|
||||
"""
|
||||
Serialize a DataFrame for transmission over the wire using JSON
|
||||
:param dataframe: A pandas DataFrame
|
||||
:returns: A JSON string of the pandas DataFrame
|
||||
"""
|
||||
return dataframe.to_json(orient='split')
|
||||
|
||||
|
||||
def json_to_dataframe(data: str) -> pandas.DataFrame:
|
||||
"""
|
||||
Deserialize JSON into a DataFrame
|
||||
:param data: A JSON string
|
||||
:returns: A pandas DataFrame from the JSON string
|
||||
"""
|
||||
dataframe = pandas.read_json(data, orient='split')
|
||||
if 'date' in dataframe.columns:
|
||||
dataframe['date'] = pandas.to_datetime(dataframe['date'], unit='ms', utc=True)
|
||||
|
||||
return dataframe
|
||||
|
||||
|
||||
def remove_entry_exit_signals(dataframe: pandas.DataFrame):
|
||||
"""
|
||||
Remove Entry and Exit signals from a DataFrame
|
||||
|
||||
:param dataframe: The DataFrame to remove signals from
|
||||
"""
|
||||
dataframe[SignalType.ENTER_LONG.value] = 0
|
||||
dataframe[SignalType.EXIT_LONG.value] = 0
|
||||
dataframe[SignalType.ENTER_SHORT.value] = 0
|
||||
dataframe[SignalType.EXIT_SHORT.value] = 0
|
||||
dataframe[SignalTagType.ENTER_TAG.value] = None
|
||||
dataframe[SignalTagType.EXIT_TAG.value] = None
|
||||
|
||||
return dataframe
|
||||
|
@@ -15,7 +15,7 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange, validate_config_consistency
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LongShort
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, LongShort
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
|
||||
from freqtrade.data.converter import trim_dataframe, trim_dataframes
|
||||
@@ -70,7 +70,7 @@ class Backtesting:
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
|
||||
LoggingMixin.show_output = False
|
||||
self.config = config
|
||||
@@ -95,8 +95,8 @@ class Backtesting:
|
||||
|
||||
if self.config.get('strategy_list'):
|
||||
if self.config.get('freqai', {}).get('enabled', False):
|
||||
raise OperationalException(
|
||||
"You can't use strategy_list and freqai at the same time.")
|
||||
logger.warning("Using --strategy-list with FreqAI REQUIRES all strategies "
|
||||
"to have identical populate_any_indicators.")
|
||||
for strat in list(self.config['strategy_list']):
|
||||
stratconf = deepcopy(self.config)
|
||||
stratconf['strategy'] = strat
|
||||
@@ -143,9 +143,14 @@ class Backtesting:
|
||||
|
||||
# Get maximum required startup period
|
||||
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
|
||||
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
|
||||
|
||||
if self.config.get('freqai', {}).get('enabled', False):
|
||||
# For FreqAI, increase the required_startup to includes the training data
|
||||
self.required_startup = self.dataprovider.get_required_startup(self.timeframe)
|
||||
|
||||
# Add maximum startup candle count to configuration for informative pairs support
|
||||
self.config['startup_candle_count'] = self.required_startup
|
||||
self.exchange.validate_required_startup_candles(self.required_startup, self.timeframe)
|
||||
|
||||
self.trading_mode: TradingMode = config.get('trading_mode', TradingMode.SPOT)
|
||||
# strategies which define "can_short=True" will fail to load in Spot mode.
|
||||
@@ -221,7 +226,7 @@ class Backtesting:
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe,
|
||||
timerange=self.timerange,
|
||||
startup_candles=self.dataprovider.get_required_startup(self.timeframe),
|
||||
startup_candles=self.config['startup_candle_count'],
|
||||
fail_without_data=True,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
|
||||
|
@@ -4,10 +4,10 @@
|
||||
This module contains the edge backtesting interface
|
||||
"""
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange, validate_config_consistency
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.optimize.optimize_reports import generate_edge_table
|
||||
@@ -26,7 +26,7 @@ class EdgeCli:
|
||||
edge.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
self.config = config
|
||||
|
||||
# Ensure using dry-run
|
||||
|
@@ -21,7 +21,7 @@ from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_
|
||||
from joblib.externals import cloudpickle
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN, Config
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.enums import HyperoptState
|
||||
@@ -66,7 +66,7 @@ class Hyperopt:
|
||||
hyperopt.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
self.buy_space: List[Dimension] = []
|
||||
self.sell_space: List[Dimension] = []
|
||||
self.protection_space: List[Dimension] = []
|
||||
@@ -132,7 +132,7 @@ class Hyperopt:
|
||||
self.print_json = self.config.get('print_json', False)
|
||||
|
||||
@staticmethod
|
||||
def get_lock_filename(config: Dict[str, Any]) -> str:
|
||||
def get_lock_filename(config: Config) -> str:
|
||||
|
||||
return str(config['user_data_dir'] / 'hyperopt.lock')
|
||||
|
||||
|
@@ -10,6 +10,7 @@ from typing import Dict, List, Union
|
||||
from sklearn.base import RegressorMixin
|
||||
from skopt.space import Categorical, Dimension, Integer
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.misc import round_dict
|
||||
from freqtrade.optimize.space import SKDecimal
|
||||
@@ -32,7 +33,7 @@ class IHyperOpt(ABC):
|
||||
timeframe: str
|
||||
strategy: IStrategy
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
self.config = config
|
||||
|
||||
# Assign timeframe to be used in hyperopt
|
||||
|
@@ -10,6 +10,7 @@ from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.metrics import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
@@ -27,7 +28,7 @@ class CalmarHyperOptLoss(IHyperOptLoss):
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
config: Dict,
|
||||
config: Config,
|
||||
processed: Dict[str, DataFrame],
|
||||
backtest_stats: Dict[str, Any],
|
||||
*args,
|
||||
|
@@ -4,10 +4,9 @@ MaxDrawDownRelativeHyperOptLoss
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from typing import Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.metrics import calculate_underwater
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
@@ -22,7 +21,7 @@ class MaxDrawDownRelativeHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, config: Dict,
|
||||
def hyperopt_loss_function(results: DataFrame, config: Config,
|
||||
*args, **kwargs) -> float:
|
||||
|
||||
"""
|
||||
|
@@ -9,6 +9,8 @@ from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import Config
|
||||
|
||||
|
||||
class IHyperOptLoss(ABC):
|
||||
"""
|
||||
@@ -21,7 +23,7 @@ class IHyperOptLoss(ABC):
|
||||
@abstractmethod
|
||||
def hyperopt_loss_function(*, results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
config: Dict, processed: Dict[str, DataFrame],
|
||||
config: Config, processed: Dict[str, DataFrame],
|
||||
backtest_stats: Dict[str, Any],
|
||||
**kwargs) -> float:
|
||||
"""
|
||||
|
@@ -12,7 +12,7 @@ import tabulate
|
||||
from colorama import Fore, Style
|
||||
from pandas import isna, json_normalize
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES, Config
|
||||
from freqtrade.enums import HyperoptState
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
|
||||
@@ -45,7 +45,7 @@ class HyperoptStateContainer():
|
||||
class HyperoptTools():
|
||||
|
||||
@staticmethod
|
||||
def get_strategy_filename(config: Dict, strategy_name: str) -> Optional[Path]:
|
||||
def get_strategy_filename(config: Config, strategy_name: str) -> Optional[Path]:
|
||||
"""
|
||||
Get Strategy-location (filename) from strategy_name
|
||||
"""
|
||||
@@ -81,7 +81,7 @@ class HyperoptTools():
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def try_export_params(config: Dict[str, Any], strategy_name: str, params: Dict):
|
||||
def try_export_params(config: Config, strategy_name: str, params: Dict):
|
||||
if params.get(FTHYPT_FILEVERSION, 1) >= 2 and not config.get('disableparamexport', False):
|
||||
# Export parameters ...
|
||||
fn = HyperoptTools.get_strategy_filename(config, strategy_name)
|
||||
@@ -91,7 +91,7 @@ class HyperoptTools():
|
||||
logger.warning("Strategy not found, not exporting parameter file.")
|
||||
|
||||
@staticmethod
|
||||
def has_space(config: Dict[str, Any], space: str) -> bool:
|
||||
def has_space(config: Config, space: str) -> bool:
|
||||
"""
|
||||
Tell if the space value is contained in the configuration
|
||||
"""
|
||||
@@ -131,7 +131,7 @@ class HyperoptTools():
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def load_filtered_results(results_file: Path, config: Dict[str, Any]) -> Tuple[List, int]:
|
||||
def load_filtered_results(results_file: Path, config: Config) -> Tuple[List, int]:
|
||||
filteroptions = {
|
||||
'only_best': config.get('hyperopt_list_best', False),
|
||||
'only_profitable': config.get('hyperopt_list_profitable', False),
|
||||
@@ -346,7 +346,7 @@ class HyperoptTools():
|
||||
return trials
|
||||
|
||||
@staticmethod
|
||||
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
def get_result_table(config: Config, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool, remove_header: int) -> str:
|
||||
"""
|
||||
Log result table
|
||||
@@ -444,7 +444,7 @@ class HyperoptTools():
|
||||
return table
|
||||
|
||||
@staticmethod
|
||||
def export_csv_file(config: dict, results: list, csv_file: str) -> None:
|
||||
def export_csv_file(config: Config, results: list, csv_file: str) -> None:
|
||||
"""
|
||||
Log result to csv-file
|
||||
"""
|
||||
|
@@ -7,7 +7,8 @@ from typing import Any, Dict, List, Union
|
||||
from pandas import DataFrame, to_datetime
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT,
|
||||
Config)
|
||||
from freqtrade.data.metrics import (calculate_cagr, calculate_csum, calculate_market_change,
|
||||
calculate_max_drawdown)
|
||||
from freqtrade.misc import decimals_per_coin, file_dump_joblib, file_dump_json, round_coin_value
|
||||
@@ -898,7 +899,7 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
|
||||
print()
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
def show_backtest_results(config: Config, backtest_stats: Dict):
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
@@ -918,7 +919,7 @@ def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
|
||||
def show_sorted_pairlist(config: Dict, backtest_stats: Dict):
|
||||
def show_sorted_pairlist(config: Config, backtest_stats: Dict):
|
||||
if config.get('backtest_show_pair_list', False):
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
print(f"Pairs for Strategy {strategy}: \n[")
|
||||
|
@@ -1,10 +1,11 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.data.btanalysis import (analyze_trade_parallelism, extract_trades_of_period,
|
||||
load_trades)
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
@@ -618,7 +619,7 @@ def store_plot_file(fig, filename: str, directory: Path, auto_open: bool = False
|
||||
logger.info(f"Stored plot as {_filename}")
|
||||
|
||||
|
||||
def load_and_plot_trades(config: Dict[str, Any]):
|
||||
def load_and_plot_trades(config: Config):
|
||||
"""
|
||||
From configuration provided
|
||||
- Initializes plot-script
|
||||
@@ -666,7 +667,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
|
||||
logger.info('End of plotting process. %s plots generated', pair_counter)
|
||||
|
||||
|
||||
def plot_profit(config: Dict[str, Any]) -> None:
|
||||
def plot_profit(config: Config) -> None:
|
||||
"""
|
||||
Plots the total profit for all pairs.
|
||||
Note, the profit calculation isn't realistic.
|
||||
|
@@ -8,7 +8,7 @@ from typing import Any, Dict, List, Optional
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
@@ -21,7 +21,7 @@ logger = logging.getLogger(__name__)
|
||||
class AgeFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -6,6 +6,7 @@ from abc import ABC, abstractmethod, abstractproperty
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange, market_is_active
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
@@ -17,7 +18,7 @@ logger = logging.getLogger(__name__)
|
||||
class IPairList(LoggingMixin, ABC):
|
||||
|
||||
def __init__(self, exchange: Exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
"""
|
||||
:param exchange: Exchange instance
|
||||
|
@@ -4,6 +4,7 @@ Offset pair list filter
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -14,7 +15,7 @@ logger = logging.getLogger(__name__)
|
||||
class OffsetFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -6,6 +6,7 @@ from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -16,7 +17,7 @@ logger = logging.getLogger(__name__)
|
||||
class PerformanceFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -4,6 +4,7 @@ Precision pair list filter
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -14,7 +15,7 @@ logger = logging.getLogger(__name__)
|
||||
class PrecisionFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -4,6 +4,7 @@ Price pair list filter
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -14,7 +15,7 @@ logger = logging.getLogger(__name__)
|
||||
class PriceFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -5,6 +5,7 @@ import logging
|
||||
import random
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import RunMode
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -15,7 +16,7 @@ logger = logging.getLogger(__name__)
|
||||
class ShuffleFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -4,6 +4,7 @@ Spread pair list filter
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -14,7 +15,7 @@ logger = logging.getLogger(__name__)
|
||||
class SpreadFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -7,6 +7,7 @@ import logging
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
@@ -16,7 +17,7 @@ logger = logging.getLogger(__name__)
|
||||
class StaticPairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -11,7 +11,7 @@ import numpy as np
|
||||
from cachetools import TTLCache
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
@@ -26,7 +26,7 @@ class VolatilityFilter(IPairList):
|
||||
"""
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -9,7 +9,7 @@ from typing import Any, Dict, List
|
||||
|
||||
from cachetools import TTLCache
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date
|
||||
from freqtrade.misc import format_ms_time
|
||||
@@ -25,7 +25,7 @@ SORT_VALUES = ['quoteVolume']
|
||||
class VolumePairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
|
@@ -1,5 +1,7 @@
|
||||
import re
|
||||
from typing import Any, Dict, List
|
||||
from typing import List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
|
||||
|
||||
def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
|
||||
@@ -42,7 +44,7 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
|
||||
return result
|
||||
|
||||
|
||||
def dynamic_expand_pairlist(config: Dict[str, Any], markets: List[str]) -> List[str]:
|
||||
def dynamic_expand_pairlist(config: Config, markets: List[str]) -> List[str]:
|
||||
expanded_pairs = expand_pairlist(config['pairs'], markets)
|
||||
if config.get('freqai', {}).get('enabled', False):
|
||||
corr_pairlist = config['freqai']['feature_parameters']['include_corr_pairlist']
|
||||
|
@@ -9,7 +9,7 @@ import arrow
|
||||
from cachetools import TTLCache
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
@@ -21,7 +21,7 @@ logger = logging.getLogger(__name__)
|
||||
class RangeStabilityFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
config: Config, pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
@@ -100,23 +100,19 @@ class RangeStabilityFilter(IPairList):
|
||||
if cached_res is not None:
|
||||
return cached_res
|
||||
|
||||
result = False
|
||||
result = True
|
||||
if daily_candles is not None and not daily_candles.empty:
|
||||
highest_high = daily_candles['high'].max()
|
||||
lowest_low = daily_candles['low'].min()
|
||||
pct_change = ((highest_high - lowest_low) / lowest_low) if lowest_low > 0 else 0
|
||||
if pct_change >= self._min_rate_of_change:
|
||||
result = True
|
||||
else:
|
||||
if pct_change < self._min_rate_of_change:
|
||||
self.log_once(f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
f"which is below the threshold of {self._min_rate_of_change}.",
|
||||
logger.info)
|
||||
result = False
|
||||
if self._max_rate_of_change:
|
||||
if pct_change <= self._max_rate_of_change:
|
||||
result = True
|
||||
else:
|
||||
if pct_change > self._max_rate_of_change:
|
||||
self.log_once(
|
||||
f"Removed {pair} from whitelist, because rate of change "
|
||||
f"over {self._days} {plural(self._days, 'day')} is {pct_change:.3f}, "
|
||||
|
@@ -7,7 +7,7 @@ from typing import Dict, List
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
||||
from freqtrade.enums import CandleType
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
@@ -21,7 +21,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class PairListManager(LoggingMixin):
|
||||
|
||||
def __init__(self, exchange, config: dict) -> None:
|
||||
def __init__(self, exchange, config: Config) -> None:
|
||||
self._exchange = exchange
|
||||
self._config = config
|
||||
self._whitelist = self._config['exchange'].get('pair_whitelist')
|
||||
|
@@ -5,7 +5,7 @@ import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from freqtrade.constants import LongShort
|
||||
from freqtrade.constants import Config, LongShort
|
||||
from freqtrade.persistence import PairLocks
|
||||
from freqtrade.persistence.models import PairLock
|
||||
from freqtrade.plugins.protections import IProtection
|
||||
@@ -17,7 +17,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class ProtectionManager():
|
||||
|
||||
def __init__(self, config: Dict, protections: List) -> None:
|
||||
def __init__(self, config: Config, protections: List) -> None:
|
||||
self._config = config
|
||||
|
||||
self._protection_handlers: List[IProtection] = []
|
||||
|
@@ -5,7 +5,7 @@ from dataclasses import dataclass
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from freqtrade.constants import LongShort
|
||||
from freqtrade.constants import Config, LongShort
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
@@ -30,7 +30,7 @@ class IProtection(LoggingMixin, ABC):
|
||||
# Can stop trading for one pair
|
||||
has_local_stop: bool = False
|
||||
|
||||
def __init__(self, config: Dict[str, Any], protection_config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config, protection_config: Dict[str, Any]) -> None:
|
||||
self._config = config
|
||||
self._protection_config = protection_config
|
||||
self._stop_duration_candles: Optional[int] = None
|
||||
|
@@ -3,7 +3,7 @@ import logging
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from freqtrade.constants import LongShort
|
||||
from freqtrade.constants import Config, LongShort
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.plugins.protections import IProtection, ProtectionReturn
|
||||
|
||||
@@ -16,7 +16,7 @@ class LowProfitPairs(IProtection):
|
||||
has_global_stop: bool = False
|
||||
has_local_stop: bool = True
|
||||
|
||||
def __init__(self, config: Dict[str, Any], protection_config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config, protection_config: Dict[str, Any]) -> None:
|
||||
super().__init__(config, protection_config)
|
||||
|
||||
self._trade_limit = protection_config.get('trade_limit', 1)
|
||||
|
@@ -5,7 +5,7 @@ from typing import Any, Dict, Optional
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from freqtrade.constants import LongShort
|
||||
from freqtrade.constants import Config, LongShort
|
||||
from freqtrade.data.metrics import calculate_max_drawdown
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.plugins.protections import IProtection, ProtectionReturn
|
||||
@@ -19,7 +19,7 @@ class MaxDrawdown(IProtection):
|
||||
has_global_stop: bool = True
|
||||
has_local_stop: bool = False
|
||||
|
||||
def __init__(self, config: Dict[str, Any], protection_config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config, protection_config: Dict[str, Any]) -> None:
|
||||
super().__init__(config, protection_config)
|
||||
|
||||
self._trade_limit = protection_config.get('trade_limit', 1)
|
||||
|
@@ -3,7 +3,7 @@ import logging
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from freqtrade.constants import LongShort
|
||||
from freqtrade.constants import Config, LongShort
|
||||
from freqtrade.enums import ExitType
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.plugins.protections import IProtection, ProtectionReturn
|
||||
@@ -17,7 +17,7 @@ class StoplossGuard(IProtection):
|
||||
has_global_stop: bool = True
|
||||
has_local_stop: bool = True
|
||||
|
||||
def __init__(self, config: Dict[str, Any], protection_config: Dict[str, Any]) -> None:
|
||||
def __init__(self, config: Config, protection_config: Dict[str, Any]) -> None:
|
||||
super().__init__(config, protection_config)
|
||||
|
||||
self._trade_limit = protection_config.get('trade_limit', 10)
|
||||
|
@@ -4,6 +4,7 @@ This module loads custom exchanges
|
||||
import logging
|
||||
|
||||
import freqtrade.exchange as exchanges
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exchange import MAP_EXCHANGE_CHILDCLASS, Exchange
|
||||
from freqtrade.resolvers import IResolver
|
||||
|
||||
@@ -18,7 +19,7 @@ class ExchangeResolver(IResolver):
|
||||
object_type = Exchange
|
||||
|
||||
@staticmethod
|
||||
def load_exchange(exchange_name: str, config: dict, validate: bool = True,
|
||||
def load_exchange(exchange_name: str, config: Config, validate: bool = True,
|
||||
load_leverage_tiers: bool = False) -> Exchange:
|
||||
"""
|
||||
Load the custom class from config parameter
|
||||
|
@@ -5,9 +5,8 @@ This module load a custom model for freqai
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from freqtrade.constants import USERPATH_FREQAIMODELS
|
||||
from freqtrade.constants import USERPATH_FREQAIMODELS, Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
from freqtrade.resolvers import IResolver
|
||||
@@ -29,7 +28,7 @@ class FreqaiModelResolver(IResolver):
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_freqaimodel(config: Dict) -> IFreqaiModel:
|
||||
def load_freqaimodel(config: Config) -> IFreqaiModel:
|
||||
"""
|
||||
Load the custom class from config parameter
|
||||
:param config: configuration dictionary
|
||||
|
@@ -5,9 +5,8 @@ This module load custom hyperopt
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN, USERPATH_HYPEROPTS
|
||||
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN, USERPATH_HYPEROPTS, Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
|
||||
from freqtrade.resolvers import IResolver
|
||||
@@ -26,7 +25,7 @@ class HyperOptLossResolver(IResolver):
|
||||
initial_search_path = Path(__file__).parent.parent.joinpath('optimize/hyperopt_loss').resolve()
|
||||
|
||||
@staticmethod
|
||||
def load_hyperoptloss(config: Dict) -> IHyperOptLoss:
|
||||
def load_hyperoptloss(config: Config) -> IHyperOptLoss:
|
||||
"""
|
||||
Load the custom class from config parameter
|
||||
:param config: configuration dictionary
|
||||
|
@@ -10,6 +10,7 @@ import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
@@ -43,7 +44,7 @@ class IResolver:
|
||||
initial_search_path: Optional[Path]
|
||||
|
||||
@classmethod
|
||||
def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,
|
||||
def build_search_paths(cls, config: Config, user_subdir: Optional[str] = None,
|
||||
extra_dirs: List[str] = []) -> List[Path]:
|
||||
|
||||
abs_paths: List[Path] = []
|
||||
@@ -153,7 +154,7 @@ class IResolver:
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def load_object(cls, object_name: str, config: dict, *, kwargs: dict,
|
||||
def load_object(cls, object_name: str, config: Config, *, kwargs: dict,
|
||||
extra_dir: Optional[str] = None) -> Any:
|
||||
"""
|
||||
Search and loads the specified object as configured in hte child class.
|
||||
|
@@ -6,6 +6,7 @@ This module load custom pairlists
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
from freqtrade.resolvers import IResolver
|
||||
|
||||
@@ -24,7 +25,7 @@ class PairListResolver(IResolver):
|
||||
|
||||
@staticmethod
|
||||
def load_pairlist(pairlist_name: str, exchange, pairlistmanager,
|
||||
config: dict, pairlistconfig: dict, pairlist_pos: int) -> IPairList:
|
||||
config: Config, pairlistconfig: dict, pairlist_pos: int) -> IPairList:
|
||||
"""
|
||||
Load the pairlist with pairlist_name
|
||||
:param pairlist_name: Classname of the pairlist
|
||||
|
@@ -5,6 +5,7 @@ import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.plugins.protections import IProtection
|
||||
from freqtrade.resolvers import IResolver
|
||||
|
||||
@@ -22,7 +23,8 @@ class ProtectionResolver(IResolver):
|
||||
initial_search_path = Path(__file__).parent.parent.joinpath('plugins/protections').resolve()
|
||||
|
||||
@staticmethod
|
||||
def load_protection(protection_name: str, config: Dict, protection_config: Dict) -> IProtection:
|
||||
def load_protection(protection_name: str, config: Config,
|
||||
protection_config: Dict) -> IProtection:
|
||||
"""
|
||||
Load the protection with protection_name
|
||||
:param protection_name: Classname of the pairlist
|
||||
|
@@ -9,10 +9,10 @@ from base64 import urlsafe_b64decode
|
||||
from inspect import getfullargspec
|
||||
from os import walk
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from freqtrade.configuration.config_validation import validate_migrated_strategy_settings
|
||||
from freqtrade.constants import REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES, USERPATH_STRATEGIES
|
||||
from freqtrade.constants import REQUIRED_ORDERTIF, REQUIRED_ORDERTYPES, USERPATH_STRATEGIES, Config
|
||||
from freqtrade.enums import TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.resolvers import IResolver
|
||||
@@ -32,7 +32,7 @@ class StrategyResolver(IResolver):
|
||||
initial_search_path = None
|
||||
|
||||
@staticmethod
|
||||
def load_strategy(config: Dict[str, Any] = None) -> IStrategy:
|
||||
def load_strategy(config: Config = None) -> IStrategy:
|
||||
"""
|
||||
Load the custom class from config parameter
|
||||
:param config: configuration dictionary or None
|
||||
@@ -91,8 +91,7 @@ class StrategyResolver(IResolver):
|
||||
return strategy
|
||||
|
||||
@staticmethod
|
||||
def _override_attribute_helper(strategy, config: Dict[str, Any],
|
||||
attribute: str, default: Any):
|
||||
def _override_attribute_helper(strategy, config: Config, attribute: str, default: Any):
|
||||
"""
|
||||
Override attributes in the strategy.
|
||||
Prevalence:
|
||||
@@ -215,7 +214,7 @@ class StrategyResolver(IResolver):
|
||||
|
||||
@staticmethod
|
||||
def _load_strategy(strategy_name: str,
|
||||
config: dict, extra_dir: Optional[str] = None) -> IStrategy:
|
||||
config: Config, extra_dir: Optional[str] = None) -> IStrategy:
|
||||
"""
|
||||
Search and loads the specified strategy.
|
||||
:param strategy_name: name of the module to import
|
||||
|
@@ -1,8 +1,10 @@
|
||||
import logging
|
||||
import secrets
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import jwt
|
||||
from fastapi import APIRouter, Depends, HTTPException, status
|
||||
from fastapi import APIRouter, Depends, HTTPException, Query, WebSocket, status
|
||||
from fastapi.security import OAuth2PasswordBearer
|
||||
from fastapi.security.http import HTTPBasic, HTTPBasicCredentials
|
||||
|
||||
@@ -10,6 +12,8 @@ from freqtrade.rpc.api_server.api_schemas import AccessAndRefreshToken, AccessTo
|
||||
from freqtrade.rpc.api_server.deps import get_api_config
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ALGORITHM = "HS256"
|
||||
|
||||
router_login = APIRouter()
|
||||
@@ -25,7 +29,7 @@ httpbasic = HTTPBasic(auto_error=False)
|
||||
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token", auto_error=False)
|
||||
|
||||
|
||||
def get_user_from_token(token, secret_key: str, token_type: str = "access"):
|
||||
def get_user_from_token(token, secret_key: str, token_type: str = "access") -> str:
|
||||
credentials_exception = HTTPException(
|
||||
status_code=status.HTTP_401_UNAUTHORIZED,
|
||||
detail="Could not validate credentials",
|
||||
@@ -44,6 +48,45 @@ def get_user_from_token(token, secret_key: str, token_type: str = "access"):
|
||||
return username
|
||||
|
||||
|
||||
# This should be reimplemented to better realign with the existing tools provided
|
||||
# by FastAPI regarding API Tokens
|
||||
# https://github.com/tiangolo/fastapi/blob/master/fastapi/security/api_key.py
|
||||
async def validate_ws_token(
|
||||
ws: WebSocket,
|
||||
ws_token: Union[str, None] = Query(default=None, alias="token"),
|
||||
api_config: Dict[str, Any] = Depends(get_api_config)
|
||||
):
|
||||
secret_ws_token = api_config.get('ws_token', None)
|
||||
secret_jwt_key = api_config.get('jwt_secret_key', 'super-secret')
|
||||
|
||||
# Check if ws_token is/in secret_ws_token
|
||||
if ws_token and secret_ws_token:
|
||||
is_valid_ws_token = False
|
||||
if isinstance(secret_ws_token, str):
|
||||
is_valid_ws_token = secrets.compare_digest(secret_ws_token, ws_token)
|
||||
elif isinstance(secret_ws_token, list):
|
||||
is_valid_ws_token = any([
|
||||
secrets.compare_digest(potential, ws_token)
|
||||
for potential in secret_ws_token
|
||||
])
|
||||
|
||||
if is_valid_ws_token:
|
||||
return ws_token
|
||||
|
||||
# Check if ws_token is a JWT
|
||||
try:
|
||||
user = get_user_from_token(ws_token, secret_jwt_key)
|
||||
return user
|
||||
# If the token is a jwt, and it's valid return the user
|
||||
except HTTPException:
|
||||
pass
|
||||
|
||||
# No checks passed, deny the connection
|
||||
logger.debug("Denying websocket request.")
|
||||
# If it doesn't match, close the websocket connection
|
||||
await ws.close(code=status.WS_1008_POLICY_VIOLATION)
|
||||
|
||||
|
||||
def create_token(data: dict, secret_key: str, token_type: str = "access") -> str:
|
||||
to_encode = data.copy()
|
||||
if token_type == "access":
|
||||
|
@@ -38,7 +38,8 @@ logger = logging.getLogger(__name__)
|
||||
# 2.15: Add backtest history endpoints
|
||||
# 2.16: Additional daily metrics
|
||||
# 2.17: Forceentry - leverage, partial force_exit
|
||||
API_VERSION = 2.17
|
||||
# 2.20: Add websocket endpoints
|
||||
API_VERSION = 2.20
|
||||
|
||||
# Public API, requires no auth.
|
||||
router_public = APIRouter()
|
||||
|
140
freqtrade/rpc/api_server/api_ws.py
Normal file
140
freqtrade/rpc/api_server/api_ws.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from fastapi import APIRouter, Depends, WebSocketDisconnect
|
||||
from fastapi.websockets import WebSocket, WebSocketState
|
||||
from pydantic import ValidationError
|
||||
|
||||
from freqtrade.enums import RPCMessageType, RPCRequestType
|
||||
from freqtrade.rpc.api_server.api_auth import validate_ws_token
|
||||
from freqtrade.rpc.api_server.deps import get_channel_manager, get_rpc
|
||||
from freqtrade.rpc.api_server.ws import WebSocketChannel
|
||||
from freqtrade.rpc.api_server.ws_schemas import (WSAnalyzedDFMessage, WSMessageSchema,
|
||||
WSRequestSchema, WSWhitelistMessage)
|
||||
from freqtrade.rpc.rpc import RPC
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Private router, protected by API Key authentication
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
async def is_websocket_alive(ws: WebSocket) -> bool:
|
||||
"""
|
||||
Check if a FastAPI Websocket is still open
|
||||
"""
|
||||
if (
|
||||
ws.application_state == WebSocketState.CONNECTED and
|
||||
ws.client_state == WebSocketState.CONNECTED
|
||||
):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
async def _process_consumer_request(
|
||||
request: Dict[str, Any],
|
||||
channel: WebSocketChannel,
|
||||
rpc: RPC
|
||||
):
|
||||
"""
|
||||
Validate and handle a request from a websocket consumer
|
||||
"""
|
||||
# Validate the request, makes sure it matches the schema
|
||||
try:
|
||||
websocket_request = WSRequestSchema.parse_obj(request)
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid request from {channel}: {e}")
|
||||
return
|
||||
|
||||
type, data = websocket_request.type, websocket_request.data
|
||||
response: WSMessageSchema
|
||||
|
||||
logger.debug(f"Request of type {type} from {channel}")
|
||||
|
||||
# If we have a request of type SUBSCRIBE, set the topics in this channel
|
||||
if type == RPCRequestType.SUBSCRIBE:
|
||||
# If the request is empty, do nothing
|
||||
if not data:
|
||||
return
|
||||
|
||||
# If all topics passed are a valid RPCMessageType, set subscriptions on channel
|
||||
if all([any(x.value == topic for x in RPCMessageType) for topic in data]):
|
||||
channel.set_subscriptions(data)
|
||||
|
||||
# We don't send a response for subscriptions
|
||||
return
|
||||
|
||||
elif type == RPCRequestType.WHITELIST:
|
||||
# Get whitelist
|
||||
whitelist = rpc._ws_request_whitelist()
|
||||
|
||||
# Format response
|
||||
response = WSWhitelistMessage(data=whitelist)
|
||||
# Send it back
|
||||
await channel.send(response.dict(exclude_none=True))
|
||||
|
||||
elif type == RPCRequestType.ANALYZED_DF:
|
||||
limit = None
|
||||
|
||||
if data:
|
||||
# Limit the amount of candles per dataframe to 'limit' or 1500
|
||||
limit = max(data.get('limit', 1500), 1500)
|
||||
|
||||
# They requested the full historical analyzed dataframes
|
||||
analyzed_df = rpc._ws_request_analyzed_df(limit)
|
||||
|
||||
# For every dataframe, send as a separate message
|
||||
for _, message in analyzed_df.items():
|
||||
response = WSAnalyzedDFMessage(data=message)
|
||||
await channel.send(response.dict(exclude_none=True))
|
||||
|
||||
|
||||
@router.websocket("/message/ws")
|
||||
async def message_endpoint(
|
||||
ws: WebSocket,
|
||||
rpc: RPC = Depends(get_rpc),
|
||||
channel_manager=Depends(get_channel_manager),
|
||||
token: str = Depends(validate_ws_token)
|
||||
):
|
||||
"""
|
||||
Message WebSocket endpoint, facilitates sending RPC messages
|
||||
"""
|
||||
try:
|
||||
channel = await channel_manager.on_connect(ws)
|
||||
|
||||
if await is_websocket_alive(ws):
|
||||
|
||||
logger.info(f"Consumer connected - {channel}")
|
||||
|
||||
# Keep connection open until explicitly closed, and process requests
|
||||
try:
|
||||
while not channel.is_closed():
|
||||
request = await channel.recv()
|
||||
|
||||
# Process the request here
|
||||
await _process_consumer_request(request, channel, rpc)
|
||||
|
||||
except WebSocketDisconnect:
|
||||
# Handle client disconnects
|
||||
logger.info(f"Consumer disconnected - {channel}")
|
||||
await channel_manager.on_disconnect(ws)
|
||||
except Exception as e:
|
||||
logger.info(f"Consumer connection failed - {channel}")
|
||||
logger.exception(e)
|
||||
# Handle cases like -
|
||||
# RuntimeError('Cannot call "send" once a closed message has been sent')
|
||||
await channel_manager.on_disconnect(ws)
|
||||
|
||||
else:
|
||||
await ws.close()
|
||||
|
||||
except RuntimeError:
|
||||
# WebSocket was closed
|
||||
await channel_manager.on_disconnect(ws)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to serve - {ws.client}")
|
||||
# Log tracebacks to keep track of what errors are happening
|
||||
logger.exception(e)
|
||||
await channel_manager.on_disconnect(ws)
|
@@ -41,6 +41,10 @@ def get_exchange(config=Depends(get_config)):
|
||||
return ApiServer._exchange
|
||||
|
||||
|
||||
def get_channel_manager():
|
||||
return ApiServer._ws_channel_manager
|
||||
|
||||
|
||||
def is_webserver_mode(config=Depends(get_config)):
|
||||
if config['runmode'] != RunMode.WEBSERVER:
|
||||
raise RPCException('Bot is not in the correct state')
|
||||
|
@@ -1,15 +1,21 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from ipaddress import IPv4Address
|
||||
from threading import Thread
|
||||
from typing import Any, Dict
|
||||
|
||||
import orjson
|
||||
import uvicorn
|
||||
from fastapi import Depends, FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
# Look into alternatives
|
||||
from janus import Queue as ThreadedQueue
|
||||
from starlette.responses import JSONResponse
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.rpc.api_server.uvicorn_threaded import UvicornServer
|
||||
from freqtrade.rpc.api_server.ws import ChannelManager
|
||||
from freqtrade.rpc.rpc import RPC, RPCException, RPCHandler
|
||||
|
||||
|
||||
@@ -37,12 +43,16 @@ class ApiServer(RPCHandler):
|
||||
_bt = None
|
||||
_bt_data = None
|
||||
_bt_timerange = None
|
||||
_bt_last_config: Dict[str, Any] = {}
|
||||
_bt_last_config: Config = {}
|
||||
_has_rpc: bool = False
|
||||
_bgtask_running: bool = False
|
||||
_config: Dict[str, Any] = {}
|
||||
_config: Config = {}
|
||||
# Exchange - only available in webserver mode.
|
||||
_exchange = None
|
||||
# websocket message queue stuff
|
||||
_ws_channel_manager = None
|
||||
_ws_thread = None
|
||||
_ws_loop = None
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
"""
|
||||
@@ -54,23 +64,27 @@ class ApiServer(RPCHandler):
|
||||
ApiServer.__initialized = False
|
||||
return ApiServer.__instance
|
||||
|
||||
def __init__(self, config: Dict[str, Any], standalone: bool = False) -> None:
|
||||
def __init__(self, config: Config, standalone: bool = False) -> None:
|
||||
ApiServer._config = config
|
||||
if self.__initialized and (standalone or self._standalone):
|
||||
return
|
||||
self._standalone: bool = standalone
|
||||
self._server = None
|
||||
self._ws_queue = None
|
||||
self._ws_background_task = None
|
||||
|
||||
ApiServer.__initialized = True
|
||||
|
||||
api_config = self._config['api_server']
|
||||
|
||||
ApiServer._ws_channel_manager = ChannelManager()
|
||||
|
||||
self.app = FastAPI(title="Freqtrade API",
|
||||
docs_url='/docs' if api_config.get('enable_openapi', False) else None,
|
||||
redoc_url=None,
|
||||
default_response_class=FTJSONResponse,
|
||||
)
|
||||
self.configure_app(self.app, self._config)
|
||||
|
||||
self.start_api()
|
||||
|
||||
def add_rpc_handler(self, rpc: RPC):
|
||||
@@ -92,6 +106,19 @@ class ApiServer(RPCHandler):
|
||||
logger.info("Stopping API Server")
|
||||
self._server.cleanup()
|
||||
|
||||
if self._ws_thread and self._ws_loop:
|
||||
logger.info("Stopping API Server background tasks")
|
||||
|
||||
if self._ws_background_task:
|
||||
# Cancel the queue task
|
||||
self._ws_background_task.cancel()
|
||||
|
||||
self._ws_thread.join()
|
||||
|
||||
self._ws_thread = None
|
||||
self._ws_loop = None
|
||||
self._ws_background_task = None
|
||||
|
||||
@classmethod
|
||||
def shutdown(cls):
|
||||
cls.__initialized = False
|
||||
@@ -101,7 +128,9 @@ class ApiServer(RPCHandler):
|
||||
cls._rpc = None
|
||||
|
||||
def send_msg(self, msg: Dict[str, str]) -> None:
|
||||
pass
|
||||
if self._ws_queue:
|
||||
sync_q = self._ws_queue.sync_q
|
||||
sync_q.put(msg)
|
||||
|
||||
def handle_rpc_exception(self, request, exc):
|
||||
logger.exception(f"API Error calling: {exc}")
|
||||
@@ -115,6 +144,7 @@ class ApiServer(RPCHandler):
|
||||
from freqtrade.rpc.api_server.api_backtest import router as api_backtest
|
||||
from freqtrade.rpc.api_server.api_v1 import router as api_v1
|
||||
from freqtrade.rpc.api_server.api_v1 import router_public as api_v1_public
|
||||
from freqtrade.rpc.api_server.api_ws import router as ws_router
|
||||
from freqtrade.rpc.api_server.web_ui import router_ui
|
||||
|
||||
app.include_router(api_v1_public, prefix="/api/v1")
|
||||
@@ -125,6 +155,7 @@ class ApiServer(RPCHandler):
|
||||
app.include_router(api_backtest, prefix="/api/v1",
|
||||
dependencies=[Depends(http_basic_or_jwt_token)],
|
||||
)
|
||||
app.include_router(ws_router, prefix="/api/v1")
|
||||
app.include_router(router_login, prefix="/api/v1", tags=["auth"])
|
||||
# UI Router MUST be last!
|
||||
app.include_router(router_ui, prefix='')
|
||||
@@ -139,6 +170,48 @@ class ApiServer(RPCHandler):
|
||||
|
||||
app.add_exception_handler(RPCException, self.handle_rpc_exception)
|
||||
|
||||
def start_message_queue(self):
|
||||
if self._ws_thread:
|
||||
return
|
||||
|
||||
# Create a new loop, as it'll be just for the background thread
|
||||
self._ws_loop = asyncio.new_event_loop()
|
||||
|
||||
# Start the thread
|
||||
self._ws_thread = Thread(target=self._ws_loop.run_forever)
|
||||
self._ws_thread.start()
|
||||
|
||||
# Finally, submit the coro to the thread
|
||||
self._ws_background_task = asyncio.run_coroutine_threadsafe(
|
||||
self._broadcast_queue_data(), loop=self._ws_loop)
|
||||
|
||||
async def _broadcast_queue_data(self):
|
||||
# Instantiate the queue in this coroutine so it's attached to our loop
|
||||
self._ws_queue = ThreadedQueue()
|
||||
async_queue = self._ws_queue.async_q
|
||||
|
||||
try:
|
||||
while True:
|
||||
logger.debug("Getting queue messages...")
|
||||
# Get data from queue
|
||||
message = await async_queue.get()
|
||||
logger.debug(f"Found message of type: {message.get('type')}")
|
||||
# Broadcast it
|
||||
await self._ws_channel_manager.broadcast(message)
|
||||
# Sleep, make this configurable?
|
||||
await asyncio.sleep(0.1)
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
# For testing, shouldn't happen when stable
|
||||
except Exception as e:
|
||||
logger.exception(f"Exception happened in background task: {e}")
|
||||
|
||||
finally:
|
||||
# Disconnect channels and stop the loop on cancel
|
||||
await self._ws_channel_manager.disconnect_all()
|
||||
self._ws_loop.stop()
|
||||
|
||||
def start_api(self):
|
||||
"""
|
||||
Start API ... should be run in thread.
|
||||
@@ -176,6 +249,7 @@ class ApiServer(RPCHandler):
|
||||
if self._standalone:
|
||||
self._server.run()
|
||||
else:
|
||||
self.start_message_queue()
|
||||
self._server.run_in_thread()
|
||||
except Exception:
|
||||
logger.exception("Api server failed to start.")
|
||||
|
6
freqtrade/rpc/api_server/ws/__init__.py
Normal file
6
freqtrade/rpc/api_server/ws/__init__.py
Normal file
@@ -0,0 +1,6 @@
|
||||
# flake8: noqa: F401
|
||||
# isort: off
|
||||
from freqtrade.rpc.api_server.ws.types import WebSocketType
|
||||
from freqtrade.rpc.api_server.ws.proxy import WebSocketProxy
|
||||
from freqtrade.rpc.api_server.ws.serializer import HybridJSONWebSocketSerializer
|
||||
from freqtrade.rpc.api_server.ws.channel import ChannelManager, WebSocketChannel
|
178
freqtrade/rpc/api_server/ws/channel.py
Normal file
178
freqtrade/rpc/api_server/ws/channel.py
Normal file
@@ -0,0 +1,178 @@
|
||||
import logging
|
||||
from threading import RLock
|
||||
from typing import List, Optional, Type
|
||||
from uuid import uuid4
|
||||
|
||||
from fastapi import WebSocket as FastAPIWebSocket
|
||||
|
||||
from freqtrade.rpc.api_server.ws.proxy import WebSocketProxy
|
||||
from freqtrade.rpc.api_server.ws.serializer import (HybridJSONWebSocketSerializer,
|
||||
WebSocketSerializer)
|
||||
from freqtrade.rpc.api_server.ws.types import WebSocketType
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WebSocketChannel:
|
||||
"""
|
||||
Object to help facilitate managing a websocket connection
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
websocket: WebSocketType,
|
||||
channel_id: Optional[str] = None,
|
||||
serializer_cls: Type[WebSocketSerializer] = HybridJSONWebSocketSerializer
|
||||
):
|
||||
|
||||
self.channel_id = channel_id if channel_id else uuid4().hex[:8]
|
||||
|
||||
# The WebSocket object
|
||||
self._websocket = WebSocketProxy(websocket)
|
||||
# The Serializing class for the WebSocket object
|
||||
self._serializer_cls = serializer_cls
|
||||
|
||||
self._subscriptions: List[str] = []
|
||||
|
||||
# Internal event to signify a closed websocket
|
||||
self._closed = False
|
||||
|
||||
# Wrap the WebSocket in the Serializing class
|
||||
self._wrapped_ws = self._serializer_cls(self._websocket)
|
||||
|
||||
def __repr__(self):
|
||||
return f"WebSocketChannel({self.channel_id}, {self.remote_addr})"
|
||||
|
||||
@property
|
||||
def remote_addr(self):
|
||||
return self._websocket.remote_addr
|
||||
|
||||
async def send(self, data):
|
||||
"""
|
||||
Send data on the wrapped websocket
|
||||
"""
|
||||
await self._wrapped_ws.send(data)
|
||||
|
||||
async def recv(self):
|
||||
"""
|
||||
Receive data on the wrapped websocket
|
||||
"""
|
||||
return await self._wrapped_ws.recv()
|
||||
|
||||
async def ping(self):
|
||||
"""
|
||||
Ping the websocket
|
||||
"""
|
||||
return await self._websocket.ping()
|
||||
|
||||
async def close(self):
|
||||
"""
|
||||
Close the WebSocketChannel
|
||||
"""
|
||||
|
||||
self._closed = True
|
||||
|
||||
def is_closed(self) -> bool:
|
||||
"""
|
||||
Closed flag
|
||||
"""
|
||||
return self._closed
|
||||
|
||||
def set_subscriptions(self, subscriptions: List[str] = []) -> None:
|
||||
"""
|
||||
Set which subscriptions this channel is subscribed to
|
||||
|
||||
:param subscriptions: List of subscriptions, List[str]
|
||||
"""
|
||||
self._subscriptions = subscriptions
|
||||
|
||||
def subscribed_to(self, message_type: str) -> bool:
|
||||
"""
|
||||
Check if this channel is subscribed to the message_type
|
||||
|
||||
:param message_type: The message type to check
|
||||
"""
|
||||
return message_type in self._subscriptions
|
||||
|
||||
|
||||
class ChannelManager:
|
||||
def __init__(self):
|
||||
self.channels = dict()
|
||||
self._lock = RLock() # Re-entrant Lock
|
||||
|
||||
async def on_connect(self, websocket: WebSocketType):
|
||||
"""
|
||||
Wrap websocket connection into Channel and add to list
|
||||
|
||||
:param websocket: The WebSocket object to attach to the Channel
|
||||
"""
|
||||
if isinstance(websocket, FastAPIWebSocket):
|
||||
try:
|
||||
await websocket.accept()
|
||||
except RuntimeError:
|
||||
# The connection was closed before we could accept it
|
||||
return
|
||||
|
||||
ws_channel = WebSocketChannel(websocket)
|
||||
|
||||
with self._lock:
|
||||
self.channels[websocket] = ws_channel
|
||||
|
||||
return ws_channel
|
||||
|
||||
async def on_disconnect(self, websocket: WebSocketType):
|
||||
"""
|
||||
Call close on the channel if it's not, and remove from channel list
|
||||
|
||||
:param websocket: The WebSocket objet attached to the Channel
|
||||
"""
|
||||
with self._lock:
|
||||
channel = self.channels.get(websocket)
|
||||
if channel:
|
||||
if not channel.is_closed():
|
||||
await channel.close()
|
||||
|
||||
del self.channels[websocket]
|
||||
|
||||
async def disconnect_all(self):
|
||||
"""
|
||||
Disconnect all Channels
|
||||
"""
|
||||
with self._lock:
|
||||
for websocket, channel in self.channels.items():
|
||||
if not channel.is_closed():
|
||||
await channel.close()
|
||||
|
||||
self.channels = dict()
|
||||
|
||||
async def broadcast(self, data):
|
||||
"""
|
||||
Broadcast data on all Channels
|
||||
|
||||
:param data: The data to send
|
||||
"""
|
||||
with self._lock:
|
||||
message_type = data.get('type')
|
||||
for websocket, channel in self.channels.items():
|
||||
try:
|
||||
if channel.subscribed_to(message_type):
|
||||
await channel.send(data)
|
||||
except RuntimeError:
|
||||
# Handle cannot send after close cases
|
||||
await self.on_disconnect(websocket)
|
||||
|
||||
async def send_direct(self, channel, data):
|
||||
"""
|
||||
Send data directly through direct_channel only
|
||||
|
||||
:param direct_channel: The WebSocketChannel object to send data through
|
||||
:param data: The data to send
|
||||
"""
|
||||
await channel.send(data)
|
||||
|
||||
def has_channels(self):
|
||||
"""
|
||||
Flag for more than 0 channels
|
||||
"""
|
||||
return len(self.channels) > 0
|
69
freqtrade/rpc/api_server/ws/proxy.py
Normal file
69
freqtrade/rpc/api_server/ws/proxy.py
Normal file
@@ -0,0 +1,69 @@
|
||||
from typing import Any, Tuple, Union
|
||||
|
||||
from fastapi import WebSocket as FastAPIWebSocket
|
||||
from websockets.client import WebSocketClientProtocol as WebSocket
|
||||
|
||||
from freqtrade.rpc.api_server.ws.types import WebSocketType
|
||||
|
||||
|
||||
class WebSocketProxy:
|
||||
"""
|
||||
WebSocketProxy object to bring the FastAPIWebSocket and websockets.WebSocketClientProtocol
|
||||
under the same API
|
||||
"""
|
||||
|
||||
def __init__(self, websocket: WebSocketType):
|
||||
self._websocket: Union[FastAPIWebSocket, WebSocket] = websocket
|
||||
|
||||
@property
|
||||
def remote_addr(self) -> Tuple[Any, ...]:
|
||||
if isinstance(self._websocket, WebSocket):
|
||||
return self._websocket.remote_address
|
||||
elif isinstance(self._websocket, FastAPIWebSocket):
|
||||
if self._websocket.client:
|
||||
client, port = self._websocket.client.host, self._websocket.client.port
|
||||
return (client, port)
|
||||
return ("unknown", 0)
|
||||
|
||||
async def send(self, data):
|
||||
"""
|
||||
Send data on the wrapped websocket
|
||||
"""
|
||||
if hasattr(self._websocket, "send_text"):
|
||||
await self._websocket.send_text(data)
|
||||
else:
|
||||
await self._websocket.send(data)
|
||||
|
||||
async def recv(self):
|
||||
"""
|
||||
Receive data on the wrapped websocket
|
||||
"""
|
||||
if hasattr(self._websocket, "receive_text"):
|
||||
return await self._websocket.receive_text()
|
||||
else:
|
||||
return await self._websocket.recv()
|
||||
|
||||
async def ping(self):
|
||||
"""
|
||||
Ping the websocket, not supported by FastAPI WebSockets
|
||||
"""
|
||||
if hasattr(self._websocket, "ping"):
|
||||
return await self._websocket.ping()
|
||||
return False
|
||||
|
||||
async def close(self, code: int = 1000):
|
||||
"""
|
||||
Close the websocket connection, only supported by FastAPI WebSockets
|
||||
"""
|
||||
if hasattr(self._websocket, "close"):
|
||||
try:
|
||||
return await self._websocket.close(code)
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
async def accept(self):
|
||||
"""
|
||||
Accept the WebSocket connection, only support by FastAPI WebSockets
|
||||
"""
|
||||
if hasattr(self._websocket, "accept"):
|
||||
return await self._websocket.accept()
|
62
freqtrade/rpc/api_server/ws/serializer.py
Normal file
62
freqtrade/rpc/api_server/ws/serializer.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import orjson
|
||||
import rapidjson
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.misc import dataframe_to_json, json_to_dataframe
|
||||
from freqtrade.rpc.api_server.ws.proxy import WebSocketProxy
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WebSocketSerializer(ABC):
|
||||
def __init__(self, websocket: WebSocketProxy):
|
||||
self._websocket: WebSocketProxy = websocket
|
||||
|
||||
@abstractmethod
|
||||
def _serialize(self, data):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def _deserialize(self, data):
|
||||
raise NotImplementedError()
|
||||
|
||||
async def send(self, data: bytes):
|
||||
await self._websocket.send(self._serialize(data))
|
||||
|
||||
async def recv(self) -> bytes:
|
||||
data = await self._websocket.recv()
|
||||
|
||||
return self._deserialize(data)
|
||||
|
||||
async def close(self, code: int = 1000):
|
||||
await self._websocket.close(code)
|
||||
|
||||
|
||||
class HybridJSONWebSocketSerializer(WebSocketSerializer):
|
||||
def _serialize(self, data) -> str:
|
||||
return str(orjson.dumps(data, default=_json_default), "utf-8")
|
||||
|
||||
def _deserialize(self, data: str):
|
||||
# RapidJSON expects strings
|
||||
return rapidjson.loads(data, object_hook=_json_object_hook)
|
||||
|
||||
|
||||
# Support serializing pandas DataFrames
|
||||
def _json_default(z):
|
||||
if isinstance(z, DataFrame):
|
||||
return {
|
||||
'__type__': 'dataframe',
|
||||
'__value__': dataframe_to_json(z)
|
||||
}
|
||||
raise TypeError
|
||||
|
||||
|
||||
# Support deserializing JSON to pandas DataFrames
|
||||
def _json_object_hook(z):
|
||||
if z.get('__type__') == 'dataframe':
|
||||
return json_to_dataframe(z.get('__value__'))
|
||||
return z
|
8
freqtrade/rpc/api_server/ws/types.py
Normal file
8
freqtrade/rpc/api_server/ws/types.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from typing import Any, Dict, TypeVar
|
||||
|
||||
from fastapi import WebSocket as FastAPIWebSocket
|
||||
from websockets.client import WebSocketClientProtocol as WebSocket
|
||||
|
||||
|
||||
WebSocketType = TypeVar("WebSocketType", FastAPIWebSocket, WebSocket)
|
||||
MessageType = Dict[str, Any]
|
63
freqtrade/rpc/api_server/ws_schemas.py
Normal file
63
freqtrade/rpc/api_server/ws_schemas.py
Normal file
@@ -0,0 +1,63 @@
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pandas import DataFrame
|
||||
from pydantic import BaseModel
|
||||
|
||||
from freqtrade.constants import PairWithTimeframe
|
||||
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType
|
||||
|
||||
|
||||
class BaseArbitraryModel(BaseModel):
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class WSRequestSchema(BaseArbitraryModel):
|
||||
type: RPCRequestType
|
||||
data: Optional[Any] = None
|
||||
|
||||
|
||||
class WSMessageSchema(BaseArbitraryModel):
|
||||
type: RPCMessageType
|
||||
data: Optional[Any] = None
|
||||
|
||||
class Config:
|
||||
extra = 'allow'
|
||||
|
||||
|
||||
# ------------------------------ REQUEST SCHEMAS ----------------------------
|
||||
|
||||
|
||||
class WSSubscribeRequest(WSRequestSchema):
|
||||
type: RPCRequestType = RPCRequestType.SUBSCRIBE
|
||||
data: List[RPCMessageType]
|
||||
|
||||
|
||||
class WSWhitelistRequest(WSRequestSchema):
|
||||
type: RPCRequestType = RPCRequestType.WHITELIST
|
||||
data: None = None
|
||||
|
||||
|
||||
class WSAnalyzedDFRequest(WSRequestSchema):
|
||||
type: RPCRequestType = RPCRequestType.ANALYZED_DF
|
||||
data: Dict[str, Any] = {"limit": 1500}
|
||||
|
||||
|
||||
# ------------------------------ MESSAGE SCHEMAS ----------------------------
|
||||
|
||||
class WSWhitelistMessage(WSMessageSchema):
|
||||
type: RPCMessageType = RPCMessageType.WHITELIST
|
||||
data: List[str]
|
||||
|
||||
|
||||
class WSAnalyzedDFMessage(WSMessageSchema):
|
||||
class AnalyzedDFData(BaseArbitraryModel):
|
||||
key: PairWithTimeframe
|
||||
df: DataFrame
|
||||
la: datetime
|
||||
|
||||
type: RPCMessageType = RPCMessageType.ANALYZED_DF
|
||||
data: AnalyzedDFData
|
||||
|
||||
# --------------------------------------------------------------------------
|
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.rpc import RPC
|
||||
from freqtrade.rpc.webhook import Webhook
|
||||
@@ -10,7 +10,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Discord(Webhook):
|
||||
def __init__(self, rpc: 'RPC', config: Dict[str, Any]):
|
||||
def __init__(self, rpc: 'RPC', config: Config):
|
||||
# super().__init__(rpc, config)
|
||||
self.rpc = rpc
|
||||
self.config = config
|
||||
|
335
freqtrade/rpc/external_message_consumer.py
Normal file
335
freqtrade/rpc/external_message_consumer.py
Normal file
@@ -0,0 +1,335 @@
|
||||
"""
|
||||
ExternalMessageConsumer module
|
||||
|
||||
Main purpose is to connect to external bot's message websocket to consume data
|
||||
from it
|
||||
"""
|
||||
import asyncio
|
||||
import logging
|
||||
import socket
|
||||
from threading import Thread
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, TypedDict
|
||||
|
||||
import websockets
|
||||
from pydantic import ValidationError
|
||||
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.misc import remove_entry_exit_signals
|
||||
from freqtrade.rpc.api_server.ws import WebSocketChannel
|
||||
from freqtrade.rpc.api_server.ws_schemas import (WSAnalyzedDFMessage, WSAnalyzedDFRequest,
|
||||
WSMessageSchema, WSRequestSchema,
|
||||
WSSubscribeRequest, WSWhitelistMessage,
|
||||
WSWhitelistRequest)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import websockets.connect
|
||||
|
||||
|
||||
class Producer(TypedDict):
|
||||
name: str
|
||||
host: str
|
||||
port: int
|
||||
ws_token: str
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ExternalMessageConsumer:
|
||||
"""
|
||||
The main controller class for consuming external messages from
|
||||
other freqtrade bot's
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
dataprovider: DataProvider
|
||||
):
|
||||
self._config = config
|
||||
self._dp = dataprovider
|
||||
|
||||
self._running = False
|
||||
self._thread = None
|
||||
self._loop = None
|
||||
self._main_task = None
|
||||
self._sub_tasks = None
|
||||
|
||||
self._emc_config = self._config.get('external_message_consumer', {})
|
||||
|
||||
self.enabled = self._emc_config.get('enabled', False)
|
||||
self.producers: List[Producer] = self._emc_config.get('producers', [])
|
||||
|
||||
self.wait_timeout = self._emc_config.get('wait_timeout', 300) # in seconds
|
||||
self.ping_timeout = self._emc_config.get('ping_timeout', 10) # in seconds
|
||||
self.sleep_time = self._emc_config.get('sleep_time', 10) # in seconds
|
||||
|
||||
# The amount of candles per dataframe on the initial request
|
||||
self.initial_candle_limit = self._emc_config.get('initial_candle_limit', 1500)
|
||||
|
||||
# Message size limit, in megabytes. Default 8mb, Use bitwise operator << 20 to convert
|
||||
# as the websockets client expects bytes.
|
||||
self.message_size_limit = (self._emc_config.get('message_size_limit', 8) << 20)
|
||||
|
||||
# Setting these explicitly as they probably shouldn't be changed by a user
|
||||
# Unless we somehow integrate this with the strategy to allow creating
|
||||
# callbacks for the messages
|
||||
self.topics = [RPCMessageType.WHITELIST, RPCMessageType.ANALYZED_DF]
|
||||
|
||||
# Allow setting data for each initial request
|
||||
self._initial_requests: List[WSRequestSchema] = [
|
||||
WSSubscribeRequest(data=self.topics),
|
||||
WSWhitelistRequest(),
|
||||
WSAnalyzedDFRequest()
|
||||
]
|
||||
|
||||
# Specify which function to use for which RPCMessageType
|
||||
self._message_handlers: Dict[str, Callable[[str, WSMessageSchema], None]] = {
|
||||
RPCMessageType.WHITELIST: self._consume_whitelist_message,
|
||||
RPCMessageType.ANALYZED_DF: self._consume_analyzed_df_message,
|
||||
}
|
||||
|
||||
self.start()
|
||||
|
||||
def start(self):
|
||||
"""
|
||||
Start the main internal loop in another thread to run coroutines
|
||||
"""
|
||||
if self._thread and self._loop:
|
||||
return
|
||||
|
||||
logger.info("Starting ExternalMessageConsumer")
|
||||
|
||||
self._loop = asyncio.new_event_loop()
|
||||
self._thread = Thread(target=self._loop.run_forever)
|
||||
self._running = True
|
||||
self._thread.start()
|
||||
|
||||
self._main_task = asyncio.run_coroutine_threadsafe(self._main(), loop=self._loop)
|
||||
|
||||
def shutdown(self):
|
||||
"""
|
||||
Shutdown the loop, thread, and tasks
|
||||
"""
|
||||
if self._thread and self._loop:
|
||||
logger.info("Stopping ExternalMessageConsumer")
|
||||
self._running = False
|
||||
|
||||
if self._sub_tasks:
|
||||
# Cancel sub tasks
|
||||
for task in self._sub_tasks:
|
||||
task.cancel()
|
||||
|
||||
if self._main_task:
|
||||
# Cancel the main task
|
||||
self._main_task.cancel()
|
||||
|
||||
self._thread.join()
|
||||
|
||||
self._thread = None
|
||||
self._loop = None
|
||||
self._sub_tasks = None
|
||||
self._main_task = None
|
||||
|
||||
async def _main(self):
|
||||
"""
|
||||
The main task coroutine
|
||||
"""
|
||||
lock = asyncio.Lock()
|
||||
|
||||
try:
|
||||
# Create a connection to each producer
|
||||
self._sub_tasks = [
|
||||
self._loop.create_task(self._handle_producer_connection(producer, lock))
|
||||
for producer in self.producers
|
||||
]
|
||||
|
||||
await asyncio.gather(*self._sub_tasks)
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
finally:
|
||||
# Stop the loop once we are done
|
||||
self._loop.stop()
|
||||
|
||||
async def _handle_producer_connection(self, producer: Producer, lock: asyncio.Lock):
|
||||
"""
|
||||
Main connection loop for the consumer
|
||||
|
||||
:param producer: Dictionary containing producer info
|
||||
:param lock: An asyncio Lock
|
||||
"""
|
||||
try:
|
||||
await self._create_connection(producer, lock)
|
||||
except asyncio.CancelledError:
|
||||
# Exit silently
|
||||
pass
|
||||
|
||||
async def _create_connection(self, producer: Producer, lock: asyncio.Lock):
|
||||
"""
|
||||
Actually creates and handles the websocket connection, pinging on timeout
|
||||
and handling connection errors.
|
||||
|
||||
:param producer: Dictionary containing producer info
|
||||
:param lock: An asyncio Lock
|
||||
"""
|
||||
while self._running:
|
||||
try:
|
||||
host, port = producer['host'], producer['port']
|
||||
token = producer['ws_token']
|
||||
name = producer['name']
|
||||
ws_url = f"ws://{host}:{port}/api/v1/message/ws?token={token}"
|
||||
|
||||
# This will raise InvalidURI if the url is bad
|
||||
async with websockets.connect(ws_url, max_size=self.message_size_limit) as ws:
|
||||
channel = WebSocketChannel(ws, channel_id=name)
|
||||
|
||||
logger.info(f"Producer connection success - {channel}")
|
||||
|
||||
# Now request the initial data from this Producer
|
||||
for request in self._initial_requests:
|
||||
await channel.send(
|
||||
request.dict(exclude_none=True)
|
||||
)
|
||||
|
||||
# Now receive data, if none is within the time limit, ping
|
||||
await self._receive_messages(channel, producer, lock)
|
||||
|
||||
except (websockets.exceptions.InvalidURI, ValueError) as e:
|
||||
logger.error(f"{ws_url} is an invalid WebSocket URL - {e}")
|
||||
break
|
||||
|
||||
except (
|
||||
socket.gaierror,
|
||||
ConnectionRefusedError,
|
||||
websockets.exceptions.InvalidStatusCode,
|
||||
websockets.exceptions.InvalidMessage
|
||||
) as e:
|
||||
logger.error(f"Connection Refused - {e} retrying in {self.sleep_time}s")
|
||||
await asyncio.sleep(self.sleep_time)
|
||||
continue
|
||||
|
||||
except (
|
||||
websockets.exceptions.ConnectionClosedError,
|
||||
websockets.exceptions.ConnectionClosedOK
|
||||
):
|
||||
# Just keep trying to connect again indefinitely
|
||||
await asyncio.sleep(self.sleep_time)
|
||||
continue
|
||||
|
||||
except Exception as e:
|
||||
# An unforseen error has occurred, log and continue
|
||||
logger.error("Unexpected error has occurred:")
|
||||
logger.exception(e)
|
||||
continue
|
||||
|
||||
async def _receive_messages(
|
||||
self,
|
||||
channel: WebSocketChannel,
|
||||
producer: Producer,
|
||||
lock: asyncio.Lock
|
||||
):
|
||||
"""
|
||||
Loop to handle receiving messages from a Producer
|
||||
|
||||
:param channel: The WebSocketChannel object for the WebSocket
|
||||
:param producer: Dictionary containing producer info
|
||||
:param lock: An asyncio Lock
|
||||
"""
|
||||
while self._running:
|
||||
try:
|
||||
message = await asyncio.wait_for(
|
||||
channel.recv(),
|
||||
timeout=self.wait_timeout
|
||||
)
|
||||
|
||||
try:
|
||||
async with lock:
|
||||
# Handle the message
|
||||
self.handle_producer_message(producer, message)
|
||||
except Exception as e:
|
||||
logger.exception(f"Error handling producer message: {e}")
|
||||
|
||||
except (asyncio.TimeoutError, websockets.exceptions.ConnectionClosed):
|
||||
# We haven't received data yet. Check the connection and continue.
|
||||
try:
|
||||
# ping
|
||||
ping = await channel.ping()
|
||||
|
||||
await asyncio.wait_for(ping, timeout=self.ping_timeout)
|
||||
logger.debug(f"Connection to {channel} still alive...")
|
||||
|
||||
continue
|
||||
except Exception as e:
|
||||
logger.warning(f"Ping error {channel} - retrying in {self.sleep_time}s")
|
||||
logger.debug(e, exc_info=e)
|
||||
await asyncio.sleep(self.sleep_time)
|
||||
|
||||
break
|
||||
|
||||
def handle_producer_message(self, producer: Producer, message: Dict[str, Any]):
|
||||
"""
|
||||
Handles external messages from a Producer
|
||||
"""
|
||||
producer_name = producer.get('name', 'default')
|
||||
|
||||
try:
|
||||
producer_message = WSMessageSchema.parse_obj(message)
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid message from `{producer_name}`: {e}")
|
||||
return
|
||||
|
||||
if not producer_message.data:
|
||||
logger.error(f"Empty message received from `{producer_name}`")
|
||||
return
|
||||
|
||||
logger.info(f"Received message of type `{producer_message.type}` from `{producer_name}`")
|
||||
|
||||
message_handler = self._message_handlers.get(producer_message.type)
|
||||
|
||||
if not message_handler:
|
||||
logger.info(f"Received unhandled message: `{producer_message.data}`, ignoring...")
|
||||
return
|
||||
|
||||
message_handler(producer_name, producer_message)
|
||||
|
||||
def _consume_whitelist_message(self, producer_name: str, message: WSMessageSchema):
|
||||
try:
|
||||
# Validate the message
|
||||
whitelist_message = WSWhitelistMessage.parse_obj(message)
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid message from `{producer_name}`: {e}")
|
||||
return
|
||||
|
||||
# Add the pairlist data to the DataProvider
|
||||
self._dp._set_producer_pairs(whitelist_message.data, producer_name=producer_name)
|
||||
|
||||
logger.debug(f"Consumed message from `{producer_name}` of type `RPCMessageType.WHITELIST`")
|
||||
|
||||
def _consume_analyzed_df_message(self, producer_name: str, message: WSMessageSchema):
|
||||
try:
|
||||
df_message = WSAnalyzedDFMessage.parse_obj(message)
|
||||
except ValidationError as e:
|
||||
logger.error(f"Invalid message from `{producer_name}`: {e}")
|
||||
return
|
||||
|
||||
key = df_message.data.key
|
||||
df = df_message.data.df
|
||||
la = df_message.data.la
|
||||
|
||||
pair, timeframe, candle_type = key
|
||||
|
||||
# If set, remove the Entry and Exit signals from the Producer
|
||||
if self._emc_config.get('remove_entry_exit_signals', False):
|
||||
df = remove_entry_exit_signals(df)
|
||||
|
||||
# Add the dataframe to the dataprovider
|
||||
self._dp._add_external_df(pair, df,
|
||||
last_analyzed=la,
|
||||
timeframe=timeframe,
|
||||
candle_type=candle_type,
|
||||
producer_name=producer_name)
|
||||
|
||||
logger.debug(
|
||||
f"Consumed message from `{producer_name}` of type `RPCMessageType.ANALYZED_DF`")
|
@@ -16,7 +16,7 @@ from pandas import DataFrame, NaT
|
||||
|
||||
from freqtrade import __version__
|
||||
from freqtrade.configuration.timerange import TimeRange
|
||||
from freqtrade.constants import CANCEL_REASON, DATETIME_PRINT_FORMAT
|
||||
from freqtrade.constants import CANCEL_REASON, DATETIME_PRINT_FORMAT, Config
|
||||
from freqtrade.data.history import load_data
|
||||
from freqtrade.data.metrics import calculate_max_drawdown
|
||||
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, SignalDirection, State,
|
||||
@@ -58,7 +58,7 @@ class RPCException(Exception):
|
||||
|
||||
class RPCHandler:
|
||||
|
||||
def __init__(self, rpc: 'RPC', config: Dict[str, Any]) -> None:
|
||||
def __init__(self, rpc: 'RPC', config: Config) -> None:
|
||||
"""
|
||||
Initializes RPCHandlers
|
||||
:param rpc: instance of RPC Helper class
|
||||
@@ -66,7 +66,7 @@ class RPCHandler:
|
||||
:return: None
|
||||
"""
|
||||
self._rpc = rpc
|
||||
self._config: Dict[str, Any] = config
|
||||
self._config: Config = config
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
@@ -96,7 +96,7 @@ class RPC:
|
||||
:return: None
|
||||
"""
|
||||
self._freqtrade = freqtrade
|
||||
self._config: Dict[str, Any] = freqtrade.config
|
||||
self._config: Config = freqtrade.config
|
||||
if self._config.get('fiat_display_currency'):
|
||||
self._fiat_converter = CryptoToFiatConverter()
|
||||
|
||||
@@ -1039,14 +1039,52 @@ class RPC:
|
||||
|
||||
def _rpc_analysed_dataframe(self, pair: str, timeframe: str,
|
||||
limit: Optional[int]) -> Dict[str, Any]:
|
||||
""" Analyzed dataframe in Dict form """
|
||||
|
||||
_data, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
|
||||
return self._convert_dataframe_to_dict(self._freqtrade.config['strategy'],
|
||||
pair, timeframe, _data, last_analyzed)
|
||||
|
||||
def __rpc_analysed_dataframe_raw(self, pair: str, timeframe: str,
|
||||
limit: Optional[int]) -> Tuple[DataFrame, datetime]:
|
||||
""" Get the dataframe and last analyze from the dataprovider """
|
||||
_data, last_analyzed = self._freqtrade.dataprovider.get_analyzed_dataframe(
|
||||
pair, timeframe)
|
||||
_data = _data.copy()
|
||||
|
||||
if limit:
|
||||
_data = _data.iloc[-limit:]
|
||||
return self._convert_dataframe_to_dict(self._freqtrade.config['strategy'],
|
||||
pair, timeframe, _data, last_analyzed)
|
||||
return _data, last_analyzed
|
||||
|
||||
def _ws_all_analysed_dataframes(
|
||||
self,
|
||||
pairlist: List[str],
|
||||
limit: Optional[int]
|
||||
) -> Dict[str, Any]:
|
||||
""" Get the analysed dataframes of each pair in the pairlist """
|
||||
timeframe = self._freqtrade.config['timeframe']
|
||||
candle_type = self._freqtrade.config.get('candle_type_def', CandleType.SPOT)
|
||||
_data = {}
|
||||
|
||||
for pair in pairlist:
|
||||
dataframe, last_analyzed = self.__rpc_analysed_dataframe_raw(pair, timeframe, limit)
|
||||
|
||||
_data[pair] = {
|
||||
"key": (pair, timeframe, candle_type),
|
||||
"df": dataframe,
|
||||
"la": last_analyzed
|
||||
}
|
||||
|
||||
return _data
|
||||
|
||||
def _ws_request_analyzed_df(self, limit: Optional[int]):
|
||||
""" Historical Analyzed Dataframes for WebSocket """
|
||||
whitelist = self._freqtrade.active_pair_whitelist
|
||||
return self._ws_all_analysed_dataframes(whitelist, limit)
|
||||
|
||||
def _ws_request_whitelist(self):
|
||||
""" Whitelist data for WebSocket """
|
||||
return self._freqtrade.active_pair_whitelist
|
||||
|
||||
@staticmethod
|
||||
def _rpc_analysed_history_full(config, pair: str, timeframe: str,
|
||||
|
@@ -5,6 +5,7 @@ import logging
|
||||
from collections import deque
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.rpc import RPC, RPCHandler
|
||||
|
||||
@@ -66,7 +67,8 @@ class RPCManager:
|
||||
'status': 'stopping bot'
|
||||
}
|
||||
"""
|
||||
logger.info('Sending rpc message: %s', msg)
|
||||
if msg.get('type') is not RPCMessageType.ANALYZED_DF:
|
||||
logger.info('Sending rpc message: %s', msg)
|
||||
if 'pair' in msg:
|
||||
msg.update({
|
||||
'base_currency': self._rpc._freqtrade.exchange.get_pair_base_currency(msg['pair'])
|
||||
@@ -77,6 +79,8 @@ class RPCManager:
|
||||
mod.send_msg(msg)
|
||||
except NotImplementedError:
|
||||
logger.error(f"Message type '{msg['type']}' not implemented by handler {mod.name}.")
|
||||
except Exception:
|
||||
logger.exception('Exception occurred within RPC module %s', mod.name)
|
||||
|
||||
def process_msg_queue(self, queue: deque) -> None:
|
||||
"""
|
||||
@@ -89,7 +93,7 @@ class RPCManager:
|
||||
'msg': msg,
|
||||
})
|
||||
|
||||
def startup_messages(self, config: Dict[str, Any], pairlist, protections) -> None:
|
||||
def startup_messages(self, config: Config, pairlist, protections) -> None:
|
||||
if config['dry_run']:
|
||||
self.send_msg({
|
||||
'type': RPCMessageType.WARNING,
|
||||
|
@@ -24,7 +24,7 @@ from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler,
|
||||
from telegram.utils.helpers import escape_markdown
|
||||
|
||||
from freqtrade.__init__ import __version__
|
||||
from freqtrade.constants import DUST_PER_COIN
|
||||
from freqtrade.constants import DUST_PER_COIN, Config
|
||||
from freqtrade.enums import RPCMessageType, SignalDirection, TradingMode
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import chunks, plural, round_coin_value
|
||||
@@ -88,7 +88,7 @@ def authorized_only(command_handler: Callable[..., None]) -> Callable[..., Any]:
|
||||
class Telegram(RPCHandler):
|
||||
""" This class handles all telegram communication """
|
||||
|
||||
def __init__(self, rpc: RPC, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, rpc: RPC, config: Config) -> None:
|
||||
"""
|
||||
Init the Telegram call, and init the super class RPCHandler
|
||||
:param rpc: instance of RPC Helper class
|
||||
@@ -286,7 +286,7 @@ class Telegram(RPCHandler):
|
||||
if msg['type'] in [RPCMessageType.ENTRY_FILL]:
|
||||
message += f"*Open Rate:* `{msg['open_rate']:.8f}`\n"
|
||||
elif msg['type'] in [RPCMessageType.ENTRY]:
|
||||
message += f"*Open Rate:* `{msg['limit']:.8f}`\n"\
|
||||
message += f"*Open Rate:* `{msg['open_rate']:.8f}`\n"\
|
||||
f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
|
||||
|
||||
message += f"*Total:* `({round_coin_value(msg['stake_amount'], msg['stake_currency'])}"
|
||||
@@ -353,8 +353,9 @@ class Telegram(RPCHandler):
|
||||
f"*Open Rate:* `{msg['open_rate']:.8f}`\n"
|
||||
)
|
||||
if msg['type'] == RPCMessageType.EXIT:
|
||||
message += (f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
|
||||
f"*Exit Rate:* `{msg['limit']:.8f}`")
|
||||
message += f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
|
||||
if msg['order_rate']:
|
||||
message += f"*Exit Rate:* `{msg['order_rate']:.8f}`"
|
||||
|
||||
elif msg['type'] == RPCMessageType.EXIT_FILL:
|
||||
message += f"*Exit Rate:* `{msg['close_rate']:.8f}`"
|
||||
|
@@ -7,6 +7,7 @@ from typing import Any, Dict
|
||||
|
||||
from requests import RequestException, post
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.enums import RPCMessageType
|
||||
from freqtrade.rpc import RPC, RPCHandler
|
||||
|
||||
@@ -19,7 +20,7 @@ logger.debug('Included module rpc.webhook ...')
|
||||
class Webhook(RPCHandler):
|
||||
""" This class handles all webhook communication """
|
||||
|
||||
def __init__(self, rpc: RPC, config: Dict[str, Any]) -> None:
|
||||
def __init__(self, rpc: RPC, config: Config) -> None:
|
||||
"""
|
||||
Init the Webhook class, and init the super class RPCHandler
|
||||
:param rpc: instance of RPC Helper class
|
||||
|
@@ -6,6 +6,7 @@ import logging
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Tuple, Type, Union
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, json_load
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
@@ -21,7 +22,7 @@ class HyperStrategyMixin:
|
||||
strategy logic.
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any], *args, **kwargs):
|
||||
def __init__(self, config: Config, *args, **kwargs):
|
||||
"""
|
||||
Initialize hyperoptable strategy mixin.
|
||||
"""
|
||||
|
@@ -10,12 +10,13 @@ from typing import Dict, List, Optional, Tuple, Union
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, RunMode, SignalDirection,
|
||||
SignalTagType, SignalType, TradingMode)
|
||||
from freqtrade.exceptions import OperationalException, StrategyError
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date, timeframe_to_seconds
|
||||
from freqtrade.misc import remove_entry_exit_signals
|
||||
from freqtrade.persistence import Order, PairLocks, Trade
|
||||
from freqtrade.strategy.hyper import HyperStrategyMixin
|
||||
from freqtrade.strategy.informative_decorator import (InformativeData, PopulateIndicators,
|
||||
@@ -118,7 +119,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# Definition of plot_config. See plotting documentation for more details.
|
||||
plot_config: Dict = {}
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
def __init__(self, config: Config) -> None:
|
||||
self.config = config
|
||||
# Dict to determine if analysis is necessary
|
||||
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
|
||||
@@ -759,20 +760,19 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# always run if process_only_new_candles is set to false
|
||||
if (not self.process_only_new_candles or
|
||||
self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']):
|
||||
|
||||
# Defs that only make change on new candle data.
|
||||
dataframe = self.analyze_ticker(dataframe, metadata)
|
||||
|
||||
self._last_candle_seen_per_pair[pair] = dataframe.iloc[-1]['date']
|
||||
self.dp._set_cached_df(
|
||||
pair, self.timeframe, dataframe,
|
||||
candle_type=self.config.get('candle_type_def', CandleType.SPOT))
|
||||
|
||||
candle_type = self.config.get('candle_type_def', CandleType.SPOT)
|
||||
self.dp._set_cached_df(pair, self.timeframe, dataframe, candle_type=candle_type)
|
||||
self.dp._emit_df((pair, self.timeframe, candle_type), dataframe)
|
||||
|
||||
else:
|
||||
logger.debug("Skipping TA Analysis for already analyzed candle")
|
||||
dataframe[SignalType.ENTER_LONG.value] = 0
|
||||
dataframe[SignalType.EXIT_LONG.value] = 0
|
||||
dataframe[SignalType.ENTER_SHORT.value] = 0
|
||||
dataframe[SignalType.EXIT_SHORT.value] = 0
|
||||
dataframe[SignalTagType.ENTER_TAG.value] = None
|
||||
dataframe[SignalTagType.EXIT_TAG.value] = None
|
||||
dataframe = remove_entry_exit_signals(dataframe)
|
||||
|
||||
logger.debug("Loop Analysis Launched")
|
||||
|
||||
|
@@ -45,7 +45,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
std_dev_multiplier_buy = CategoricalParameter(
|
||||
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
|
||||
std_dev_multiplier_sell = CategoricalParameter(
|
||||
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
|
||||
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
|
||||
|
||||
def populate_any_indicators(
|
||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||
@@ -170,25 +170,31 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
for val in self.std_dev_multiplier_buy.range:
|
||||
dataframe[f'target_roi_{val}'] = dataframe["&-s_close_mean"] + \
|
||||
dataframe["&-s_close_std"] * val
|
||||
dataframe[f'target_roi_{val}'] = (
|
||||
dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * val
|
||||
)
|
||||
for val in self.std_dev_multiplier_sell.range:
|
||||
dataframe[f'sell_roi_{val}'] = dataframe["&-s_close_mean"] - \
|
||||
dataframe["&-s_close_std"] * val
|
||||
dataframe[f'sell_roi_{val}'] = (
|
||||
dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * val
|
||||
)
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"]
|
||||
> df[f"target_roi_{self.std_dev_multiplier_buy.value}"]]
|
||||
enter_long_conditions = [
|
||||
df["do_predict"] == 1,
|
||||
df["&-s_close"] > df[f"target_roi_{self.std_dev_multiplier_buy.value}"],
|
||||
]
|
||||
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
|
||||
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"]
|
||||
< df[f"sell_roi_{self.std_dev_multiplier_sell.value}"]]
|
||||
enter_short_conditions = [
|
||||
df["do_predict"] == 1,
|
||||
df["&-s_close"] < df[f"sell_roi_{self.std_dev_multiplier_sell.value}"],
|
||||
]
|
||||
|
||||
if enter_short_conditions:
|
||||
df.loc[
|
||||
@@ -198,13 +204,17 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] <
|
||||
df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25]
|
||||
exit_long_conditions = [
|
||||
df["do_predict"] == 1,
|
||||
df["&-s_close"] < df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25,
|
||||
]
|
||||
if exit_long_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
|
||||
|
||||
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] >
|
||||
df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25]
|
||||
exit_short_conditions = [
|
||||
df["do_predict"] == 1,
|
||||
df["&-s_close"] > df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25,
|
||||
]
|
||||
if exit_short_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
||||
|
||||
|
@@ -67,6 +67,7 @@
|
||||
"verbosity": "error",
|
||||
"enable_openapi": false,
|
||||
"jwt_secret_key": "{{ api_server_jwt_key }}",
|
||||
"ws_token": "{{ api_server_ws_token }}",
|
||||
"CORS_origins": [],
|
||||
"username": "{{ api_server_username }}",
|
||||
"password": "{{ api_server_password }}"
|
||||
|
@@ -1,21 +1,21 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
# flake8: noqa: F401
|
||||
|
||||
# isort: skip_file
|
||||
# --- Do not remove these libs ---
|
||||
import numpy as np # noqa
|
||||
import pandas as pd # noqa
|
||||
from pandas import DataFrame # noqa
|
||||
from datetime import datetime # noqa
|
||||
from typing import Optional, Union # noqa
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from datetime import datetime
|
||||
from typing import Optional, Union
|
||||
|
||||
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IStrategy, IntParameter)
|
||||
IntParameter, IStrategy, merge_informative_pair)
|
||||
|
||||
# --------------------------------
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import pandas_ta as pta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from technical import qtpylib
|
||||
|
||||
|
||||
class {{ strategy }}(IStrategy):
|
||||
|
@@ -4,6 +4,7 @@ from typing import Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import Config
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
@@ -36,7 +37,7 @@ class SampleHyperOptLoss(IHyperOptLoss):
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
config: Dict, processed: Dict[str, DataFrame],
|
||||
config: Config, processed: Dict[str, DataFrame],
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for better results
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user