deprecate indicator_max_period_candles, automatically compute startup candles for FreqAI backtesting.

This commit is contained in:
robcaulk
2022-08-22 18:19:07 +02:00
parent 88dd9920ea
commit ac42c0153d
10 changed files with 61 additions and 38 deletions

View File

@@ -20,6 +20,8 @@ from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.exchange.exchange import market_is_active
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
from freqtrade.strategy.interface import IStrategy
@@ -834,9 +836,7 @@ class FreqaiDataKitchen:
# We notice that users like to use exotic indicators where
# they do not know the required timeperiod. Here we include a factor
# of safety by multiplying the user considered "max" by 2.
max_period = self.freqai_config["feature_parameters"].get(
"indicator_max_period_candles", 20
) * 2
max_period = self.config.get('startup_candle_count', 20) * 2
additional_seconds = max_period * max_tf_seconds
if trained_timestamp != 0:
@@ -1015,12 +1015,15 @@ def download_all_data_for_training(timerange: TimeRange,
and training the model.
:param dp: DataProvider instance attached to the strategy
"""
all_pairs = copy.deepcopy(
config["freqai"]["feature_parameters"].get("include_corr_pairlist", [])
)
for pair in config.get("exchange", "").get("pair_whitelist"):
if pair not in all_pairs:
all_pairs.append(pair)
if dp._exchange is not None:
markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
or config.get('include_inactive')]
else:
# This should not occur:
raise OperationalException('No exchange object found.')
all_pairs = dynamic_expand_pairlist(config, markets)
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
if not dp._exchange:
@@ -1048,7 +1051,6 @@ def get_required_data_timerange(
user.
"""
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
trained_timerange = TimeRange()
data_load_timerange = TimeRange()
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
@@ -1059,15 +1061,9 @@ def get_required_data_timerange(
if secs > max_tf_seconds:
max_tf_seconds = secs
max_period = config["freqai"]["feature_parameters"].get(
"indicator_max_period_candles", 20
) * 2
additional_seconds = max_period * max_tf_seconds
max_period = config.get('startup_candle_count', 20) * 2
trained_timerange.startts = int(
time - config["freqai"].get("train_period_days", 0) * SECONDS_IN_DAY
)
trained_timerange.stopts = int(time)
additional_seconds = max_period * max_tf_seconds
data_load_timerange.startts = int(
time