deprecate indicator_max_period_candles, automatically compute startup candles for FreqAI backtesting.
This commit is contained in:
@@ -92,7 +92,7 @@ class DataProvider:
|
||||
'timerange') is None else str(self._config.get('timerange')))
|
||||
# Move informative start time respecting startup_candle_count
|
||||
timerange.subtract_start(
|
||||
timeframe_to_seconds(str(timeframe)) * self._config.get('startup_candle_count', 0)
|
||||
self.get_required_startup_seconds(str(timeframe))
|
||||
)
|
||||
self.__cached_pairs_backtesting[saved_pair] = load_pair_history(
|
||||
pair=pair,
|
||||
@@ -105,6 +105,17 @@ class DataProvider:
|
||||
)
|
||||
return self.__cached_pairs_backtesting[saved_pair].copy()
|
||||
|
||||
def get_required_startup_seconds(self, timeframe: str) -> int:
|
||||
tf_seconds = timeframe_to_seconds(timeframe)
|
||||
base_seconds = tf_seconds * self._config.get('startup_candle_count', 0)
|
||||
if not self._config['freqai']['enabled']:
|
||||
return base_seconds
|
||||
else:
|
||||
train_seconds = self._config['freqai']['train_period_days'] * 86400
|
||||
# multiplied by safety factor of 2 because FreqAI users
|
||||
# typically do not know the correct window.
|
||||
return base_seconds * 2 + int(train_seconds)
|
||||
|
||||
def get_pair_dataframe(
|
||||
self,
|
||||
pair: str,
|
||||
|
@@ -20,6 +20,8 @@ from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import market_is_active
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
@@ -834,9 +836,7 @@ class FreqaiDataKitchen:
|
||||
# We notice that users like to use exotic indicators where
|
||||
# they do not know the required timeperiod. Here we include a factor
|
||||
# of safety by multiplying the user considered "max" by 2.
|
||||
max_period = self.freqai_config["feature_parameters"].get(
|
||||
"indicator_max_period_candles", 20
|
||||
) * 2
|
||||
max_period = self.config.get('startup_candle_count', 20) * 2
|
||||
additional_seconds = max_period * max_tf_seconds
|
||||
|
||||
if trained_timestamp != 0:
|
||||
@@ -1015,12 +1015,15 @@ def download_all_data_for_training(timerange: TimeRange,
|
||||
and training the model.
|
||||
:param dp: DataProvider instance attached to the strategy
|
||||
"""
|
||||
all_pairs = copy.deepcopy(
|
||||
config["freqai"]["feature_parameters"].get("include_corr_pairlist", [])
|
||||
)
|
||||
for pair in config.get("exchange", "").get("pair_whitelist"):
|
||||
if pair not in all_pairs:
|
||||
all_pairs.append(pair)
|
||||
|
||||
if dp._exchange is not None:
|
||||
markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
|
||||
or config.get('include_inactive')]
|
||||
else:
|
||||
# This should not occur:
|
||||
raise OperationalException('No exchange object found.')
|
||||
|
||||
all_pairs = dynamic_expand_pairlist(config, markets)
|
||||
|
||||
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
|
||||
if not dp._exchange:
|
||||
@@ -1048,7 +1051,6 @@ def get_required_data_timerange(
|
||||
user.
|
||||
"""
|
||||
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||
trained_timerange = TimeRange()
|
||||
data_load_timerange = TimeRange()
|
||||
|
||||
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
|
||||
@@ -1059,15 +1061,9 @@ def get_required_data_timerange(
|
||||
if secs > max_tf_seconds:
|
||||
max_tf_seconds = secs
|
||||
|
||||
max_period = config["freqai"]["feature_parameters"].get(
|
||||
"indicator_max_period_candles", 20
|
||||
) * 2
|
||||
additional_seconds = max_period * max_tf_seconds
|
||||
max_period = config.get('startup_candle_count', 20) * 2
|
||||
|
||||
trained_timerange.startts = int(
|
||||
time - config["freqai"].get("train_period_days", 0) * SECONDS_IN_DAY
|
||||
)
|
||||
trained_timerange.stopts = int(time)
|
||||
additional_seconds = max_period * max_tf_seconds
|
||||
|
||||
data_load_timerange.startts = int(
|
||||
time
|
||||
|
@@ -211,21 +211,21 @@ class Backtesting:
|
||||
"""
|
||||
self.progress.init_step(BacktestState.DATALOAD, 1)
|
||||
|
||||
if self.config.get('freqai', {}).get('enabled', False):
|
||||
startup_candles = int(self.config.get('freqai', {}).get('startup_candles', 0))
|
||||
if not startup_candles:
|
||||
raise OperationalException('FreqAI backtesting module requires user set '
|
||||
'startup_candles in config.')
|
||||
self.required_startup += int(self.config.get('freqai', {}).get('startup_candles', 0))
|
||||
logger.info(f'Increasing startup_candle_count for freqai to {self.required_startup}')
|
||||
self.config['startup_candle_count'] = self.required_startup
|
||||
# if self.config.get('freqai', {}).get('enabled', False):
|
||||
# startup_candles = int(self.config.get('freqai', {}).get('startup_candles', 0))
|
||||
# if not startup_candles:
|
||||
# raise OperationalException('FreqAI backtesting module requires user set '
|
||||
# 'startup_candles in config.')
|
||||
# self.required_startup += int(self.config.get('freqai', {}).get('startup_candles', 0))
|
||||
# logger.info(f'Increasing startup_candle_count for freqai to {self.required_startup}')
|
||||
# self.config['startup_candle_count'] = self.required_startup
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe,
|
||||
timerange=self.timerange,
|
||||
startup_candles=self.required_startup,
|
||||
startup_candles=self.get_required_startup(self.timeframe),
|
||||
fail_without_data=True,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
candle_type=self.config.get('candle_type_def', CandleType.SPOT)
|
||||
@@ -244,6 +244,21 @@ class Backtesting:
|
||||
self.progress.set_new_value(1)
|
||||
return data, self.timerange
|
||||
|
||||
def get_required_startup(self, timeframe: str) -> int:
|
||||
if not self.config['freqai']['enabled']:
|
||||
return self.required_startup
|
||||
else:
|
||||
if not self.config['startup_candle_count']:
|
||||
raise OperationalException('FreqAI backtesting module requires strategy '
|
||||
'set startup_candle_count.')
|
||||
tf_seconds = timeframe_to_seconds(timeframe)
|
||||
train_candles = self.config['freqai']['train_period_days'] * 86400 / tf_seconds
|
||||
# multiplied by safety factor of 2 because FreqAI users
|
||||
# typically do not know the correct window.
|
||||
total_candles = self.required_startup * 2 + train_candles
|
||||
logger.info(f'Increasing startup_candle_count for freqai to {total_candles}')
|
||||
return total_candles
|
||||
|
||||
def load_bt_data_detail(self) -> None:
|
||||
"""
|
||||
Loads backtest detail data (smaller timeframe) if necessary.
|
||||
|
@@ -163,6 +163,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
)
|
||||
data_load_timerange = get_required_data_timerange(self.config)
|
||||
download_all_data_for_training(data_load_timerange, self.dp, self.config)
|
||||
|
||||
else:
|
||||
# Gracious failures if freqAI is disabled but "start" is called.
|
||||
class DummyClass():
|
||||
|
@@ -43,7 +43,8 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
process_only_new_candles = True
|
||||
stoploss = -0.05
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 300
|
||||
# this is the maximum period fed to talib (timeframe independent)
|
||||
startup_candle_count: int = 20
|
||||
can_short = False
|
||||
|
||||
linear_roi_offset = DecimalParameter(
|
||||
|
Reference in New Issue
Block a user