Merge pull request #8210 from freqtrade/clean-data-drawer
Allow user to control number of historical model files
This commit is contained in:
@@ -546,7 +546,7 @@ CONF_SCHEMA = {
|
||||
"enabled": {"type": "boolean", "default": False},
|
||||
"keras": {"type": "boolean", "default": False},
|
||||
"write_metrics_to_disk": {"type": "boolean", "default": False},
|
||||
"purge_old_models": {"type": "boolean", "default": True},
|
||||
"purge_old_models": {"type": ["boolean", "number"], "default": 2},
|
||||
"conv_width": {"type": "integer", "default": 1},
|
||||
"train_period_days": {"type": "integer", "default": 0},
|
||||
"backtest_period_days": {"type": "number", "default": 7},
|
||||
|
@@ -72,12 +72,7 @@ class FreqaiDataDrawer:
|
||||
self.model_return_values: Dict[str, DataFrame] = {}
|
||||
self.historic_data: Dict[str, Dict[str, DataFrame]] = {}
|
||||
self.historic_predictions: Dict[str, DataFrame] = {}
|
||||
self.follower_dict: Dict[str, pair_info] = {}
|
||||
self.full_path = full_path
|
||||
self.follower_name: str = self.config.get("bot_name", "follower1")
|
||||
self.follower_dict_path = Path(
|
||||
self.full_path / f"follower_dictionary-{self.follower_name}.json"
|
||||
)
|
||||
self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl")
|
||||
self.historic_predictions_bkp_path = Path(
|
||||
self.full_path / "historic_predictions.backup.pkl")
|
||||
@@ -218,14 +213,6 @@ class FreqaiDataDrawer:
|
||||
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def save_follower_dict_to_disk(self):
|
||||
"""
|
||||
Save follower dictionary to disk (used by strategy for persistent prediction targets)
|
||||
"""
|
||||
with open(self.follower_dict_path, "w") as fp:
|
||||
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
|
||||
"""
|
||||
Save global metadata json to disk
|
||||
@@ -239,7 +226,7 @@ class FreqaiDataDrawer:
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
|
||||
def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool]:
|
||||
def get_pair_dict_info(self, pair: str) -> Tuple[str, int]:
|
||||
"""
|
||||
Locate and load existing model metadata from persistent storage. If not located,
|
||||
create a new one and append the current pair to it and prepare it for its first
|
||||
@@ -248,12 +235,9 @@ class FreqaiDataDrawer:
|
||||
:return:
|
||||
model_filename: str = unique filename used for loading persistent objects from disk
|
||||
trained_timestamp: int = the last time the coin was trained
|
||||
return_null_array: bool = Follower could not find pair metadata
|
||||
"""
|
||||
|
||||
pair_dict = self.pair_dict.get(pair)
|
||||
# data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
|
||||
return_null_array = False
|
||||
|
||||
if pair_dict:
|
||||
model_filename = pair_dict["model_filename"]
|
||||
@@ -263,7 +247,7 @@ class FreqaiDataDrawer:
|
||||
model_filename = ""
|
||||
trained_timestamp = 0
|
||||
|
||||
return model_filename, trained_timestamp, return_null_array
|
||||
return model_filename, trained_timestamp
|
||||
|
||||
def set_pair_dict_info(self, metadata: dict) -> None:
|
||||
pair_in_dict = self.pair_dict.get(metadata["pair"])
|
||||
@@ -382,6 +366,12 @@ class FreqaiDataDrawer:
|
||||
|
||||
def purge_old_models(self) -> None:
|
||||
|
||||
num_keep = self.freqai_info["purge_old_models"]
|
||||
if not num_keep:
|
||||
return
|
||||
elif type(num_keep) == bool:
|
||||
num_keep = 2
|
||||
|
||||
model_folders = [x for x in self.full_path.iterdir() if x.is_dir()]
|
||||
|
||||
pattern = re.compile(r"sub-train-(\w+)_(\d{10})")
|
||||
@@ -404,11 +394,11 @@ class FreqaiDataDrawer:
|
||||
delete_dict[coin]["timestamps"][int(timestamp)] = dir
|
||||
|
||||
for coin in delete_dict:
|
||||
if delete_dict[coin]["num_folders"] > 2:
|
||||
if delete_dict[coin]["num_folders"] > num_keep:
|
||||
sorted_dict = collections.OrderedDict(
|
||||
sorted(delete_dict[coin]["timestamps"].items())
|
||||
)
|
||||
num_delete = len(sorted_dict) - 2
|
||||
num_delete = len(sorted_dict) - num_keep
|
||||
deleted = 0
|
||||
for k, v in sorted_dict.items():
|
||||
if deleted >= num_delete:
|
||||
@@ -417,12 +407,6 @@ class FreqaiDataDrawer:
|
||||
shutil.rmtree(v)
|
||||
deleted += 1
|
||||
|
||||
def update_follower_metadata(self):
|
||||
# follower needs to load from disk to get any changes made by leader to pair_dict
|
||||
self.load_drawer_from_disk()
|
||||
if self.config.get("freqai", {}).get("purge_old_models", False):
|
||||
self.purge_old_models()
|
||||
|
||||
def save_metadata(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
Saves only metadata for backtesting studies if user prefers
|
||||
|
@@ -227,7 +227,7 @@ class IFreqaiModel(ABC):
|
||||
logger.warning(f'{pair} not in current whitelist, removing from train queue.')
|
||||
continue
|
||||
|
||||
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
|
||||
(_, trained_timestamp) = self.dd.get_pair_dict_info(pair)
|
||||
|
||||
dk = FreqaiDataKitchen(self.config, self.live, pair)
|
||||
(
|
||||
@@ -285,7 +285,7 @@ class IFreqaiModel(ABC):
|
||||
# following tr_train. Both of these windows slide through the
|
||||
# entire backtest
|
||||
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
|
||||
(_, _, _) = self.dd.get_pair_dict_info(pair)
|
||||
(_, _) = self.dd.get_pair_dict_info(pair)
|
||||
train_it += 1
|
||||
total_trains = len(dk.backtesting_timeranges)
|
||||
self.training_timerange = tr_train
|
||||
@@ -382,7 +382,7 @@ class IFreqaiModel(ABC):
|
||||
"""
|
||||
|
||||
# get the model metadata associated with the current pair
|
||||
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||
(_, trained_timestamp) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||
|
||||
# append the historic data once per round
|
||||
if self.dd.historic_data:
|
||||
@@ -629,8 +629,7 @@ class IFreqaiModel(ABC):
|
||||
if self.plot_features:
|
||||
plot_feature_importance(model, pair, dk, self.plot_features)
|
||||
|
||||
if self.freqai_info.get("purge_old_models", False):
|
||||
self.dd.purge_old_models()
|
||||
self.dd.purge_old_models()
|
||||
|
||||
def set_initial_historic_predictions(
|
||||
self, pred_df: DataFrame, dk: FreqaiDataKitchen, pair: str, strat_df: DataFrame
|
||||
|
@@ -27,7 +27,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
||||
|
||||
"freqai": {
|
||||
"enabled": true,
|
||||
"purge_old_models": true,
|
||||
"purge_old_models": 2,
|
||||
"train_period_days": 15,
|
||||
"identifier": "uniqe-id",
|
||||
"feature_parameters": {
|
||||
|
Reference in New Issue
Block a user