tests: anal stretching to accomodate flake8

This commit is contained in:
kryofly 2017-12-28 20:05:33 +01:00
parent f48f5d0f31
commit ab112581a7
3 changed files with 61 additions and 61 deletions

View File

@ -1,5 +1,3 @@
# pragma pylint: disable=missing-docstring,W0212
import math import math
import os import os
import pandas as pd import pandas as pd
@ -129,6 +127,7 @@ def trim_dataframe(df, num):
new[pair] = pair_data[-num:] # last 50 rows new[pair] = pair_data[-num:] # last 50 rows
return new return new
def load_data_test(what): def load_data_test(what):
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST']) data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
data = trim_dataframe(data, -40) data = trim_dataframe(data, -40)
@ -136,63 +135,66 @@ def load_data_test(what):
# Depending on the what parameter we now adjust the # Depending on the what parameter we now adjust the
# loaded data: # loaded data:
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123, 'C': 0.123, 'V': 123.123, 'T': '2017-11-04T23:02:00', 'BV': 0.123}] # pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
# 'C': 0.123, 'V': 123.123,
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
if what == 'raise': if what == 'raise':
o = h = l = c = 0.001 o = 0.001
l -= 0.0001 h = 0.001
ll = 0.001
c = 0.001
ll -= 0.0001
h += 0.0001 h += 0.0001
for frame in pair: for frame in pair:
o += 0.0001 o += 0.0001
h += 0.0001 h += 0.0001
l += 0.0001 ll += 0.0001
c += 0.0001 c += 0.0001
o = round(o,9) # round to satoshis # save prices rounded to satoshis
h = round(h,9) frame['O'] = round(o, 9)
l = round(l,9) frame['H'] = round(h, 9)
c = round(c,9) frame['L'] = round(ll, 9)
frame['O'] = o frame['C'] = round(c, 9)
frame['H'] = h
frame['L'] = l
frame['C'] = c
if what == 'lower': if what == 'lower':
o = h = l = c = 0.001 o = 0.001
l -= 0.0001 h = 0.001
ll = 0.001
c = 0.001
ll -= 0.0001
h += 0.0001 h += 0.0001
for frame in pair: for frame in pair:
o -= 0.0001 o -= 0.0001
h -= 0.0001 h -= 0.0001
l -= 0.0001 ll -= 0.0001
c -= 0.0001 c -= 0.0001
o = round(o,9) # round to satoshis # save prices rounded to satoshis
h = round(h,9) frame['O'] = round(o, 9)
l = round(l,9) frame['H'] = round(h, 9)
c = round(c,9) frame['L'] = round(ll, 9)
frame['O'] = o frame['C'] = round(c, 9)
frame['H'] = h
frame['L'] = l
frame['C'] = c
if what == 'sine': if what == 'sine':
i = 0 i = 0
o = h = l = c = (2 + math.sin(i/10)) / 1000 o = (2 + math.sin(i/10)) / 1000
h = o
ll = o
c = o
h += 0.0001 h += 0.0001
l -= 0.0001 ll -= 0.0001
for frame in pair: for frame in pair:
o = (2 + math.sin(i/10)) / 1000 o = (2 + math.sin(i/10)) / 1000
h = (2 + math.sin(i/10)) / 1000 + 0.0001 h = (2 + math.sin(i/10)) / 1000 + 0.0001
l = (2 + math.sin(i/10)) / 1000 - 0.0001 ll = (2 + math.sin(i/10)) / 1000 - 0.0001
c = (2 + math.sin(i/10)) / 1000 - 0.000001 c = (2 + math.sin(i/10)) / 1000 - 0.000001
o = round(o,9) # round to satoshis # save prices rounded to satoshis
h = round(h,9) frame['O'] = round(o, 9)
l = round(l,9) frame['H'] = round(h, 9)
c = round(c,9) frame['L'] = round(ll, 9)
frame['O'] = o frame['C'] = round(c, 9)
frame['H'] = h
frame['L'] = l
frame['C'] = c
i += 1 i += 1
return data return data
def simple_backtest(config, contour, num_results): def simple_backtest(config, contour, num_results):
data = load_data_test(contour) data = load_data_test(contour)
processed = optimize.preprocess(data) processed = optimize.preprocess(data)
@ -204,23 +206,23 @@ def simple_backtest(config, contour, num_results):
# Test backtest on offline data # Test backtest on offline data
# loaded by freqdata/optimize/__init__.py::load_data() # loaded by freqdata/optimize/__init__.py::load_data()
def test_backtest(default_conf, mocker):
def test_backtest2(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf) mocker.patch.dict('freqtrade.main._CONF', default_conf)
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH']) data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 10, True) results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 10, True)
num_resutls = len(results) num_resutls = len(results)
assert num_resutls > 0 assert num_resutls > 0
def test_processed(default_conf, mocker): def test_processed(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf) mocker.patch.dict('freqtrade.main._CONF', default_conf)
data = load_data_test('raise') data = load_data_test('raise')
processed = optimize.preprocess(data) assert optimize.preprocess(data)
def test_raise(default_conf, mocker): def test_raise(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf) mocker.patch.dict('freqtrade.main._CONF', default_conf)
tests = [['raise', 359], ['lower', 0], ['sine', 1734]] tests = [['raise', 359], ['lower', 0], ['sine', 1734]]
for [contour, numres] in tests: for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres) simple_backtest(default_conf, contour, numres)

View File

@ -1,24 +1,17 @@
from freqtrade.main import refresh_whitelist
# whitelist, blacklist, filtering, all of that will # whitelist, blacklist, filtering, all of that will
# eventually become some rules to run on a generic ACL engine # eventually become some rules to run on a generic ACL engine
# perhaps try to anticipate that by using some python package # perhaps try to anticipate that by using some python package
import pytest
from unittest.mock import MagicMock
import copy
from freqtrade.main import refresh_whitelist
#from freqtrade.exchange import Exchanges
from freqtrade import exchange
# "deep equal"
def assert_list_equal(l1, l2): def assert_list_equal(l1, l2):
for pair in l1: for pair in l1:
assert pair in l2 assert pair in l2
for pair in l2: for pair in l2:
assert pair in l1 assert pair in l1
def whitelist_conf(): def whitelist_conf():
return { return {
"stake_currency": "BTC", "stake_currency": "BTC",
@ -33,6 +26,7 @@ def whitelist_conf():
}, },
} }
def get_health(): def get_health():
return [{'Currency': 'ETH', return [{'Currency': 'ETH',
'IsActive': True 'IsActive': True
@ -41,12 +35,14 @@ def get_health():
'IsActive': True 'IsActive': True
}] }]
def get_health_empty(): def get_health_empty():
return [] return []
# below three test could be merged into a single # below three test could be merged into a single
# test that ran randomlly generated health lists # test that ran randomlly generated health lists
def test_refresh_whitelist(mocker): def test_refresh_whitelist(mocker):
conf = whitelist_conf() conf = whitelist_conf()
mocker.patch.dict('freqtrade.main._CONF', conf) mocker.patch.dict('freqtrade.main._CONF', conf)
@ -59,6 +55,7 @@ def test_refresh_whitelist(mocker):
# Ensure all except those in whitelist are removed # Ensure all except those in whitelist are removed
assert_list_equal(whitelist, pairslist) assert_list_equal(whitelist, pairslist)
def test_refresh_whitelist_dynamic(mocker): def test_refresh_whitelist_dynamic(mocker):
conf = whitelist_conf() conf = whitelist_conf()
mocker.patch.dict('freqtrade.main._CONF', conf) mocker.patch.dict('freqtrade.main._CONF', conf)
@ -70,6 +67,7 @@ def test_refresh_whitelist_dynamic(mocker):
pairslist = conf['exchange']['pair_whitelist'] pairslist = conf['exchange']['pair_whitelist']
assert_list_equal(whitelist, pairslist) assert_list_equal(whitelist, pairslist)
def test_refresh_whitelist_dynamic_empty(mocker): def test_refresh_whitelist_dynamic_empty(mocker):
conf = whitelist_conf() conf = whitelist_conf()
mocker.patch.dict('freqtrade.main._CONF', conf) mocker.patch.dict('freqtrade.main._CONF', conf)

View File

@ -1,13 +1,11 @@
import pytest
import pandas import pandas
from freqtrade import analyze from freqtrade import analyze
import freqtrade.optimize import freqtrade.optimize
from pandas import DataFrame
_pairs = ['BTC_ETH'] _pairs = ['BTC_ETH']
def load_dataframe_pair(pairs): def load_dataframe_pair(pairs):
ld = freqtrade.optimize.load_data(ticker_interval=5, pairs=pairs) ld = freqtrade.optimize.load_data(ticker_interval=5, pairs=pairs)
assert isinstance(ld, dict) assert isinstance(ld, dict)
@ -16,10 +14,12 @@ def load_dataframe_pair(pairs):
dataframe = analyze.analyze_ticker(dataframe) dataframe = analyze.analyze_ticker(dataframe)
return dataframe return dataframe
def test_dataframe_load(): def test_dataframe_load():
dataframe = load_dataframe_pair(_pairs) dataframe = load_dataframe_pair(_pairs)
assert isinstance(dataframe, pandas.core.frame.DataFrame) assert isinstance(dataframe, pandas.core.frame.DataFrame)
def test_dataframe_columns_exists(): def test_dataframe_columns_exists():
dataframe = load_dataframe_pair(_pairs) dataframe = load_dataframe_pair(_pairs)
assert 'high' in dataframe.columns assert 'high' in dataframe.columns