Remove constant labels from prediction
This commit is contained in:
parent
edb942f662
commit
a9d5e04a43
@ -460,6 +460,18 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
def check_pred_labels(self, df_predictions: DataFrame) -> None:
|
||||||
|
"""
|
||||||
|
Check that prediction feature labels match training feature labels.
|
||||||
|
:params:
|
||||||
|
:df_predictions: incoming predictions
|
||||||
|
"""
|
||||||
|
train_labels = self.data_dictionary["train_features"].columns
|
||||||
|
pred_labels = df_predictions.columns
|
||||||
|
if len(train_labels.difference(pred_labels)) != 0:
|
||||||
|
self.data_dictionary["prediction_features"] = df_predictions[train_labels]
|
||||||
|
return
|
||||||
|
|
||||||
def principal_component_analysis(self) -> None:
|
def principal_component_analysis(self) -> None:
|
||||||
"""
|
"""
|
||||||
Performs Principal Component Analysis on the data for dimensionality reduction
|
Performs Principal Component Analysis on the data for dimensionality reduction
|
||||||
|
@ -492,6 +492,8 @@ class IFreqaiModel(ABC):
|
|||||||
# ensure user is feeding the correct indicators to the model
|
# ensure user is feeding the correct indicators to the model
|
||||||
self.check_if_feature_list_matches_strategy(dk)
|
self.check_if_feature_list_matches_strategy(dk)
|
||||||
|
|
||||||
|
dk.check_pred_labels(dk.data_dictionary['prediction_features'])
|
||||||
|
|
||||||
if ft_params.get('inlier_metric_window', 0):
|
if ft_params.get('inlier_metric_window', 0):
|
||||||
dk.compute_inlier_metric(set_='predict')
|
dk.compute_inlier_metric(set_='predict')
|
||||||
|
|
||||||
|
@ -107,6 +107,8 @@ def make_unfiltered_dataframe(mocker, freqai_conf):
|
|||||||
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
|
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
|
||||||
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
|
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
|
||||||
)
|
)
|
||||||
|
for i in range(5):
|
||||||
|
unfiltered_dataframe[f'constant_{i}'] = i
|
||||||
|
|
||||||
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
|
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
|
||||||
|
|
||||||
|
@ -181,6 +181,8 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat):
|
|||||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||||
|
|
||||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||||
|
for i in range(5):
|
||||||
|
df[f'constant_{i}'] = i
|
||||||
|
|
||||||
metadata = {"pair": "LTC/BTC"}
|
metadata = {"pair": "LTC/BTC"}
|
||||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||||
@ -208,6 +210,8 @@ def test_start_backtesting_subdaily_backtest_period(mocker, freqai_conf):
|
|||||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||||
|
|
||||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||||
|
for i in range(5):
|
||||||
|
df[f'constant_{i}'] = i
|
||||||
|
|
||||||
metadata = {"pair": "LTC/BTC"}
|
metadata = {"pair": "LTC/BTC"}
|
||||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||||
@ -233,6 +237,8 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
|||||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||||
|
|
||||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||||
|
for i in range(5):
|
||||||
|
df[f'constant_{i}'] = i
|
||||||
|
|
||||||
metadata = {"pair": "ADA/BTC"}
|
metadata = {"pair": "ADA/BTC"}
|
||||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||||
@ -256,6 +262,8 @@ def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
|
|||||||
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
|
||||||
|
|
||||||
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
|
||||||
|
for i in range(5):
|
||||||
|
df[f'constant_{i}'] = i
|
||||||
freqai.start_backtesting(df, metadata, freqai.dk)
|
freqai.start_backtesting(df, metadata, freqai.dk)
|
||||||
|
|
||||||
assert log_has_re(
|
assert log_has_re(
|
||||||
@ -312,6 +320,8 @@ def test_follow_mode(mocker, freqai_conf):
|
|||||||
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
|
||||||
|
|
||||||
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
|
df = strategy.dp.get_pair_dataframe('ADA/BTC', '5m')
|
||||||
|
for i in range(5):
|
||||||
|
df[f'constant_{i}'] = i
|
||||||
freqai.start_live(df, metadata, strategy, freqai.dk)
|
freqai.start_live(df, metadata, strategy, freqai.dk)
|
||||||
|
|
||||||
assert len(freqai.dk.return_dataframe.index) == 5702
|
assert len(freqai.dk.return_dataframe.index) == 5702
|
||||||
|
Loading…
Reference in New Issue
Block a user