Merge pull request #369 from kryofly/plot_profit
Plot profit from exported backtesting results
This commit is contained in:
commit
a7e561b55f
48
docs/plotting.md
Normal file
48
docs/plotting.md
Normal file
@ -0,0 +1,48 @@
|
||||
# Plotting
|
||||
This page explains how to plot prices, indicator, profits.
|
||||
|
||||
## Table of Contents
|
||||
- [Plot price and indicators](#plot-price-and-indicators)
|
||||
- [Plot profit](#plot-profit)
|
||||
|
||||
## Plot price and indicators
|
||||
Usage for the price plotter:
|
||||
script/plot_dataframe.py [-h] [-p pair]
|
||||
|
||||
Example
|
||||
```
|
||||
python script/plot_dataframe.py -p BTC_ETH,BTC_LTC
|
||||
```
|
||||
|
||||
The -p pair argument, can be used to specify what
|
||||
pair you would like to plot.
|
||||
|
||||
|
||||
## Plot profit
|
||||
|
||||
The profit plotter show a picture with three plots:
|
||||
1) Average closing price for all pairs
|
||||
2) The summarized profit made by backtesting.
|
||||
Note that this is not the real-world profit, but
|
||||
more of an estimate.
|
||||
3) Each pair individually profit
|
||||
|
||||
The first graph is good to get a grip of how the overall market
|
||||
progresses.
|
||||
|
||||
The second graph will show how you algorithm works or doesnt.
|
||||
Perhaps you want an algorithm that steadily makes small profits,
|
||||
or one that acts less seldom, but makes big swings.
|
||||
|
||||
The third graph can be useful to spot outliers, events in pairs
|
||||
that makes profit spikes.
|
||||
|
||||
Usage for the profit plotter:
|
||||
script/plot_profit.py [-h] [-p pair] [--datadir directory] [--ticker_interval num]
|
||||
|
||||
The -p pair argument, can be used to plot a single pair
|
||||
|
||||
Example
|
||||
```
|
||||
python python scripts/plot_profit.py --datadir ../freqtrade/freqtrade/tests/testdata-20171221/ -p BTC_LTC
|
||||
```
|
@ -116,6 +116,14 @@ def common_args_parser(description: str):
|
||||
type=str,
|
||||
metavar='PATH',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--datadir',
|
||||
help='path to backtest data (default freqdata/tests/testdata)',
|
||||
dest='datadir',
|
||||
default=os.path.join('freqtrade', 'tests', 'testdata'),
|
||||
type=str,
|
||||
metavar='PATH',
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
@ -132,14 +140,6 @@ def parse_args(args: List[str], description: str):
|
||||
action='store_true',
|
||||
dest='dry_run_db',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--datadir',
|
||||
help='path to backtest data (default freqdata/tests/testdata',
|
||||
dest='datadir',
|
||||
default=os.path.join('freqtrade', 'tests', 'testdata'),
|
||||
type=str,
|
||||
metavar='PATH',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--dynamic-whitelist',
|
||||
help='dynamically generate and update whitelist \
|
||||
@ -155,22 +155,14 @@ def parse_args(args: List[str], description: str):
|
||||
return parser.parse_args(args)
|
||||
|
||||
|
||||
def build_subcommands(parser: argparse.ArgumentParser) -> None:
|
||||
""" Builds and attaches all subcommands """
|
||||
from freqtrade.optimize import backtesting, hyperopt
|
||||
|
||||
subparsers = parser.add_subparsers(dest='subparser')
|
||||
|
||||
# Add backtesting subcommand
|
||||
backtesting_cmd = subparsers.add_parser('backtesting', help='backtesting module')
|
||||
backtesting_cmd.set_defaults(func=backtesting.start)
|
||||
backtesting_cmd.add_argument(
|
||||
def backtesting_options(parser: argparse.ArgumentParser) -> None:
|
||||
parser.add_argument(
|
||||
'-l', '--live',
|
||||
action='store_true',
|
||||
dest='live',
|
||||
help='using live data',
|
||||
)
|
||||
backtesting_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'-i', '--ticker-interval',
|
||||
help='specify ticker interval in minutes (default: 5)',
|
||||
dest='ticker_interval',
|
||||
@ -178,28 +170,28 @@ def build_subcommands(parser: argparse.ArgumentParser) -> None:
|
||||
type=int,
|
||||
metavar='INT',
|
||||
)
|
||||
backtesting_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'--realistic-simulation',
|
||||
help='uses max_open_trades from config to simulate real world limitations',
|
||||
action='store_true',
|
||||
dest='realistic_simulation',
|
||||
)
|
||||
backtesting_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'-r', '--refresh-pairs-cached',
|
||||
help='refresh the pairs files in tests/testdata with the latest data from Bittrex. \
|
||||
Use it if you want to run your backtesting with up-to-date data.',
|
||||
action='store_true',
|
||||
dest='refresh_pairs',
|
||||
)
|
||||
backtesting_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'--export',
|
||||
help='Export backtest results, argument are: trades\
|
||||
Example --export trades',
|
||||
Example --export=trades',
|
||||
type=str,
|
||||
default=None,
|
||||
dest='export',
|
||||
)
|
||||
backtesting_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'--timerange',
|
||||
help='Specify what timerange of data to use.',
|
||||
default=None,
|
||||
@ -207,10 +199,9 @@ def build_subcommands(parser: argparse.ArgumentParser) -> None:
|
||||
dest='timerange',
|
||||
)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
|
||||
hyperopt_cmd.set_defaults(func=hyperopt.start)
|
||||
hyperopt_cmd.add_argument(
|
||||
|
||||
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
|
||||
parser.add_argument(
|
||||
'-e', '--epochs',
|
||||
help='specify number of epochs (default: 100)',
|
||||
dest='epochs',
|
||||
@ -218,13 +209,13 @@ def build_subcommands(parser: argparse.ArgumentParser) -> None:
|
||||
type=int,
|
||||
metavar='INT',
|
||||
)
|
||||
hyperopt_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'--use-mongodb',
|
||||
help='parallelize evaluations with mongodb (requires mongod in PATH)',
|
||||
dest='mongodb',
|
||||
action='store_true',
|
||||
)
|
||||
hyperopt_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'-i', '--ticker-interval',
|
||||
help='specify ticker interval in minutes (default: 5)',
|
||||
dest='ticker_interval',
|
||||
@ -232,7 +223,7 @@ def build_subcommands(parser: argparse.ArgumentParser) -> None:
|
||||
type=int,
|
||||
metavar='INT',
|
||||
)
|
||||
hyperopt_cmd.add_argument(
|
||||
parser.add_argument(
|
||||
'--timerange',
|
||||
help='Specify what timerange of data to use.',
|
||||
default=None,
|
||||
@ -271,6 +262,23 @@ def parse_timerange(text):
|
||||
raise Exception('Incorrect syntax for timerange "%s"' % text)
|
||||
|
||||
|
||||
def build_subcommands(parser: argparse.ArgumentParser) -> None:
|
||||
""" Builds and attaches all subcommands """
|
||||
from freqtrade.optimize import backtesting, hyperopt
|
||||
|
||||
subparsers = parser.add_subparsers(dest='subparser')
|
||||
|
||||
# Add backtesting subcommand
|
||||
backtesting_cmd = subparsers.add_parser('backtesting', help='backtesting module')
|
||||
backtesting_cmd.set_defaults(func=backtesting.start)
|
||||
backtesting_options(backtesting_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
|
||||
hyperopt_cmd.set_defaults(func=hyperopt.start)
|
||||
hyperopt_options(hyperopt_cmd)
|
||||
|
||||
|
||||
# Required json-schema for user specified config
|
||||
CONF_SCHEMA = {
|
||||
'type': 'object',
|
||||
|
@ -21,7 +21,7 @@ def plot_parse_args(args ):
|
||||
return parser.parse_args(args)
|
||||
|
||||
|
||||
def plot_analyzed_dataframe(args) -> None:
|
||||
def plot_analyzed_dataframe(args):
|
||||
"""
|
||||
Calls analyze() and plots the returned dataframe
|
||||
:param pair: pair as str
|
||||
|
155
scripts/plot_profit.py
Executable file
155
scripts/plot_profit.py
Executable file
@ -0,0 +1,155 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
import freqtrade.misc as misc
|
||||
import freqtrade.exchange as exchange
|
||||
import freqtrade.analyze as analyze
|
||||
|
||||
|
||||
def plot_parse_args(args ):
|
||||
parser = misc.common_args_parser('Graph utility')
|
||||
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
|
||||
misc.backtesting_options(parser)
|
||||
parser.add_argument(
|
||||
'-p', '--pair',
|
||||
help = 'Show profits for only this pairs. Pairs are comma-separated.',
|
||||
dest = 'pair',
|
||||
default = None
|
||||
)
|
||||
return parser.parse_args(args)
|
||||
|
||||
|
||||
# data:: [ pair, profit-%, enter, exit, time, duration]
|
||||
# data:: ['BTC_XMR', 0.00537847, '1511176800', '1511178000', 5057, 1]
|
||||
# FIX: make use of the enter/exit dates to insert the
|
||||
# profit more precisely into the pg array
|
||||
def make_profit_array(data, px, filter_pairs=[]):
|
||||
pg = np.zeros(px)
|
||||
# Go through the trades
|
||||
# and make an total profit
|
||||
# array
|
||||
for trade in data:
|
||||
pair = trade[0]
|
||||
if filter_pairs and pair not in filter_pairs:
|
||||
continue
|
||||
profit = trade[1]
|
||||
tim = trade[4]
|
||||
dur = trade[5]
|
||||
pg[tim+dur-1] += profit
|
||||
|
||||
# rewrite the pg array to go from
|
||||
# total profits at each timeframe
|
||||
# to accumulated profits
|
||||
pa = 0
|
||||
for x in range(0,len(pg)):
|
||||
p = pg[x] # Get current total percent
|
||||
pa += p # Add to the accumulated percent
|
||||
pg[x] = pa # write back to save memory
|
||||
|
||||
return pg
|
||||
|
||||
|
||||
def plot_profit(args) -> None:
|
||||
"""
|
||||
Plots the total profit for all pairs.
|
||||
Note, the profit calculation isn't realistic.
|
||||
But should be somewhat proportional, and therefor useful
|
||||
in helping out to find a good algorithm.
|
||||
"""
|
||||
|
||||
# We need to use the same pairs, same tick_interval
|
||||
# and same timeperiod as used in backtesting
|
||||
# to match the tickerdata against the profits-results
|
||||
|
||||
filter_pairs = args.pair
|
||||
|
||||
config = misc.load_config(args.config)
|
||||
pairs = config['exchange']['pair_whitelist']
|
||||
if filter_pairs:
|
||||
filter_pairs = filter_pairs.split(',')
|
||||
pairs = list(set(pairs) & set(filter_pairs))
|
||||
print('Filter, keep pairs %s' % pairs)
|
||||
|
||||
tickers = optimize.load_data(args.datadir, pairs=pairs,
|
||||
ticker_interval=args.ticker_interval,
|
||||
refresh_pairs=False)
|
||||
dataframes = optimize.preprocess(tickers)
|
||||
|
||||
# Make an average close price of all the pairs that was involved.
|
||||
# this could be useful to gauge the overall market trend
|
||||
|
||||
# FIX: since the dataframes are of unequal length,
|
||||
# andor has different dates, we need to merge them
|
||||
# But we dont have the date information in the
|
||||
# backtesting results, this is needed to match the dates
|
||||
# For now, assume the dataframes are aligned.
|
||||
max_x = 0
|
||||
for pair, pair_data in dataframes.items():
|
||||
n = len(pair_data['close'])
|
||||
max_x = max(max_x, n)
|
||||
# if max_x != n:
|
||||
# raise Exception('Please rerun script. Input data has different lengths %s'
|
||||
# %('Different pair length: %s <=> %s' %(max_x, n)))
|
||||
print('max_x: %s' %(max_x))
|
||||
|
||||
# We are essentially saying:
|
||||
# array <- sum dataframes[*]['close'] / num_items dataframes
|
||||
# FIX: there should be some onliner numpy/panda for this
|
||||
avgclose = np.zeros(max_x)
|
||||
num = 0
|
||||
for pair, pair_data in dataframes.items():
|
||||
close = pair_data['close']
|
||||
maxprice = max(close) # Normalize price to [0,1]
|
||||
print('Pair %s has length %s' %(pair, len(close)))
|
||||
for x in range(0, len(close)):
|
||||
avgclose[x] += close[x] / maxprice
|
||||
# avgclose += close
|
||||
num += 1
|
||||
avgclose /= num
|
||||
|
||||
# Load the profits results
|
||||
# And make an profits-growth array
|
||||
|
||||
filename = 'backtest-result.json'
|
||||
with open(filename) as file:
|
||||
data = json.load(file)
|
||||
pg = make_profit_array(data, max_x, filter_pairs)
|
||||
|
||||
#
|
||||
# Plot the pairs average close prices, and total profit growth
|
||||
#
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||
fig.suptitle('total profit')
|
||||
ax1.plot(avgclose, label='avgclose')
|
||||
ax2.plot(pg, label='profit')
|
||||
ax1.legend(loc='upper left')
|
||||
ax2.legend(loc='upper left')
|
||||
|
||||
# FIX if we have one line pair in paris
|
||||
# then skip the plotting of the third graph,
|
||||
# or change what we plot
|
||||
# In third graph, we plot each profit separately
|
||||
for pair in pairs:
|
||||
pg = make_profit_array(data, max_x, pair)
|
||||
ax3.plot(pg, label=pair)
|
||||
ax3.legend(loc='upper left')
|
||||
# black background to easier see multiple colors
|
||||
ax3.set_facecolor('black')
|
||||
|
||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||
# all but bottom plot.
|
||||
fig.subplots_adjust(hspace=0)
|
||||
plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = plot_parse_args(sys.argv[1:])
|
||||
plot_profit(args)
|
Loading…
Reference in New Issue
Block a user