Delete default_strategy.py
This commit is contained in:
parent
feb24c6153
commit
a7b217e953
@ -1,342 +0,0 @@
|
|||||||
|
|
||||||
# --- Do not remove these libs ---
|
|
||||||
from freqtrade.strategy.interface import IStrategy
|
|
||||||
from typing import Dict, List
|
|
||||||
from hyperopt import hp
|
|
||||||
from functools import reduce
|
|
||||||
from pandas import DataFrame
|
|
||||||
# --------------------------------
|
|
||||||
|
|
||||||
# Add your lib to import here
|
|
||||||
import talib.abstract as ta
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
||||||
import numpy # noqa
|
|
||||||
|
|
||||||
import random
|
|
||||||
|
|
||||||
# Update this variable if you change the class name
|
|
||||||
class_name = 'DefaultStrategy'
|
|
||||||
|
|
||||||
|
|
||||||
# This class is a sample. Feel free to customize it.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def Select():
|
|
||||||
param = []
|
|
||||||
random_items = []
|
|
||||||
param.append(str('[' + 'uptrend_long_ema' + '[' + 'enabled' + ']'))
|
|
||||||
param.append(str('[' + 'macd_below_zero' + '][' + 'enabled' + ']'))
|
|
||||||
param.append(str('[' + 'uptrend_short_ema' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'mfi' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'fastd' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'adx' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'rsi' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'over_sar' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'green_candle' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'uptrend_sma' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'closebb' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'temabb' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'fastdt' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'ao' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'ema3' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'macd' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'closesar' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'htsine' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'has' '][' + 'enabled'+ ']'))
|
|
||||||
param.append(str('[' + 'plusdi' '][' + 'enabled'+ ']'))
|
|
||||||
howmany = random.randint(1,20)
|
|
||||||
random_items = random.choices(population=param, k=howmany)
|
|
||||||
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
|
|
||||||
print('The Parameters Enabled Are As Follows!!!: ' + str(random_items))
|
|
||||||
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
|
|
||||||
return random_items
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class DefaultStrategy(IStrategy):
|
|
||||||
"""
|
|
||||||
This is a test strategy to inspire you.
|
|
||||||
More information in https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md
|
|
||||||
|
|
||||||
You can:
|
|
||||||
- Rename the class name (Do not forget to update class_name)
|
|
||||||
- Add any methods you want to build your strategy
|
|
||||||
- Add any lib you need to build your strategy
|
|
||||||
|
|
||||||
You must keep:
|
|
||||||
- the lib in the section "Do not remove these libs"
|
|
||||||
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
|
|
||||||
populate_sell_trend, hyperopt_space, buy_strategy_generator
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Minimal ROI designed for the strategy.
|
|
||||||
# This attribute will be overridden if the config file contains "minimal_roi"
|
|
||||||
minimal_roi = {
|
|
||||||
"40": 0.0,
|
|
||||||
"30": 0.01,
|
|
||||||
"20": 0.02,
|
|
||||||
"0": 0.04
|
|
||||||
}
|
|
||||||
|
|
||||||
ticker_interval = 5
|
|
||||||
|
|
||||||
# Optimal stoploss designed for the strategy
|
|
||||||
# This attribute will be overridden if the config file contains "stoploss"
|
|
||||||
stoploss = -0.10
|
|
||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
|
||||||
"""
|
|
||||||
Adds several different TA indicators to the given DataFrame
|
|
||||||
|
|
||||||
Performance Note: For the best performance be frugal on the number of indicators
|
|
||||||
you are using. Let uncomment only the indicator you are using in your strategies
|
|
||||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Momentum Indicator
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# ADX
|
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
|
||||||
|
|
||||||
|
|
||||||
# Awesome oscillator
|
|
||||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
|
||||||
|
|
||||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
|
||||||
dataframe['cci'] = ta.CCI(dataframe)
|
|
||||||
|
|
||||||
# MACD
|
|
||||||
macd = ta.MACD(dataframe)
|
|
||||||
dataframe['macd'] = macd['macd']
|
|
||||||
dataframe['macdsignal'] = macd['macdsignal']
|
|
||||||
dataframe['macdhist'] = macd['macdhist']
|
|
||||||
|
|
||||||
# MFI
|
|
||||||
dataframe['mfi'] = ta.MFI(dataframe)
|
|
||||||
|
|
||||||
# Minus Directional Indicator / Movement
|
|
||||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# Plus Directional Indicator / Movement
|
|
||||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
||||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# ROC
|
|
||||||
dataframe['roc'] = ta.ROC(dataframe)
|
|
||||||
|
|
||||||
# RSI
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
|
|
||||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
|
||||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
|
||||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
|
||||||
|
|
||||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
|
||||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
|
||||||
|
|
||||||
# Stoch
|
|
||||||
stoch = ta.STOCH(dataframe)
|
|
||||||
dataframe['slowd'] = stoch['slowd']
|
|
||||||
dataframe['slowk'] = stoch['slowk']
|
|
||||||
|
|
||||||
# Stoch fast
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
|
||||||
|
|
||||||
# Stoch RSI
|
|
||||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
|
||||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
|
||||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
|
||||||
|
|
||||||
|
|
||||||
# Overlap Studies
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
"""
|
|
||||||
# Previous Bollinger bands
|
|
||||||
# Because ta.BBANDS implementation is broken with small numbers, it actually
|
|
||||||
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
|
|
||||||
# and use middle band instead.
|
|
||||||
|
|
||||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Bollinger bands
|
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
|
||||||
|
|
||||||
|
|
||||||
# EMA - Exponential Moving Average
|
|
||||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
|
||||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
||||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
||||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
||||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
|
||||||
|
|
||||||
# SAR Parabol
|
|
||||||
dataframe['sar'] = ta.SAR(dataframe)
|
|
||||||
|
|
||||||
# SMA - Simple Moving Average
|
|
||||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
|
||||||
|
|
||||||
|
|
||||||
# TEMA - Triple Exponential Moving Average
|
|
||||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
||||||
|
|
||||||
# Cycle Indicator
|
|
||||||
# ------------------------------------
|
|
||||||
# Hilbert Transform Indicator - SineWave
|
|
||||||
hilbert = ta.HT_SINE(dataframe)
|
|
||||||
dataframe['htsine'] = hilbert['sine']
|
|
||||||
dataframe['htleadsine'] = hilbert['leadsine']
|
|
||||||
|
|
||||||
# Pattern Recognition - Bullish candlestick patterns
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# Hammer: values [0, 100]
|
|
||||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
|
||||||
# Inverted Hammer: values [0, 100]
|
|
||||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
|
||||||
# Dragonfly Doji: values [0, 100]
|
|
||||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
|
||||||
# Piercing Line: values [0, 100]
|
|
||||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
|
||||||
# Morningstar: values [0, 100]
|
|
||||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
|
||||||
# Three White Soldiers: values [0, 100]
|
|
||||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
|
||||||
|
|
||||||
|
|
||||||
# Pattern Recognition - Bearish candlestick patterns
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# Hanging Man: values [0, 100]
|
|
||||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
|
||||||
# Shooting Star: values [0, 100]
|
|
||||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
|
||||||
# Gravestone Doji: values [0, 100]
|
|
||||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
|
||||||
# Dark Cloud Cover: values [0, 100]
|
|
||||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
|
||||||
# Evening Doji Star: values [0, 100]
|
|
||||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
|
||||||
# Evening Star: values [0, 100]
|
|
||||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
|
||||||
|
|
||||||
|
|
||||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# Three Line Strike: values [0, -100, 100]
|
|
||||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
|
||||||
# Spinning Top: values [0, -100, 100]
|
|
||||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
|
||||||
# Engulfing: values [0, -100, 100]
|
|
||||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
|
||||||
# Harami: values [0, -100, 100]
|
|
||||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
|
||||||
# Three Outside Up/Down: values [0, -100, 100]
|
|
||||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
|
||||||
# Three Inside Up/Down: values [0, -100, 100]
|
|
||||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
|
||||||
|
|
||||||
|
|
||||||
# Chart type
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# Heikinashi stategy
|
|
||||||
heikinashi = qtpylib.heikinashi(dataframe)
|
|
||||||
dataframe['ha_open'] = heikinashi['open']
|
|
||||||
dataframe['ha_close'] = heikinashi['close']
|
|
||||||
dataframe['ha_high'] = heikinashi['high']
|
|
||||||
dataframe['ha_low'] = heikinashi['low']
|
|
||||||
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
params = Select()
|
|
||||||
valm = random.randint(1,100)
|
|
||||||
print('MFI Value :' + str(valm) + ' XXX')
|
|
||||||
valfast = random.randint(1,100)
|
|
||||||
print('FASTD Value :' + str(valfast) + ' XXX')
|
|
||||||
valadx = random.randint(1,100)
|
|
||||||
print('ADX Value :' + str(valadx) + ' XXX')
|
|
||||||
valrsi = random.randint(1,100)
|
|
||||||
print('RSI Value :' + str(valrsi) + ' XXX')
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
||||||
|
|
||||||
conditions = []
|
|
||||||
# GUARDS AND TRENDS
|
|
||||||
if 'uptrend_long_ema' in str(self.params):
|
|
||||||
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
|
||||||
if 'macd_below_zero' in str(self.params):
|
|
||||||
conditions.append(dataframe['macd'] < 0)
|
|
||||||
if 'uptrend_short_ema' in str(self.params):
|
|
||||||
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
|
||||||
if 'mfi' in str(self.params):
|
|
||||||
|
|
||||||
conditions.append(dataframe['mfi'] < self.valm)
|
|
||||||
if 'fastd' in str(self.params):
|
|
||||||
|
|
||||||
conditions.append(dataframe['fastd'] < self.valfast)
|
|
||||||
if 'adx' in str(self.params):
|
|
||||||
|
|
||||||
conditions.append(dataframe['adx'] > self.valadx)
|
|
||||||
if 'rsi' in str(self.params):
|
|
||||||
|
|
||||||
conditions.append(dataframe['rsi'] < self.valrsi)
|
|
||||||
if 'over_sar' in str(self.params):
|
|
||||||
conditions.append(dataframe['close'] > dataframe['sar'])
|
|
||||||
if 'green_candle' in str(self.params):
|
|
||||||
conditions.append(dataframe['close'] > dataframe['open'])
|
|
||||||
if 'uptrend_sma' in str(self.params):
|
|
||||||
prevsma = dataframe['sma'].shift(1)
|
|
||||||
conditions.append(dataframe['sma'] > prevsma)
|
|
||||||
if 'closebb' in str(self.params):
|
|
||||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
||||||
if 'temabb' in str(self.params):
|
|
||||||
conditions.append(dataframe['tema'] < dataframe['bb_lowerband'])
|
|
||||||
if 'fastdt' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['fastd'], 10.0))
|
|
||||||
if 'ao' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['ao'], 0.0))
|
|
||||||
if 'ema3' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['ema3'], dataframe['ema10']))
|
|
||||||
if 'macd' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['macd'], dataframe['macdsignal']))
|
|
||||||
if 'closesar' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['close'], dataframe['sar']))
|
|
||||||
if 'htsine' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['htleadsine'], dataframe['htsine']))
|
|
||||||
if 'has' in str(self.params):
|
|
||||||
conditions.append((qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) & (dataframe['ha_low'] == dataframe['ha_open']))
|
|
||||||
if 'plusdi' in str(self.params):
|
|
||||||
conditions.append(qtpylib.crossed_above(dataframe['plus_di'], dataframe['minus_di']))
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
reduce(lambda x, y: x & y, conditions),
|
|
||||||
'buy'] = 1
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
|
||||||
"""
|
|
||||||
Based on TA indicators, populates the sell signal for the given dataframe
|
|
||||||
:param dataframe: DataFrame
|
|
||||||
:return: DataFrame with buy column
|
|
||||||
"""
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
),
|
|
||||||
'sell'] = 1
|
|
||||||
return dataframe
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user