diff --git a/freqtrade/data/converter.py b/freqtrade/data/converter.py index 2d3855d87..ae4b146a9 100644 --- a/freqtrade/data/converter.py +++ b/freqtrade/data/converter.py @@ -122,6 +122,47 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) return df +def reduce_mem_usage(pair: str, df: DataFrame) -> DataFrame: + """ iterate through all the columns of a dataframe and modify the data type + to reduce memory usage. + """ + # start_mem = df.memory_usage().sum() / 1024**2 + # logger.info(f"Memory usage of dataframe for {pair} is {start_mem:.2f} MB") + + for col in df.columns[1:]: + col_type = df[col].dtype + + if col_type != object: + c_min = df[col].min() + c_max = df[col].max() + if str(col_type)[:3] == "int": + # if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: + # df[col] = df[col].astype(np.int8) + # elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: + # df[col] = df[col].astype(np.int16) + if c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: + df[col] = df[col].astype(np.int32) + elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: + df[col] = df[col].astype(np.int64) + elif str(col_type)[:5] == "float": + # if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: + # df[col] = df[col].astype(np.float16) + if c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: + df[col] = df[col].astype(np.float32) + else: + df[col] = df[col].astype(np.float64) + # else: + # logger.info(f"Column not optimized because the type is {str(col_type)}") + # else: + # df[col] = df[col].astype('category') + + # end_mem = df.memory_usage().sum() / 1024**2 + # logger.info("Memory usage after optimization is: {:.2f} MB".format(end_mem)) + # logger.info("Decreased by {:.1f}%".format(100 * (start_mem - end_mem) / start_mem)) + + return df + + def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date', startup_candles: int = 0) -> DataFrame: """ @@ -153,11 +194,15 @@ def trim_dataframes(preprocessed: Dict[str, DataFrame], timerange, :return: Dict of trimmed dataframes """ processed: Dict[str, DataFrame] = {} - for pair, df in preprocessed.items(): - trimed_df = trim_dataframe(df, timerange, startup_candles=startup_candles) - if not trimed_df.empty: - processed[pair] = trimed_df + trimmed_df = trim_dataframe(df, timerange, startup_candles=startup_candles) + if not trimmed_df.empty: + # start_mem = trimmed_df.memory_usage().sum() / 1024**2 + # logger.info(f"Memory usage of df for {pair} before reduced is {start_mem:.2f} MB") + trimmed_df = reduce_mem_usage(pair, trimmed_df) + # end_mem = trimmed_df.memory_usage().sum() / 1024**2 + # logger.info(f"Memory usage of df for {pair} after reduced is {end_mem:.2f} MB") + processed[pair] = trimmed_df else: logger.warning(f'{pair} has no data left after adjusting for startup candles, ' f'skipping.')