Merge pull request #894 from freqtrade/feature/force_close_backtest

Display open trades after backtest period
This commit is contained in:
Matthias 2018-06-16 12:49:08 +02:00 committed by GitHub
commit a5511e2e30
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 198 additions and 106 deletions

View File

@ -1,17 +1,19 @@
# Backtesting
This page explains how to validate your strategy performance by using
Backtesting.
## Table of Contents
- [Test your strategy with Backtesting](#test-your-strategy-with-backtesting)
- [Understand the backtesting result](#understand-the-backtesting-result)
## Test your strategy with Backtesting
Now you have good Buy and Sell strategies, you want to test it against
real data. This is what we call
[backtesting](https://en.wikipedia.org/wiki/Backtesting).
Backtesting will use the crypto-currencies (pair) from your config file
and load static tickers located in
[/freqtrade/tests/testdata](https://github.com/freqtrade/freqtrade/tree/develop/freqtrade/tests/testdata).
@ -19,70 +21,80 @@ If the 5 min and 1 min ticker for the crypto-currencies to test is not
already in the `testdata` folder, backtesting will download them
automatically. Testdata files will not be updated until you specify it.
The result of backtesting will confirm you if your bot as more chance to
make a profit than a loss.
The result of backtesting will confirm you if your bot has better odds of making a profit than a loss.
The backtesting is very easy with freqtrade.
### Run a backtesting against the currencies listed in your config file
**With 5 min tickers (Per default)**
#### With 5 min tickers (Per default)
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation
```
**With 1 min tickers**
#### With 1 min tickers
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --ticker-interval 1m
```
**Update cached pairs with the latest data**
#### Update cached pairs with the latest data
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --refresh-pairs-cached
```
**With live data (do not alter your testdata files)**
#### With live data (do not alter your testdata files)
```bash
python3 ./freqtrade/main.py backtesting --realistic-simulation --live
```
**Using a different on-disk ticker-data source**
#### Using a different on-disk ticker-data source
```bash
python3 ./freqtrade/main.py backtesting --datadir freqtrade/tests/testdata-20180101
```
**With a (custom) strategy file**
#### With a (custom) strategy file
```bash
python3 ./freqtrade/main.py -s TestStrategy backtesting
```
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory
**Exporting trades to file**
#### Exporting trades to file
```bash
python3 ./freqtrade/main.py backtesting --export trades
```
**Exporting trades to file specifying a custom filename**
#### Exporting trades to file specifying a custom filename
```bash
python3 ./freqtrade/main.py backtesting --export trades --export-filename=backtest_teststrategy.json
```
#### Running backtest with smaller testset
**Running backtest with smaller testset**
Use the `--timerange` argument to change how much of the testset
you want to use. The last N ticks/timeframes will be used.
Example:
```bash
python3 ./freqtrade/main.py backtesting --timerange=-200
```
***Advanced use of timerange***
#### Advanced use of timerange
Doing `--timerange=-200` will get the last 200 timeframes
from your inputdata. You can also specify specific dates,
or a range span indexed by start and stop.
The full timerange specification:
- Use last 123 tickframes of data: `--timerange=-123`
- Use first 123 tickframes of data: `--timerange=123-`
- Use tickframes from line 123 through 456: `--timerange=123-456`
@ -92,11 +104,12 @@ The full timerange specification:
- Use tickframes between POSIX timestamps 1527595200 1527618600:
`--timerange=1527595200-1527618600`
#### Downloading new set of ticker data
**Downloading new set of ticker data**
To download new set of backtesting ticker data, you can use a download script.
If you are using Binance for example:
- create a folder `user_data/data/binance` and copy `pairs.json` in that folder.
- update the `pairs.json` to contain the currency pairs you are interested in.
@ -119,33 +132,55 @@ This will download ticker data for all the currency pairs you defined in `pairs.
- To download ticker data for only 10 days, use `--days 10`.
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
For help about backtesting usage, please refer to
[Backtesting commands](#backtesting-commands).
For help about backtesting usage, please refer to [Backtesting commands](#backtesting-commands).
## Understand the backtesting result
The most important in the backtesting is to understand the result.
A backtesting result will look like that:
```
====================== BACKTESTING REPORT ================================
pair buy count avg profit % total profit BTC avg duration
-------- ----------- -------------- ------------------ --------------
ETH/BTC 56 -0.67 -0.00075455 62.3
LTC/BTC 38 -0.48 -0.00036315 57.9
ETC/BTC 42 -1.15 -0.00096469 67.0
DASH/BTC 72 -0.62 -0.00089368 39.9
ZEC/BTC 45 -0.46 -0.00041387 63.2
XLM/BTC 24 -0.88 -0.00041846 47.7
NXT/BTC 24 0.68 0.00031833 40.2
POWR/BTC 35 0.98 0.00064887 45.3
ADA/BTC 43 -0.39 -0.00032292 55.0
XMR/BTC 40 -0.40 -0.00032181 47.4
TOTAL 419 -0.41 -0.00348593 52.9
======================================== BACKTESTING REPORT =========================================
| pair | buy count | avg profit % | total profit BTC | avg duration | profit | loss |
|:---------|------------:|---------------:|-------------------:|---------------:|---------:|-------:|
| ETH/BTC | 44 | 0.18 | 0.00159118 | 50.9 | 44 | 0 |
| LTC/BTC | 27 | 0.10 | 0.00051931 | 103.1 | 26 | 1 |
| ETC/BTC | 24 | 0.05 | 0.00022434 | 166.0 | 22 | 2 |
| DASH/BTC | 29 | 0.18 | 0.00103223 | 192.2 | 29 | 0 |
| ZEC/BTC | 65 | -0.02 | -0.00020621 | 202.7 | 62 | 3 |
| XLM/BTC | 35 | 0.02 | 0.00012877 | 242.4 | 32 | 3 |
| BCH/BTC | 12 | 0.62 | 0.00149284 | 50.0 | 12 | 0 |
| POWR/BTC | 21 | 0.26 | 0.00108215 | 134.8 | 21 | 0 |
| ADA/BTC | 54 | -0.19 | -0.00205202 | 191.3 | 47 | 7 |
| XMR/BTC | 24 | -0.43 | -0.00206013 | 120.6 | 20 | 4 |
| TOTAL | 335 | 0.03 | 0.00175246 | 157.9 | 315 | 20 |
2018-06-13 06:57:27,347 - freqtrade.optimize.backtesting - INFO -
====================================== LEFT OPEN TRADES REPORT ======================================
| pair | buy count | avg profit % | total profit BTC | avg duration | profit | loss |
|:---------|------------:|---------------:|-------------------:|---------------:|---------:|-------:|
| ETH/BTC | 3 | 0.16 | 0.00009619 | 25.0 | 3 | 0 |
| LTC/BTC | 1 | -1.00 | -0.00020118 | 1085.0 | 0 | 1 |
| ETC/BTC | 2 | -1.80 | -0.00071933 | 1092.5 | 0 | 2 |
| DASH/BTC | 0 | nan | 0.00000000 | nan | 0 | 0 |
| ZEC/BTC | 3 | -4.27 | -0.00256826 | 1301.7 | 0 | 3 |
| XLM/BTC | 3 | -1.11 | -0.00066744 | 965.0 | 0 | 3 |
| BCH/BTC | 0 | nan | 0.00000000 | nan | 0 | 0 |
| POWR/BTC | 0 | nan | 0.00000000 | nan | 0 | 0 |
| ADA/BTC | 7 | -3.58 | -0.00503604 | 850.0 | 0 | 7 |
| XMR/BTC | 4 | -3.79 | -0.00303456 | 291.2 | 0 | 4 |
| TOTAL | 23 | -2.63 | -0.01213062 | 750.4 | 3 | 20 |
```
The 1st table will contain all trades the bot made.
The 2nd table will contain all trades the bot had to `forcesell` at the end of the backtest period to prsent a full picture.
These trades are also included in the first table, but are extracted separately for clarity.
The last line will give you the overall performance of your strategy,
here:
```
TOTAL 419 -0.41 -0.00348593 52.9
```
@ -161,6 +196,7 @@ strategy, your sell strategy, and also by the `minimal_roi` and
As for an example if your minimal_roi is only `"0": 0.01`. You cannot
expect the bot to make more profit than 1% (because it will sell every
time a trade will reach 1%).
```json
"minimal_roi": {
"0": 0.01
@ -173,6 +209,7 @@ profit. Hence, keep in mind that your performance is a mix of your
strategies, your configuration, and the crypto-currency you have set up.
## Next step
Great, your strategy is profitable. What if the bot can give your the
optimal parameters to use for your strategy?
Your next step is to learn [how to find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)

View File

@ -6,7 +6,8 @@ This module contains the backtesting logic
import logging
import operator
from argparse import Namespace
from typing import Dict, Tuple, Any, List, Optional
from datetime import datetime
from typing import Dict, Tuple, Any, List, Optional, NamedTuple
import arrow
from pandas import DataFrame
@ -23,6 +24,21 @@ from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
class BacktestResult(NamedTuple):
"""
NamedTuple Defining BacktestResults inputs.
"""
pair: str
profit_percent: float
profit_abs: float
open_time: datetime
close_time: datetime
open_index: int
close_index: int
trade_duration: float
open_at_end: bool
class Backtesting(object):
"""
Backtesting class, this class contains all the logic to run a backtest
@ -73,15 +89,15 @@ class Backtesting(object):
headers = ['pair', 'buy count', 'avg profit %',
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
for pair in data:
result = results[results.currency == pair]
result = results[results.pair == pair]
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_BTC.sum(),
result.duration.mean(),
len(result[result.profit_BTC > 0]),
len(result[result.profit_BTC < 0])
result.profit_abs.sum(),
result.trade_duration.mean(),
len(result[result.profit_abs > 0]),
len(result[result.profit_abs < 0])
])
# Append Total
@ -89,16 +105,28 @@ class Backtesting(object):
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.duration.mean(),
len(results[results.profit_BTC > 0]),
len(results[results.profit_BTC < 0])
results.profit_abs.sum(),
results.trade_duration.mean(),
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
records = [(trade_entry.pair, trade_entry.profit_percent,
trade_entry.open_time.timestamp(),
trade_entry.close_time.timestamp(),
trade_entry.open_index - 1, trade_entry.trade_duration)
for index, trade_entry in results.iterrows()]
if records:
logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records)
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[Tuple]:
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[BacktestResult]:
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
@ -121,15 +149,33 @@ class Backtesting(object):
buy_signal = sell_row.buy
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
sell_row.sell):
return \
sell_row, \
(
pair,
trade.calc_profit_percent(rate=sell_row.close),
trade.calc_profit(rate=sell_row.close),
(sell_row.date - buy_row.date).seconds // 60
), \
sell_row.date
return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.close),
profit_abs=trade.calc_profit(rate=sell_row.close),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=False
)
if partial_ticker:
# no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1]
btr = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.close),
profit_abs=trade.calc_profit(rate=sell_row.close),
open_time=buy_row.date,
close_time=sell_row.date,
trade_duration=(sell_row.date - buy_row.date).seconds // 60,
open_index=buy_row.Index,
close_index=sell_row.Index,
open_at_end=True
)
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
btr.profit_percent, btr.profit_abs)
return btr
return None
def backtest(self, args: Dict) -> DataFrame:
@ -145,17 +191,12 @@ class Backtesting(object):
processed: a processed dictionary with format {pair, data}
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
realistic: do we try to simulate realistic trades? (default: True)
sell_profit_only: sell if profit only
use_sell_signal: act on sell-signal
:return: DataFrame
"""
headers = ['date', 'buy', 'open', 'close', 'sell']
processed = args['processed']
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', False)
record = args.get('record', None)
recordfilename = args.get('recordfn', 'backtest-result.json')
records = []
trades = []
trade_count_lock: Dict = {}
for pair, pair_data in processed.items():
@ -170,6 +211,8 @@ class Backtesting(object):
ticker_data.drop(ticker_data.head(1).index, inplace=True)
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
@ -187,28 +230,18 @@ class Backtesting(object):
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
ret = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_count_lock, args)
if ret:
row2, trade_entry, next_date = ret
lock_pair_until = next_date
if trade_entry:
lock_pair_until = trade_entry.close_time
trades.append(trade_entry)
if record:
# Note, need to be json.dump friendly
# record a tuple of pair, current_profit_percent,
# entry-date, duration
records.append((pair, trade_entry[1],
row.date.strftime('%s'),
row2.date.strftime('%s'),
index, trade_entry[3]))
# For now export inside backtest(), maybe change so that backtest()
# returns a tuple like: (dataframe, records, logs, etc)
if record and record.find('trades') >= 0:
logger.info('Dumping backtest results to %s', recordfilename)
file_dump_json(recordfilename, records)
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
return DataFrame.from_records(trades, columns=labels)
else:
# Set lock_pair_until to end of testing period if trade could not be closed
# This happens only if the buy-signal was with the last candle
lock_pair_until = ticker_data.iloc[-1].date
return DataFrame.from_records(trades, columns=BacktestResult._fields)
def start(self) -> None:
"""
@ -259,24 +292,22 @@ class Backtesting(object):
)
# Execute backtest and print results
sell_profit_only = self.config.get('experimental', {}).get('sell_profit_only', False)
use_sell_signal = self.config.get('experimental', {}).get('use_sell_signal', False)
results = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'realistic': self.config.get('realistic_simulation', False),
'sell_profit_only': sell_profit_only,
'use_sell_signal': use_sell_signal,
'record': self.config.get('export'),
'recordfn': self.config.get('exportfilename'),
}
)
if self.config.get('export', False):
self._store_backtest_result(self.config.get('exportfilename'), results)
logger.info(
'\n==================================== '
'\n======================================== '
'BACKTESTING REPORT'
' ====================================\n'
' =========================================\n'
'%s',
self._generate_text_table(
data,
@ -284,6 +315,17 @@ class Backtesting(object):
)
)
logger.info(
'\n====================================== '
'LEFT OPEN TRADES REPORT'
' ======================================\n'
'%s',
self._generate_text_table(
data,
results.loc[results.open_at_end]
)
)
def setup_configuration(args: Namespace) -> Dict[str, Any]:
"""

View File

@ -449,7 +449,7 @@ class Hyperopt(Backtesting):
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.duration.mean()
trade_duration = results.trade_duration.mean()
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
print('.', end='')
@ -486,10 +486,10 @@ class Hyperopt(Backtesting):
'Total profit {: 11.8f} {} ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_BTC.sum(),
results.profit_abs.sum(),
self.config['stake_currency'],
results.profit_percent.sum(),
results.duration.mean(),
results.trade_duration.mean(),
)
def start(self) -> None:

View File

@ -353,10 +353,10 @@ def test_generate_text_table(default_conf, mocker):
results = pd.DataFrame(
{
'currency': ['ETH/BTC', 'ETH/BTC'],
'pair': ['ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2],
'profit_BTC': [0.2, 0.4],
'duration': [10, 30],
'profit_abs': [0.2, 0.4],
'trade_duration': [10, 30],
'profit': [2, 0],
'loss': [0, 0]
}
@ -469,6 +469,7 @@ def test_backtest(default_conf, fee, mocker) -> None:
}
)
assert not results.empty
assert len(results) == 2
def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
@ -491,6 +492,7 @@ def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
}
)
assert not results.empty
assert len(results) == 1
def test_processed(default_conf, mocker) -> None:
@ -512,7 +514,7 @@ def test_processed(default_conf, mocker) -> None:
def test_backtest_pricecontours(default_conf, fee, mocker) -> None:
mocker.patch('freqtrade.optimize.backtesting.exchange.get_fee', fee)
tests = [['raise', 17], ['lower', 0], ['sine', 16]]
tests = [['raise', 18], ['lower', 0], ['sine', 16]]
for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres, mocker)
@ -572,7 +574,10 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
backtesting.populate_buy_trend = _trend_alternate # Override
backtesting.populate_sell_trend = _trend_alternate # Override
results = backtesting.backtest(backtest_conf)
assert len(results) == 3
backtesting._store_backtest_result("test_.json", results)
assert len(results) == 4
# One trade was force-closed at the end
assert len(results.loc[results.open_at_end]) == 1
def test_backtest_record(default_conf, fee, mocker):
@ -584,22 +589,30 @@ def test_backtest_record(default_conf, fee, mocker):
'freqtrade.optimize.backtesting.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
backtest_conf = _make_backtest_conf(
mocker,
conf=default_conf,
pair='UNITTEST/BTC',
record="trades"
)
backtesting = Backtesting(default_conf)
backtesting.populate_buy_trend = _trend_alternate # Override
backtesting.populate_sell_trend = _trend_alternate # Override
results = backtesting.backtest(backtest_conf)
assert len(results) == 3
results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_index": [1, 119, 153, 185],
"close_index": [118, 151, 184, 199],
"trade_duration": [123, 34, 31, 14]})
backtesting._store_backtest_result("backtest-result.json", results)
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 3
assert len(records) == 4
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None

View File

@ -362,7 +362,7 @@ def test_format_results(init_hyperopt):
('LTC/BTC', 1, 1, 123),
('XPR/BTC', -1, -2, -246)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
labels = ['currency', 'profit_percent', 'profit_abs', 'trade_duration']
df = pd.DataFrame.from_records(trades, columns=labels)
result = _HYPEROPT.format_results(df)
@ -492,7 +492,7 @@ def test_generate_optimizer(mocker, init_hyperopt, default_conf) -> None:
trades = [
('POWR/BTC', 0.023117, 0.000233, 100)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
labels = ['currency', 'profit_percent', 'profit_abs', 'trade_duration']
backtest_result = pd.DataFrame.from_records(trades, columns=labels)
mocker.patch(