Provide full backtest-statistics to Hyperopt loss functions

closes #5223
This commit is contained in:
Matthias
2021-07-04 10:15:19 +02:00
parent e9dbd57da4
commit a4096318e0
3 changed files with 7 additions and 3 deletions

View File

@@ -32,6 +32,7 @@ class SuperDuperHyperOptLoss(IHyperOptLoss):
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
config: Dict, processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
@@ -53,7 +54,7 @@ class SuperDuperHyperOptLoss(IHyperOptLoss):
Currently, the arguments are:
* `results`: DataFrame containing the result
* `results`: DataFrame containing the resulting trades.
The following columns are available in results (corresponds to the output-file of backtesting when used with `--export trades`):
`pair, profit_ratio, profit_abs, open_date, open_rate, fee_open, close_date, close_rate, fee_close, amount, trade_duration, is_open, sell_reason, stake_amount, min_rate, max_rate, stop_loss_ratio, stop_loss_abs`
* `trade_count`: Amount of trades (identical to `len(results)`)
@@ -61,6 +62,7 @@ Currently, the arguments are:
* `min_date`: End date of the timerange used
* `config`: Config object used (Note: Not all strategy-related parameters will be updated here if they are part of a hyperopt space).
* `processed`: Dict of Dataframes with the pair as keys containing the data used for backtesting.
* `backtest_stats`: Backtesting statistics using the same format as the backtesting file "strategy" substructure. Available fields can be seen in `generate_strategy_stats()` in `optimize_reports.py`.
This function needs to return a floating point number (`float`). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.