Merge branch 'develop' into feat/new_args_system

This commit is contained in:
Matthias
2019-10-29 19:33:56 +01:00
48 changed files with 760 additions and 537 deletions

33
docs/advanced-setup.md Normal file
View File

@@ -0,0 +1,33 @@
# Advanced Post-installation Tasks
This page explains some advanced tasks and configuration options that can be performed after the bot installation and may be uselful in some environments.
If you do not know what things mentioned here mean, you probably do not need it.
## Configure the bot running as a systemd service
Copy the `freqtrade.service` file to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
For this to be persistent (run when user is logged out) you'll need to enable `linger` for your freqtrade user.
```bash
sudo loginctl enable-linger "$USER"
```
If you run the bot as a service, you can use systemd service manager as a software watchdog monitoring freqtrade bot
state and restarting it in the case of failures. If the `internals.sd_notify` parameter is set to true in the
configuration or the `--sd-notify` command line option is used, the bot will send keep-alive ping messages to systemd
using the sd_notify (systemd notifications) protocol and will also tell systemd its current state (Running or Stopped)
when it changes.
The `freqtrade.service.watchdog` file contains an example of the service unit configuration file which uses systemd
as the watchdog.
!!! Note
The sd_notify communication between the bot and the systemd service manager will not work if the bot runs in a Docker container.

View File

@@ -72,6 +72,8 @@ The exported trades can be used for [further analysis](#further-backtest-result-
freqtrade backtesting --export trades --export-filename=backtest_samplestrategy.json
```
Please also read about the [strategy startup period](strategy-customization.md#strategy-startup-period).
#### Supplying custom fee value
Sometimes your account has certain fee rebates (fee reductions starting with a certain account size or monthly volume), which are not visible to ccxt.

View File

@@ -75,8 +75,8 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `exchange.key` | '' | API key to use for the exchange. Only required when you are in production mode. ***Keep it in secrete, do not disclose publicly.***
| `exchange.secret` | '' | API secret to use for the exchange. Only required when you are in production mode. ***Keep it in secrete, do not disclose publicly.***
| `exchange.password` | '' | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests. ***Keep it in secrete, do not disclose publicly.***
| `exchange.pair_whitelist` | [] | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Can be overriden by dynamic pairlists (see [below](#dynamic-pairlists)).
| `exchange.pair_blacklist` | [] | List of pairs the bot must absolutely avoid for trading and backtesting. Can be overriden by dynamic pairlists (see [below](#dynamic-pairlists)).
| `exchange.pair_whitelist` | [] | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)).
| `exchange.pair_blacklist` | [] | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)).
| `exchange.ccxt_config` | None | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
| `exchange.ccxt_async_config` | None | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
| `exchange.markets_refresh_interval` | 60 | The interval in minutes in which markets are reloaded.
@@ -98,6 +98,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
| `strategy` | None | **Required** Defines Strategy class to use. Recommended to set via `--strategy NAME`.
| `strategy_path` | null | Adds an additional strategy lookup path (must be a directory).
| `internals.process_throttle_secs` | 5 | **Required.** Set the process throttle. Value in second.
| `internals.heartbeat_interval` | 60 | Print heartbeat message every X seconds. Set to 0 to disable heartbeat messages.
| `internals.sd_notify` | false | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details.
| `logfile` | | Specify Logfile. Uses a rolling strategy of 10 files, with 1Mb per file.
| `user_data_dir` | cwd()/user_data | Directory containing user data. Defaults to `./user_data/`.
@@ -134,7 +135,7 @@ To allow the bot to trade all the available `stake_currency` in your account set
In this case a trade amount is calclulated as:
```python
currency_balanse / (max_open_trades - current_open_trades)
currency_balance / (max_open_trades - current_open_trades)
```
### Understand minimal_roi
@@ -330,7 +331,7 @@ This configuration enables binance, as well as rate limiting to avoid bans from
Optimal settings for rate limiting depend on the exchange and the size of the whitelist, so an ideal parameter will vary on many other settings.
We try to provide sensible defaults per exchange where possible, if you encounter bans please make sure that `"enableRateLimit"` is enabled and increase the `"rateLimit"` parameter step by step.
#### Advanced FreqTrade Exchange configuration
#### Advanced Freqtrade Exchange configuration
Advanced options can be configured using the `_ft_has_params` setting, which will override Defaults and exchange-specific behaviours.
@@ -350,6 +351,13 @@ For example, to test the order type `FOK` with Kraken, and modify candle_limit t
!!! Warning
Please make sure to fully understand the impacts of these settings before modifying them.
#### Random notes for other exchanges
* The Ocean (ccxt id: 'theocean') exchange uses Web3 functionality and requires web3 package to be installed:
```shell
$ pip3 install web3
```
### What values can be used for fiat_display_currency?
The `fiat_display_currency` configuration parameter sets the base currency to use for the
@@ -417,10 +425,16 @@ section of the configuration.
`askVolume`, `bidVolume` and `quoteVolume`, defaults to `quoteVolume`.
* There is a possibility to filter low-value coins that would not allow setting a stop loss
(set `precision_filter` parameter to `true` for this).
* `VolumePairList` does not consider `pair_whitelist`, but builds this automatically based the pairlist configuration.
* Pairs in `pair_blacklist` are not considered for VolumePairList, even if all other filters would match.
Example:
```json
"exchange": {
"pair_whitelist": [],
"pair_blacklist": ["BNB/BTC"]
},
"pairlist": {
"method": "VolumePairList",
"config": {

View File

@@ -151,7 +151,7 @@ python3 -m venv .env
source .env/bin/activate
```
#### 3. Install FreqTrade
#### 3. Install Freqtrade
Clone the git repository:
@@ -192,33 +192,9 @@ freqtrade trade -c config.json
*Note*: If you run the bot on a server, you should consider using [Docker](docker.md) or a terminal multiplexer like `screen` or [`tmux`](https://en.wikipedia.org/wiki/Tmux) to avoid that the bot is stopped on logout.
#### 7. [Optional] Configure `freqtrade` as a `systemd` service
#### 7. (Optional) Post-installation Tasks
From the freqtrade repo... copy `freqtrade.service` to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
For this to be persistent (run when user is logged out) you'll need to enable `linger` for your freqtrade user.
```bash
sudo loginctl enable-linger "$USER"
```
If you run the bot as a service, you can use systemd service manager as a software watchdog monitoring freqtrade bot
state and restarting it in the case of failures. If the `internals.sd_notify` parameter is set to true in the
configuration or the `--sd-notify` command line option is used, the bot will send keep-alive ping messages to systemd
using the sd_notify (systemd notifications) protocol and will also tell systemd its current state (Running or Stopped)
when it changes.
The `freqtrade.service.watchdog` file contains an example of the service unit configuration file which uses systemd
as the watchdog.
!!! Note
The sd_notify communication between the bot and the systemd service manager will not work if the bot runs in a Docker container.
On Linux, as an optional post-installation task, you can setup the bot to run as a `systemd` service. See [Advanced Post-installation Tasks](advanced-setup.md) for details.
------
@@ -242,6 +218,12 @@ If that is not available on your system, feel free to try the instructions below
### Install freqtrade manually
!!! Note
Make sure to use 64bit Windows and 64bit Python to avoid problems with backtesting or hyperopt due to the memory constraints 32bit applications have under Windows.
!!! Hint
Using the [Anaconda Distribution](https://www.anaconda.com/distribution/) under Windows can greatly help with installation problems. Check out the [Conda section](#using-conda) in this document.
#### Clone the git repository
```bash

View File

@@ -3,74 +3,101 @@
The `stoploss` configuration parameter is loss in percentage that should trigger a sale.
For example, value `-0.10` will cause immediate sell if the profit dips below -10% for a given trade. This parameter is optional.
Most of the strategy files already include the optimal `stoploss`
value. This parameter is optional. If you use it in the configuration file, it will take over the
`stoploss` value from the strategy file.
Most of the strategy files already include the optimal `stoploss` value.
## Stop Loss support
!!! Info
All stoploss properties mentioned in this file can be set in the Strategy, or in the configuration. Configuration values will override the strategy values.
## Stop Loss Types
At this stage the bot contains the following stoploss support modes:
1. static stop loss, defined in either the strategy or configuration.
2. trailing stop loss, defined in the configuration.
3. trailing stop loss, custom positive loss, defined in configuration.
1. Static stop loss.
2. Trailing stop loss.
3. Trailing stop loss, custom positive loss.
4. Trailing stop loss only once the trade has reached a certain offset.
!!! Note
All stoploss properties can be configured in either Strategy or configuration. Configuration values override strategy values.
Those stoploss modes can be *on exchange* or *off exchange*. If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfully. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled.
Those stoploss modes can be *on exchange* or *off exchange*. If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfuly. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled.
In case of stoploss on exchange there is another parameter called `stoploss_on_exchange_interval`. This configures the interval in seconds at which the bot will check the stoploss and update it if necessary.
In case of stoploss on exchange there is another parameter called `stoploss_on_exchange_interval`. This configures the interval in seconds at which the bot will check the stoploss and update it if necessary. As an example in case of trailing stoploss if the order is on the exchange and the market is going up then the bot automatically cancels the previous stoploss order and put a new one with a stop value higher than previous one. It is clear that the bot cannot do it every 5 seconds otherwise it gets banned. So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
For example, assuming the stoploss is on exchange, and trailing stoploss is enabled, and the market is going up, then the bot automatically cancels the previous stoploss order and puts a new one with a stop value higher than the previous stoploss order.
The bot cannot do this every 5 seconds (at each iteration), otherwise it would get banned by the exchange.
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
!!! Note
Stoploss on exchange is only supported for Binance as of now.
## Static Stop Loss
This is very simple, basically you define a stop loss of x in your strategy file or alternative in the configuration, which
will overwrite the strategy definition. This will basically try to sell your asset, the second the loss exceeds the defined loss.
This is very simple, you define a stop loss of x (as a ratio of price, i.e. x * 100% of price). This will try to sell the asset once the loss exceeds the defined loss.
## Trailing Stop Loss
The initial value for this stop loss, is defined in your strategy or configuration. Just as you would define your Stop Loss normally.
To enable this Feauture all you have to do is to define the configuration element:
The initial value for this is `stoploss`, just as you would define your static Stop loss.
To enable trailing stoploss:
``` json
"trailing_stop" : True
``` python
trailing_stop = True
```
This will now activate an algorithm, which automatically moves your stop loss up every time the price of your asset increases.
This will now activate an algorithm, which automatically moves the stop loss up every time the price of your asset increases.
For example, simplified math,
For example, simplified math:
* you buy an asset at a price of 100$
* your stop loss is defined at 2%
* which means your stop loss, gets triggered once your asset dropped below 98$
* assuming your asset now increases to 102$
* your stop loss, will now be 2% of 102$ or 99.96$
* now your asset drops in value to 101$, your stop loss, will still be 99.96$
* the bot buys an asset at a price of 100$
* the stop loss is defined at 2%
* the stop loss would get triggered once the asset dropps below 98$
* assuming the asset now increases to 102$
* the stop loss will now be 2% of 102$ or 99.96$
* now the asset drops in value to 101$, the stop loss will still be 99.96$ and would trigger at 99.96$.
basically what this means is that your stop loss will be adjusted to be always be 2% of the highest observed price
In summary: The stoploss will be adjusted to be always be 2% of the highest observed price.
### Custom positive loss
### Custom positive stoploss
Due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage,
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you have 1.1% profit,
it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
It is also possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage, the system will utilize a new stop loss, which can have a different value.
For example your default stop loss is 5%, but once you have 1.1% profit, it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
Both values can be configured in the main configuration file and requires `"trailing_stop": true` to be set to true.
Both values require `trailing_stop` to be set to true.
``` json
"trailing_stop_positive": 0.01,
"trailing_stop_positive_offset": 0.011,
"trailing_only_offset_is_reached": false
``` python
trailing_stop_positive = 0.01
trailing_stop_positive_offset = 0.011
```
The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit.
Before this, `stoploss` is used for the trailing stoploss.
You should also make sure to have this value (`trailing_stop_positive_offset`) lower than your minimal ROI, otherwise minimal ROI will apply first and sell your trade.
Read the [next section](#trailing-only-once-offset-is-reached) to keep stoploss at 5% of the entry point.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured`stoploss`.
!!! Tip
Make sure to have this value (`trailing_stop_positive_offset`) lower than minimal ROI, otherwise minimal ROI will apply first and sell the trade.
### Trailing only once offset is reached
It is also possible to use a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
This option can be used with or without `trailing_stop_positive`, but uses `trailing_stop_positive_offset` as offset.
``` python
trailing_stop_positive_offset = 0.011
trailing_only_offset_is_reached = true
```
Simplified example:
``` python
stoploss = 0.05
trailing_stop_positive_offset = 0.03
trailing_only_offset_is_reached = True
```
* the bot buys an asset at a price of 100$
* the stop loss is defined at 5%
* the stop loss will remain at 95% until profit reaches +3%
## Changing stoploss on open trades

View File

@@ -117,6 +117,37 @@ def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame
Look into the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/sample_strategy.py).
Then uncomment indicators you need.
### Strategy startup period
Most indicators have an instable startup period, in which they are either not available, or the calculation is incorrect. This can lead to inconsistencies, since Freqtrade does not know how long this instable period should be.
To account for this, the strategy can be assigned the `startup_candle_count` attribute.
This should be set to the maximum number of candles that the strategy requires to calculate stable indicators.
In this example strategy, this should be set to 100 (`startup_candle_count = 100`), since the longest needed history is 100 candles.
``` python
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
```
By letting the bot know how much history is needed, backtest trades can start at the specified timerange during backtesting and hyperopt.
!!! Warning
`startup_candle_count` should be below `ohlcv_candle_limit` (which is 500 for most exchanges) - since only this amount of candles will be available during Dry-Run/Live Trade operations.
#### Example
Let's try to backtest 1 month (January 2019) of 5m candles using the an example strategy with EMA100, as above.
``` bash
freqtrade backtesting --timerange 20190101-20190201 --ticker-interval 5m
```
Assuming `startup_candle_count` is set to 100, backtesting knows it needs 100 candles to generate valid buy signals. It will load data from `20190101 - (100 * 5m)` - which is ~2019-12-31 15:30:00.
If this data is available, indicators will be calculated with this extended timerange. The instable startup period (up to 2019-01-01 00:00:00) will then be removed before starting backtesting.
!!! Note
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-01 08:30:00.
### Buy signal rules
Edit the method `populate_buy_trend()` in your strategy file to update your buy strategy.
@@ -267,10 +298,10 @@ class Awesomestrategy(IStrategy):
```
!!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
### Additional data (DataProvider)