add strategy v4
This commit is contained in:
		
							
								
								
									
										553
									
								
								user_data/strategies/FreqaiBinaryClassStrategy_v4.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										553
									
								
								user_data/strategies/FreqaiBinaryClassStrategy_v4.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,553 @@ | ||||
| from typing import Dict, List, Optional, Tuple, Union | ||||
| import logging | ||||
| from functools import reduce | ||||
| from turtle import update | ||||
| from h11 import Data | ||||
| from datetime import datetime, timedelta, timezone | ||||
| import pandas as pd | ||||
| import talib.abstract as ta | ||||
| from pandas_ta.trend import adx | ||||
| from pandas import DataFrame | ||||
| from technical import qtpylib | ||||
| import numpy as np | ||||
| from scipy.signal import argrelextrema | ||||
| from sklearn.metrics import precision_recall_curve | ||||
| from freqtrade.exchange import timeframe_to_prev_date | ||||
| from freqtrade.persistence import Trade | ||||
| from technical.util import resample_to_interval, resampled_merge | ||||
| from freqtrade.strategy import DecimalParameter, IntParameter, merge_informative_pair | ||||
| from freqtrade.strategy.interface import IStrategy | ||||
|  | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| def find_support_levels(df: DataFrame) -> DataFrame: | ||||
|     """ | ||||
|     cond1 = df['Low'][i] < df['Low'][i-1]    | ||||
|     cond2 = df['Low'][i] < df['Low'][i+1]    | ||||
|     cond3 = df['Low'][i+1] < df['Low'][i+2]    | ||||
|     cond4 = df['Low'][i-1] < df['Low'][i-2]   | ||||
|     """ | ||||
|     cond1 = df["low"] < df["low"].shift(1) | ||||
|     cond2 = df["low"] < df["low"].shift(-1) | ||||
|     cond3 = df["low"].shift(-1) < df["low"].shift(-2) | ||||
|     cond4 = df["low"].shift(1) < df["low"].shift(2) | ||||
|     return (cond1 & cond2 & cond3 & cond4) | ||||
|  | ||||
|  | ||||
| def get_max_labels(df: DataFrame, alpha: float = 0.5) -> DataFrame: | ||||
|  | ||||
|     price = (df['high'] + df['low'] + df['close']) / 3 | ||||
|  | ||||
|     max_peaks = argrelextrema(price.values, np.greater, order=12)[0] | ||||
|  | ||||
|     out = adx(df["high"], df["low"], df["close"], window=12) | ||||
|     diplus = out["DMP_14"] | ||||
|  | ||||
|     di_thr = diplus[max_peaks].mean() + diplus[max_peaks].std() * alpha | ||||
|  | ||||
|     nn = 2 | ||||
|     labels = np.zeros(len(df), dtype=np.int32) | ||||
|     for mp in max_peaks: | ||||
|         ref_close = price.iloc[mp] | ||||
|         start = max(0, mp-nn) | ||||
|         end = min(df.shape[0], mp+nn+1) | ||||
|         pct = np.abs(price[start:end] / ref_close - 1) | ||||
|         is_close = np.where(pct <= 0.005)[0] | ||||
|         left_idx = is_close[0] | ||||
|         right_idx = is_close[-1] | ||||
|         # locality labeling | ||||
|         if diplus[mp-nn+left_idx:mp-nn+right_idx].mean() >= di_thr: | ||||
|             labels[mp-nn+left_idx:mp-nn+right_idx] = 1 | ||||
|     if labels.max() == 0:  # if not any positive label is found, we force it | ||||
|         idx = np.nanargmax(diplus[max_peaks]) | ||||
|         labels[max_peaks[idx]] = 1 | ||||
|     return labels | ||||
|  | ||||
|  | ||||
| def get_min_labels(df: DataFrame, alpha : float = 0.5) -> DataFrame: | ||||
|  | ||||
|     price = (df['high'] + df['low'] + df['close']) / 3 | ||||
|  | ||||
|     min_peaks = argrelextrema(price.values, np.less, order=12)[0] | ||||
|  | ||||
|     out = adx(df["high"], df["low"], df["close"], window=12) | ||||
|     diminus = out["DMN_14"] | ||||
|     di_thr = diminus[min_peaks].mean() + diminus[min_peaks].std() * alpha | ||||
|     nn = 2 | ||||
|     labels = np.zeros(len(df), dtype=np.int32) | ||||
|     for mp in min_peaks: | ||||
|         ref_close = price.iloc[mp] | ||||
|         start = max(0, mp-nn) | ||||
|         end = min(df.shape[0], mp+nn+1) | ||||
|         pct = np.abs(price[start:end] / ref_close - 1) | ||||
|         is_close = np.where(pct <= 0.005)[0] | ||||
|         left_idx = is_close[0] | ||||
|         right_idx = is_close[-1] | ||||
|         # locality labeling | ||||
|         if diminus[mp-nn+left_idx:mp-nn+right_idx].mean() >= di_thr: | ||||
|             labels[mp-nn+left_idx:mp-nn+right_idx] = 1 | ||||
|     # return np.array([str(x) for x in labels]).astype(np.object0) | ||||
|     if labels.max() == 0:  # if not any positive label is found, we force it | ||||
|         idx = np.nanargmax(diminus[min_peaks]) | ||||
|         labels[min_peaks[idx]] = 1 | ||||
|     return labels | ||||
|  | ||||
|  | ||||
| def expand_labels(df: DataFrame, peaks: List[int]): | ||||
|     nn = 2 | ||||
|     labels = np.zeros(len(df), dtype=np.int32) | ||||
|     price = (df['high'] + df['low'] + df['close']) / 3 | ||||
|     for p in peaks: | ||||
|         ref_price = price[p] | ||||
|         start = max(0, p - nn) | ||||
|         end = min(df.shape[0], p + nn + 1) | ||||
|         pct = np.abs(price[start:end] / ref_price - 1) | ||||
|         is_close = np.where(pct <= 0.005)[0] | ||||
|         left_idx = is_close[0] | ||||
|         right_idx = is_close[-1] | ||||
|         # locality labeling | ||||
|         labels[p-nn+left_idx:p-nn+right_idx] = 1 | ||||
|     return labels | ||||
|  | ||||
|  | ||||
| def find_labels(df: DataFrame, alpha=0.1) -> DataFrame: | ||||
|     """Find min/max locals.""" | ||||
|     max_peaks = get_max_labels(df, alpha=alpha).nonzero()[0] | ||||
|     min_peaks = get_min_labels(df, alpha=alpha).nonzero()[0] | ||||
|     price = (df['high'] + df['low'] + df['close']) / 3 | ||||
|     peaks = sorted(set(min_peaks).union(set(max_peaks))) | ||||
|     updown = None | ||||
|     max_peaks2 = [] | ||||
|     min_peaks2 = [] | ||||
|     for idx in peaks: | ||||
|         if (idx in min_peaks and idx in max_peaks): | ||||
|             # one peak cant be at both sides. | ||||
|             continue | ||||
|         if idx in min_peaks: | ||||
|             if updown is None or updown == True: | ||||
|                 updown = False | ||||
|                 min_peaks2.append(idx) | ||||
|             else: | ||||
|                 if price[min_peaks2[-1]] < price[idx]: | ||||
|                     continue | ||||
|                 else: | ||||
|                     min_peaks2[-1] = idx | ||||
|                  | ||||
|         elif idx in max_peaks: | ||||
|             if updown is None or updown == False: | ||||
|                 updown = True | ||||
|                 max_peaks2.append(idx) | ||||
|             else: | ||||
|                 if price[max_peaks2[-1]] > price[idx]: | ||||
|                     continue | ||||
|                 else: | ||||
|                     max_peaks2[-1] = idx | ||||
|     min_peaks = expand_labels(df, min_peaks2) | ||||
|     max_peaks = expand_labels(df, max_peaks2) | ||||
|     return min_peaks, max_peaks | ||||
|  | ||||
|  | ||||
| class FreqaiBinaryClassStrategy_v4(IStrategy): | ||||
|     """ | ||||
|     Example strategy showing how the user connects their own | ||||
|     IFreqaiModel to the strategy. Namely, the user uses: | ||||
|     self.model = CustomModel(self.config) | ||||
|     self.model.bridge.start(dataframe, metadata) | ||||
|  | ||||
|     to make predictions on their data. populate_any_indicators() automatically | ||||
|     generates the variety of features indicated by the user in the | ||||
|     canonical freqtrade configuration file under config['freqai']. | ||||
|     """ | ||||
|  | ||||
|     minimal_roi = {"0": 0.1, "240": -1} | ||||
|  | ||||
|     plot_config = { | ||||
|         "main_plot": {}, | ||||
|         "subplots": { | ||||
|             "do_predict": { | ||||
|                 "do_predict": { | ||||
|                     "color": "brown" | ||||
|                 } | ||||
|             }, | ||||
|             "DI_values": { | ||||
|                 "DI_values": { | ||||
|                     "color": "#8115a9", | ||||
|                     "type": "line" | ||||
|                 } | ||||
|             }, | ||||
|             "GTs": { | ||||
|                 "tp_max": { | ||||
|                     "color": "#69796a", | ||||
|                     "type": "bar" | ||||
|                 }, | ||||
|                 "tp_min": { | ||||
|                     "color": "#e2517f", | ||||
|                     "type": "bar" | ||||
|                 }, | ||||
|                  "max": { | ||||
|                      "color": "#69796a", | ||||
|                      "type": "line" | ||||
|                  }, | ||||
|                  "min": { | ||||
|                     "color": "#e2517f", | ||||
|                     "type": "line" | ||||
|                 }, | ||||
|                  "neutral": { | ||||
|                      "color": "#ffffff", | ||||
|                     "type": "line" | ||||
|                  } | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | ||||
|     position_adjustment_enable = False | ||||
|  | ||||
|     process_only_new_candles = True | ||||
|     stoploss = -0.05 | ||||
|     use_exit_signal = True | ||||
|     startup_candle_count: int = 300 | ||||
|     can_short = True | ||||
|  | ||||
|     linear_roi_offset = DecimalParameter( | ||||
|         0.00, 0.02, default=0.005, space="sell", optimize=False, load=True | ||||
|     ) | ||||
|     max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True) | ||||
|  | ||||
|     def informative_pairs(self): | ||||
|         whitelist_pairs = self.dp.current_whitelist() | ||||
|         corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"] | ||||
|         informative_pairs = [] | ||||
|         for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]: | ||||
|             for pair in whitelist_pairs: | ||||
|                 informative_pairs.append((pair, tf)) | ||||
|             for pair in corr_pairs: | ||||
|                 if pair in whitelist_pairs: | ||||
|                     continue  # avoid duplication | ||||
|                 informative_pairs.append((pair, tf)) | ||||
|         return informative_pairs | ||||
|  | ||||
|     def populate_any_indicators( | ||||
|         self, pair, df, tf, informative=None, set_generalized_indicators=False | ||||
|     ): | ||||
|         """ | ||||
|         Function designed to automatically generate, name and merge features | ||||
|         from user indicated timeframes in the configuration file. User controls the indicators | ||||
|         passed to the training/prediction by prepending indicators with `'%-' + coin ` | ||||
|         (see convention below). I.e. user should not prepend any supporting metrics | ||||
|         (e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the | ||||
|         model. | ||||
|         :params: | ||||
|         :pair: pair to be used as informative | ||||
|         :df: strategy dataframe which will receive merges from informatives | ||||
|         :tf: timeframe of the dataframe which will modify the feature names | ||||
|         :informative: the dataframe associated with the informative pair | ||||
|         :coin: the name of the coin which will modify the feature names. | ||||
|         """ | ||||
|  | ||||
|         coin = pair.split('/')[0] | ||||
|  | ||||
|         if informative is None: | ||||
|             informative = self.dp.get_pair_dataframe(pair, tf) | ||||
|  | ||||
|         # first loop is automatically duplicating indicators for time periods | ||||
|         for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: | ||||
|  | ||||
|             t = int(t) | ||||
|             informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) | ||||
|             informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) | ||||
|             out = adx(informative["high"], informative["low"], informative["close"], window=t) | ||||
|             informative[f"%-{coin}adx-period_{t}"] = out["ADX_14"] | ||||
|             informative[f"%-{coin}diplus-period_{t}"] = out["DMP_14"] | ||||
|             informative[f"%-{coin}diminus-period_{t}"] = out["DMN_14"] | ||||
|  | ||||
|             informative[f"{coin}20sma-period_{t}"] = ta.SMA(informative, timeperiod=t) | ||||
|             #informative[f"{coin}21ema-period_{t}"] = ta.EMA(informative, timeperiod=t) | ||||
|             informative[f"%-{coin}close_over_20sma-period_{t}"] = ( | ||||
|                 informative["close"] / informative[f"{coin}20sma-period_{t}"] | ||||
|             ) | ||||
|  | ||||
|             bollinger = qtpylib.bollinger_bands( | ||||
|                 qtpylib.typical_price(informative), window=t, stds=2.2 | ||||
|             ) | ||||
|             informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"] | ||||
|             informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"] | ||||
|             informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"] | ||||
|  | ||||
|             informative[f"%-{coin}bb_width-period_{t}"] = ( | ||||
|                 informative[f"{coin}bb_upperband-period_{t}"] | ||||
|                 - informative[f"{coin}bb_lowerband-period_{t}"] | ||||
|             ) / informative[f"{coin}bb_middleband-period_{t}"] | ||||
|             informative[f"%-{coin}close-bb_lower-period_{t}"] = ( | ||||
|                 informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"] | ||||
|             ) | ||||
|  | ||||
|             informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t) | ||||
|             macd = ta.MACD(informative, timeperiod=t) | ||||
|             informative[f"%-{coin}macd-period_{t}"] = macd["macd"] | ||||
|  | ||||
|             informative[f"%-{coin}relative_volume-period_{t}"] = ( | ||||
|                 informative["volume"] / informative["volume"].rolling(t).mean() | ||||
|             ) | ||||
|  | ||||
|         informative[f"%-{coin}pct-change"] = informative["close"].pct_change() | ||||
|         informative[f"%-{coin}raw_volume"] = informative["volume"] | ||||
|         informative[f"%-{coin}raw_price"] = informative["close"] | ||||
|  | ||||
|         indicators = [col for col in informative if col.startswith("%")] | ||||
|         # This loop duplicates and shifts all indicators to add a sense of recency to data | ||||
|         for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): | ||||
|             if n == 0: | ||||
|                 continue | ||||
|             informative_shift = informative[indicators].shift(n) | ||||
|             informative_shift = informative_shift.add_suffix("_shift-" + str(n)) | ||||
|             informative = pd.concat((informative, informative_shift), axis=1) | ||||
|  | ||||
|         # find support levels | ||||
|         if tf == self.freqai_info["feature_parameters"]["include_timeframes"][-1]: | ||||
|             informative_6h = resample_to_interval(informative, "6h") | ||||
|             informative_6h["support_levels"] = find_support_levels(informative_6h) | ||||
|             df = merge_informative_pair(df, informative_6h, self.config["timeframe"], "6h", ffill=True) | ||||
|  | ||||
|         df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) | ||||
|  | ||||
|         skip_columns = [ | ||||
|             (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] | ||||
|         ] | ||||
|         df = df.drop(columns=skip_columns) | ||||
|  | ||||
|         # Add generalized indicators here (because in live, it will call this | ||||
|         # function to populate indicators during training). Notice how we ensure not to | ||||
|         # add them multiple times | ||||
|         if set_generalized_indicators: | ||||
|             df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 | ||||
|             df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 | ||||
|  | ||||
|             # user adds targets here by prepending them with &- (see convention below) | ||||
|             # If user wishes to use multiple targets, a multioutput prediction model | ||||
|             # needs to be used such as templates/CatboostPredictionMultiModel.py | ||||
|             #df["&s-minima"] = FreqaiBinaryClassStrategy.get_min_labels(df) | ||||
|             #df["&s-maxima"] = FreqaiBinaryClassStrategy.get_max_labels(df) | ||||
|             minmax = np.array(["neutral"] * len(df)) | ||||
|             min_labels, max_labels = find_labels(df, alpha=-0.5) | ||||
|             minmax[min_labels == 1] = "min" | ||||
|             minmax[max_labels == 1] = "max" | ||||
|             df["&s-minmax"] = np.array([str(x) for x in minmax]).astype(np.object0) | ||||
|         return df | ||||
|  | ||||
|     def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||
|  | ||||
|         self.freqai_info = self.config["freqai"] | ||||
|  | ||||
|         # the model will return 4 values, its prediction, an indication of whether or not the | ||||
|         # prediction should be accepted, the target mean/std values from the labels used during | ||||
|         # each training period. | ||||
|         dataframe = self.freqai.start(dataframe, metadata, self) | ||||
|         # dataframe["&s-minima"] = dataframe["&s-minima"].astype(np.float32) | ||||
|         # dataframe["&s-maxima"] = dataframe["&s-maxima"].astype(np.float32) | ||||
|         min_labels, max_labels = find_labels(dataframe, alpha=-0.5) | ||||
|  | ||||
|         self.maxima_threhsold = 0.7 # dataframe["max"][dataframe["&s-minmax"] == "max"].mean() | ||||
|         self.minima_threhsold = 0.7 # dataframe["min"][dataframe["&s-minmax"] == "min"].mean() | ||||
|  | ||||
|         dataframe["tp_max"] = max_labels.astype(np.float32) | ||||
|         dataframe["tp_min"] = min_labels.astype(np.float32) | ||||
|         dataframe["di-"] = ta.MINUS_DI(dataframe, window=12) | ||||
|         dataframe["di+"] = ta.PLUS_DI(dataframe, window=12) | ||||
|         return dataframe | ||||
|  | ||||
|     def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame: | ||||
|         hours_candle_stability = 4 | ||||
|         if df["do_predict"].rolling(12 * 4).sum().iloc[-1] == 12 * 4:  # enter the market if last `hours_candle_stability` are stable | ||||
|             enter_long_conditions = [df["do_predict"] == 1, df["min"] >= self.minima_threhsold] | ||||
|  | ||||
|             if enter_long_conditions: | ||||
|                 df.loc[ | ||||
|                     reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"] | ||||
|                 ] = (1, "long") | ||||
|  | ||||
|             if self.can_short: | ||||
|                 enter_short_conditions = [df["do_predict"] == 1, df["max"] >= self.maxima_threhsold] | ||||
|  | ||||
|                 if enter_short_conditions: | ||||
|                     df.loc[ | ||||
|                         reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"] | ||||
|                     ] = (1, "short") | ||||
|         else: | ||||
|             df["enter_long", "enter_tag"] = (0, "long") | ||||
|             if self.can_short: | ||||
|                 df["enter_short", "enter_tag"] = (0, "short") | ||||
|         return df | ||||
|  | ||||
|     def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame: | ||||
|         exit_long_conditions = [df["do_predict"] == 1, df["max"] >= self.maxima_threhsold] | ||||
|         if exit_long_conditions: | ||||
|             df.loc[reduce(lambda x, y: x & y, exit_long_conditions), | ||||
|                    ["exit_long", "exit_tag"]] = (1, "exit signal") | ||||
|  | ||||
|         if self.can_short: | ||||
|             exit_short_conditions = [df["do_predict"] == 1, df["min"] >= self.minima_threhsold] | ||||
|             if exit_short_conditions: | ||||
|                 df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1 | ||||
|          | ||||
|         if self.config['runmode'].value in ('live', 'dry_run'): | ||||
|             trades = Trade.get_trades_proxy(pair=metadata["pair"], is_open=True) | ||||
|             if trades: | ||||
|                 if df["do_predict"].iloc[-1] != 1: | ||||
|                     avg_entry_price = sum([trade.open_rate * trade.amount  for trade in trades]) / sum([trade.amount for trade in trades]) | ||||
|                     if not trades[0].is_short: | ||||
|                         profit = df["close"].iloc[-1] / avg_entry_price - 1 | ||||
|                     else: | ||||
|                         profit = avg_entry_price / df["close"].iloc[-1] - 1 | ||||
|                     logger.warning(f"Market changed, {metadata['pair']} profit is {profit}") | ||||
|                     # if profit < 0: # force sell | ||||
|                     last_candle = np.zeros(df.shape[0]) | ||||
|                     last_candle[-1] = 1 | ||||
|                     cond = [df["do_predict"] != 1, last_candle] | ||||
|                     df.loc[reduce(lambda x, y : x & y, cond), | ||||
|                            [f"exit_{'short' if trades[0].is_short else 'long'}", "exit_tag"]] = (1, "OOD Exit") | ||||
|         return df | ||||
|  | ||||
|     def get_ticker_indicator(self): | ||||
|         return int(self.config["timeframe"][:-1]) | ||||
|     """ | ||||
|     def custom_exit( | ||||
|         self, pair: str, trade: Trade, current_time, current_rate, current_profit, **kwargs | ||||
|     ): | ||||
|  | ||||
|         dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe) | ||||
|  | ||||
|         trade_date = timeframe_to_prev_date(self.config["timeframe"], trade.open_date_utc) | ||||
|         trade_candle = dataframe.loc[(dataframe["date"] == trade_date)] | ||||
|  | ||||
|         if trade_candle.empty: | ||||
|             return None | ||||
|         trade_candle = trade_candle.squeeze() | ||||
|  | ||||
|         follow_mode = self.config.get("freqai", {}).get("follow_mode", False) | ||||
|  | ||||
|         if not follow_mode: | ||||
|             pair_dict = self.model.bridge.dd.pair_dict | ||||
|         else: | ||||
|             pair_dict = self.model.bridge.dd.follower_dict | ||||
|  | ||||
|         entry_tag = trade.enter_tag | ||||
|  | ||||
|         if ( | ||||
|             "prediction" + entry_tag not in pair_dict[pair] | ||||
|             or pair_dict[pair]["prediction" + entry_tag] > 0 | ||||
|         ): | ||||
|             with self.model.bridge.lock: | ||||
|                 if entry_tag == "long": | ||||
|                     pair_dict[pair]["prediction" + entry_tag] = abs(trade_candle["&s-maxima"]) | ||||
|                 else: | ||||
|                     pair_dict[pair]["prediction" + entry_tag] = abs(trade_candle["&-s_close"]) | ||||
|                 if not follow_mode: | ||||
|                     self.model.bridge.dd.save_drawer_to_disk() | ||||
|                 else: | ||||
|                     self.model.bridge.dd.save_follower_dict_to_disk() | ||||
|  | ||||
|         roi_price = pair_dict[pair]["prediction" + entry_tag] | ||||
|         roi_time = self.max_roi_time_long.value | ||||
|  | ||||
|         roi_decay = roi_price * ( | ||||
|             1 - ((current_time - trade.open_date_utc).seconds) / (roi_time * 60) | ||||
|         ) | ||||
|         if roi_decay < 0: | ||||
|             roi_decay = self.linear_roi_offset.value | ||||
|         else: | ||||
|             roi_decay += self.linear_roi_offset.value | ||||
|  | ||||
|         if current_profit > roi_decay: | ||||
|             return "roi_custom_win" | ||||
|  | ||||
|         if current_profit < -roi_decay: | ||||
|             return "roi_custom_loss" | ||||
|     """ | ||||
|     def confirm_trade_exit( | ||||
|         self, | ||||
|         pair: str, | ||||
|         trade: Trade, | ||||
|         order_type: str, | ||||
|         amount: float, | ||||
|         rate: float, | ||||
|         time_in_force: str, | ||||
|         exit_reason: str, | ||||
|         current_time, | ||||
|         **kwargs, | ||||
|     ) -> bool: | ||||
|  | ||||
|         entry_tag = trade.enter_tag | ||||
|         follow_mode = self.config.get("freqai", {}).get("follow_mode", False) | ||||
|         if not follow_mode: | ||||
|             pair_dict = self.freqai.dd.pair_dict | ||||
|         else: | ||||
|             pair_dict = self.freqai.dd.follower_dict | ||||
|  | ||||
|         pair_dict[pair]["prediction" + entry_tag] = 0 | ||||
|         if not follow_mode: | ||||
|             self.freqai.dd.save_drawer_to_disk() | ||||
|         else: | ||||
|             self.freqai.dd.save_follower_dict_to_disk() | ||||
|  | ||||
|         return True | ||||
|  | ||||
|     def confirm_trade_entry( | ||||
|         self, | ||||
|         pair: str, | ||||
|         order_type: str, | ||||
|         amount: float, | ||||
|         rate: float, | ||||
|         time_in_force: str, | ||||
|         current_time, | ||||
|         entry_tag, | ||||
|         side: str, | ||||
|         **kwargs, | ||||
|     ) -> bool: | ||||
|  | ||||
|         df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe) | ||||
|         last_candle = df.iloc[-1].squeeze() | ||||
|  | ||||
|         if side == "long": | ||||
|             if rate > (last_candle["close"] * (1 + 0.0025)): | ||||
|                 return False | ||||
|         else: | ||||
|             if rate < (last_candle["close"] * (1 - 0.0025)): | ||||
|                 return False | ||||
|  | ||||
|         return True | ||||
|      | ||||
|     def adjust_trade_position(self, trade: Trade, current_time: datetime, | ||||
|                               current_rate: float, current_profit: float, | ||||
|                               min_stake: Optional[float], max_stake: float, | ||||
|                               **kwargs) -> Optional[float]: | ||||
|         """ | ||||
|         Custom trade adjustment logic, returning the stake amount that a trade should be increased. | ||||
|         This means extra buy orders with additional fees. | ||||
|         Only called when `position_adjustment_enable` is set to True. | ||||
|  | ||||
|         For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/ | ||||
|  | ||||
|         When not implemented by a strategy, returns None | ||||
|  | ||||
|         :param trade: trade object. | ||||
|         :param current_time: datetime object, containing the current datetime | ||||
|         :param current_rate: Current buy rate. | ||||
|         :param current_profit: Current profit (as ratio), calculated based on current_rate. | ||||
|         :param min_stake: Minimal stake size allowed by exchange. | ||||
|         :param max_stake: Balance available for trading. | ||||
|         :param **kwargs: Ensure to keep this here so updates to this won't break your strategy. | ||||
|         :return float: Stake amount to adjust your trade | ||||
|         """ | ||||
|         if not trade.is_short: | ||||
|             if current_profit < -0.02: | ||||
|                 df, _ = self.dp.get_analyzed_dataframe(trade.pair, self.timeframe) | ||||
|                 try: | ||||
|                     new_local_minima = [df["&s-minima"] > self.minima_threhsold, | ||||
|                                         (df["close"] / current_rate - 1) < 1e-3] | ||||
|                     if df.shape[0] - df.loc[reduce(lambda x, y: x & y, new_local_minima)].index[-1] <= 10: | ||||
|                         return 20 | ||||
|                 except: | ||||
|                     pass | ||||
|         return None | ||||
		Reference in New Issue
	
	Block a user