add strategy v4
This commit is contained in:
parent
1abc30b7b3
commit
a364b51423
553
user_data/strategies/FreqaiBinaryClassStrategy_v4.py
Normal file
553
user_data/strategies/FreqaiBinaryClassStrategy_v4.py
Normal file
@ -0,0 +1,553 @@
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
import logging
|
||||
from functools import reduce
|
||||
from turtle import update
|
||||
from h11 import Data
|
||||
from datetime import datetime, timedelta, timezone
|
||||
import pandas as pd
|
||||
import talib.abstract as ta
|
||||
from pandas_ta.trend import adx
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
import numpy as np
|
||||
from scipy.signal import argrelextrema
|
||||
from sklearn.metrics import precision_recall_curve
|
||||
from freqtrade.exchange import timeframe_to_prev_date
|
||||
from freqtrade.persistence import Trade
|
||||
from technical.util import resample_to_interval, resampled_merge
|
||||
from freqtrade.strategy import DecimalParameter, IntParameter, merge_informative_pair
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def find_support_levels(df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
cond1 = df['Low'][i] < df['Low'][i-1]
|
||||
cond2 = df['Low'][i] < df['Low'][i+1]
|
||||
cond3 = df['Low'][i+1] < df['Low'][i+2]
|
||||
cond4 = df['Low'][i-1] < df['Low'][i-2]
|
||||
"""
|
||||
cond1 = df["low"] < df["low"].shift(1)
|
||||
cond2 = df["low"] < df["low"].shift(-1)
|
||||
cond3 = df["low"].shift(-1) < df["low"].shift(-2)
|
||||
cond4 = df["low"].shift(1) < df["low"].shift(2)
|
||||
return (cond1 & cond2 & cond3 & cond4)
|
||||
|
||||
|
||||
def get_max_labels(df: DataFrame, alpha: float = 0.5) -> DataFrame:
|
||||
|
||||
price = (df['high'] + df['low'] + df['close']) / 3
|
||||
|
||||
max_peaks = argrelextrema(price.values, np.greater, order=12)[0]
|
||||
|
||||
out = adx(df["high"], df["low"], df["close"], window=12)
|
||||
diplus = out["DMP_14"]
|
||||
|
||||
di_thr = diplus[max_peaks].mean() + diplus[max_peaks].std() * alpha
|
||||
|
||||
nn = 2
|
||||
labels = np.zeros(len(df), dtype=np.int32)
|
||||
for mp in max_peaks:
|
||||
ref_close = price.iloc[mp]
|
||||
start = max(0, mp-nn)
|
||||
end = min(df.shape[0], mp+nn+1)
|
||||
pct = np.abs(price[start:end] / ref_close - 1)
|
||||
is_close = np.where(pct <= 0.005)[0]
|
||||
left_idx = is_close[0]
|
||||
right_idx = is_close[-1]
|
||||
# locality labeling
|
||||
if diplus[mp-nn+left_idx:mp-nn+right_idx].mean() >= di_thr:
|
||||
labels[mp-nn+left_idx:mp-nn+right_idx] = 1
|
||||
if labels.max() == 0: # if not any positive label is found, we force it
|
||||
idx = np.nanargmax(diplus[max_peaks])
|
||||
labels[max_peaks[idx]] = 1
|
||||
return labels
|
||||
|
||||
|
||||
def get_min_labels(df: DataFrame, alpha : float = 0.5) -> DataFrame:
|
||||
|
||||
price = (df['high'] + df['low'] + df['close']) / 3
|
||||
|
||||
min_peaks = argrelextrema(price.values, np.less, order=12)[0]
|
||||
|
||||
out = adx(df["high"], df["low"], df["close"], window=12)
|
||||
diminus = out["DMN_14"]
|
||||
di_thr = diminus[min_peaks].mean() + diminus[min_peaks].std() * alpha
|
||||
nn = 2
|
||||
labels = np.zeros(len(df), dtype=np.int32)
|
||||
for mp in min_peaks:
|
||||
ref_close = price.iloc[mp]
|
||||
start = max(0, mp-nn)
|
||||
end = min(df.shape[0], mp+nn+1)
|
||||
pct = np.abs(price[start:end] / ref_close - 1)
|
||||
is_close = np.where(pct <= 0.005)[0]
|
||||
left_idx = is_close[0]
|
||||
right_idx = is_close[-1]
|
||||
# locality labeling
|
||||
if diminus[mp-nn+left_idx:mp-nn+right_idx].mean() >= di_thr:
|
||||
labels[mp-nn+left_idx:mp-nn+right_idx] = 1
|
||||
# return np.array([str(x) for x in labels]).astype(np.object0)
|
||||
if labels.max() == 0: # if not any positive label is found, we force it
|
||||
idx = np.nanargmax(diminus[min_peaks])
|
||||
labels[min_peaks[idx]] = 1
|
||||
return labels
|
||||
|
||||
|
||||
def expand_labels(df: DataFrame, peaks: List[int]):
|
||||
nn = 2
|
||||
labels = np.zeros(len(df), dtype=np.int32)
|
||||
price = (df['high'] + df['low'] + df['close']) / 3
|
||||
for p in peaks:
|
||||
ref_price = price[p]
|
||||
start = max(0, p - nn)
|
||||
end = min(df.shape[0], p + nn + 1)
|
||||
pct = np.abs(price[start:end] / ref_price - 1)
|
||||
is_close = np.where(pct <= 0.005)[0]
|
||||
left_idx = is_close[0]
|
||||
right_idx = is_close[-1]
|
||||
# locality labeling
|
||||
labels[p-nn+left_idx:p-nn+right_idx] = 1
|
||||
return labels
|
||||
|
||||
|
||||
def find_labels(df: DataFrame, alpha=0.1) -> DataFrame:
|
||||
"""Find min/max locals."""
|
||||
max_peaks = get_max_labels(df, alpha=alpha).nonzero()[0]
|
||||
min_peaks = get_min_labels(df, alpha=alpha).nonzero()[0]
|
||||
price = (df['high'] + df['low'] + df['close']) / 3
|
||||
peaks = sorted(set(min_peaks).union(set(max_peaks)))
|
||||
updown = None
|
||||
max_peaks2 = []
|
||||
min_peaks2 = []
|
||||
for idx in peaks:
|
||||
if (idx in min_peaks and idx in max_peaks):
|
||||
# one peak cant be at both sides.
|
||||
continue
|
||||
if idx in min_peaks:
|
||||
if updown is None or updown == True:
|
||||
updown = False
|
||||
min_peaks2.append(idx)
|
||||
else:
|
||||
if price[min_peaks2[-1]] < price[idx]:
|
||||
continue
|
||||
else:
|
||||
min_peaks2[-1] = idx
|
||||
|
||||
elif idx in max_peaks:
|
||||
if updown is None or updown == False:
|
||||
updown = True
|
||||
max_peaks2.append(idx)
|
||||
else:
|
||||
if price[max_peaks2[-1]] > price[idx]:
|
||||
continue
|
||||
else:
|
||||
max_peaks2[-1] = idx
|
||||
min_peaks = expand_labels(df, min_peaks2)
|
||||
max_peaks = expand_labels(df, max_peaks2)
|
||||
return min_peaks, max_peaks
|
||||
|
||||
|
||||
class FreqaiBinaryClassStrategy_v4(IStrategy):
|
||||
"""
|
||||
Example strategy showing how the user connects their own
|
||||
IFreqaiModel to the strategy. Namely, the user uses:
|
||||
self.model = CustomModel(self.config)
|
||||
self.model.bridge.start(dataframe, metadata)
|
||||
|
||||
to make predictions on their data. populate_any_indicators() automatically
|
||||
generates the variety of features indicated by the user in the
|
||||
canonical freqtrade configuration file under config['freqai'].
|
||||
"""
|
||||
|
||||
minimal_roi = {"0": 0.1, "240": -1}
|
||||
|
||||
plot_config = {
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"do_predict": {
|
||||
"do_predict": {
|
||||
"color": "brown"
|
||||
}
|
||||
},
|
||||
"DI_values": {
|
||||
"DI_values": {
|
||||
"color": "#8115a9",
|
||||
"type": "line"
|
||||
}
|
||||
},
|
||||
"GTs": {
|
||||
"tp_max": {
|
||||
"color": "#69796a",
|
||||
"type": "bar"
|
||||
},
|
||||
"tp_min": {
|
||||
"color": "#e2517f",
|
||||
"type": "bar"
|
||||
},
|
||||
"max": {
|
||||
"color": "#69796a",
|
||||
"type": "line"
|
||||
},
|
||||
"min": {
|
||||
"color": "#e2517f",
|
||||
"type": "line"
|
||||
},
|
||||
"neutral": {
|
||||
"color": "#ffffff",
|
||||
"type": "line"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
position_adjustment_enable = False
|
||||
|
||||
process_only_new_candles = True
|
||||
stoploss = -0.05
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 300
|
||||
can_short = True
|
||||
|
||||
linear_roi_offset = DecimalParameter(
|
||||
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
|
||||
)
|
||||
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
||||
|
||||
def informative_pairs(self):
|
||||
whitelist_pairs = self.dp.current_whitelist()
|
||||
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
||||
informative_pairs = []
|
||||
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
|
||||
for pair in whitelist_pairs:
|
||||
informative_pairs.append((pair, tf))
|
||||
for pair in corr_pairs:
|
||||
if pair in whitelist_pairs:
|
||||
continue # avoid duplication
|
||||
informative_pairs.append((pair, tf))
|
||||
return informative_pairs
|
||||
|
||||
def populate_any_indicators(
|
||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||
):
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
from user indicated timeframes in the configuration file. User controls the indicators
|
||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
||||
(see convention below). I.e. user should not prepend any supporting metrics
|
||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||
model.
|
||||
:params:
|
||||
:pair: pair to be used as informative
|
||||
:df: strategy dataframe which will receive merges from informatives
|
||||
:tf: timeframe of the dataframe which will modify the feature names
|
||||
:informative: the dataframe associated with the informative pair
|
||||
:coin: the name of the coin which will modify the feature names.
|
||||
"""
|
||||
|
||||
coin = pair.split('/')[0]
|
||||
|
||||
if informative is None:
|
||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||
|
||||
# first loop is automatically duplicating indicators for time periods
|
||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||
|
||||
t = int(t)
|
||||
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||
out = adx(informative["high"], informative["low"], informative["close"], window=t)
|
||||
informative[f"%-{coin}adx-period_{t}"] = out["ADX_14"]
|
||||
informative[f"%-{coin}diplus-period_{t}"] = out["DMP_14"]
|
||||
informative[f"%-{coin}diminus-period_{t}"] = out["DMN_14"]
|
||||
|
||||
informative[f"{coin}20sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||
#informative[f"{coin}21ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||
informative[f"%-{coin}close_over_20sma-period_{t}"] = (
|
||||
informative["close"] / informative[f"{coin}20sma-period_{t}"]
|
||||
)
|
||||
|
||||
bollinger = qtpylib.bollinger_bands(
|
||||
qtpylib.typical_price(informative), window=t, stds=2.2
|
||||
)
|
||||
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
|
||||
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
|
||||
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
|
||||
|
||||
informative[f"%-{coin}bb_width-period_{t}"] = (
|
||||
informative[f"{coin}bb_upperband-period_{t}"]
|
||||
- informative[f"{coin}bb_lowerband-period_{t}"]
|
||||
) / informative[f"{coin}bb_middleband-period_{t}"]
|
||||
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
||||
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
||||
)
|
||||
|
||||
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
||||
macd = ta.MACD(informative, timeperiod=t)
|
||||
informative[f"%-{coin}macd-period_{t}"] = macd["macd"]
|
||||
|
||||
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
||||
informative["volume"] / informative["volume"].rolling(t).mean()
|
||||
)
|
||||
|
||||
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
||||
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
||||
informative[f"%-{coin}raw_price"] = informative["close"]
|
||||
|
||||
indicators = [col for col in informative if col.startswith("%")]
|
||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
||||
if n == 0:
|
||||
continue
|
||||
informative_shift = informative[indicators].shift(n)
|
||||
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
||||
informative = pd.concat((informative, informative_shift), axis=1)
|
||||
|
||||
# find support levels
|
||||
if tf == self.freqai_info["feature_parameters"]["include_timeframes"][-1]:
|
||||
informative_6h = resample_to_interval(informative, "6h")
|
||||
informative_6h["support_levels"] = find_support_levels(informative_6h)
|
||||
df = merge_informative_pair(df, informative_6h, self.config["timeframe"], "6h", ffill=True)
|
||||
|
||||
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
||||
|
||||
skip_columns = [
|
||||
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
||||
]
|
||||
df = df.drop(columns=skip_columns)
|
||||
|
||||
# Add generalized indicators here (because in live, it will call this
|
||||
# function to populate indicators during training). Notice how we ensure not to
|
||||
# add them multiple times
|
||||
if set_generalized_indicators:
|
||||
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
||||
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
||||
|
||||
# user adds targets here by prepending them with &- (see convention below)
|
||||
# If user wishes to use multiple targets, a multioutput prediction model
|
||||
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
||||
#df["&s-minima"] = FreqaiBinaryClassStrategy.get_min_labels(df)
|
||||
#df["&s-maxima"] = FreqaiBinaryClassStrategy.get_max_labels(df)
|
||||
minmax = np.array(["neutral"] * len(df))
|
||||
min_labels, max_labels = find_labels(df, alpha=-0.5)
|
||||
minmax[min_labels == 1] = "min"
|
||||
minmax[max_labels == 1] = "max"
|
||||
df["&s-minmax"] = np.array([str(x) for x in minmax]).astype(np.object0)
|
||||
return df
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
self.freqai_info = self.config["freqai"]
|
||||
|
||||
# the model will return 4 values, its prediction, an indication of whether or not the
|
||||
# prediction should be accepted, the target mean/std values from the labels used during
|
||||
# each training period.
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
# dataframe["&s-minima"] = dataframe["&s-minima"].astype(np.float32)
|
||||
# dataframe["&s-maxima"] = dataframe["&s-maxima"].astype(np.float32)
|
||||
min_labels, max_labels = find_labels(dataframe, alpha=-0.5)
|
||||
|
||||
self.maxima_threhsold = 0.7 # dataframe["max"][dataframe["&s-minmax"] == "max"].mean()
|
||||
self.minima_threhsold = 0.7 # dataframe["min"][dataframe["&s-minmax"] == "min"].mean()
|
||||
|
||||
dataframe["tp_max"] = max_labels.astype(np.float32)
|
||||
dataframe["tp_min"] = min_labels.astype(np.float32)
|
||||
dataframe["di-"] = ta.MINUS_DI(dataframe, window=12)
|
||||
dataframe["di+"] = ta.PLUS_DI(dataframe, window=12)
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
hours_candle_stability = 4
|
||||
if df["do_predict"].rolling(12 * 4).sum().iloc[-1] == 12 * 4: # enter the market if last `hours_candle_stability` are stable
|
||||
enter_long_conditions = [df["do_predict"] == 1, df["min"] >= self.minima_threhsold]
|
||||
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
|
||||
if self.can_short:
|
||||
enter_short_conditions = [df["do_predict"] == 1, df["max"] >= self.maxima_threhsold]
|
||||
|
||||
if enter_short_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
|
||||
] = (1, "short")
|
||||
else:
|
||||
df["enter_long", "enter_tag"] = (0, "long")
|
||||
if self.can_short:
|
||||
df["enter_short", "enter_tag"] = (0, "short")
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [df["do_predict"] == 1, df["max"] >= self.maxima_threhsold]
|
||||
if exit_long_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_long_conditions),
|
||||
["exit_long", "exit_tag"]] = (1, "exit signal")
|
||||
|
||||
if self.can_short:
|
||||
exit_short_conditions = [df["do_predict"] == 1, df["min"] >= self.minima_threhsold]
|
||||
if exit_short_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
||||
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
trades = Trade.get_trades_proxy(pair=metadata["pair"], is_open=True)
|
||||
if trades:
|
||||
if df["do_predict"].iloc[-1] != 1:
|
||||
avg_entry_price = sum([trade.open_rate * trade.amount for trade in trades]) / sum([trade.amount for trade in trades])
|
||||
if not trades[0].is_short:
|
||||
profit = df["close"].iloc[-1] / avg_entry_price - 1
|
||||
else:
|
||||
profit = avg_entry_price / df["close"].iloc[-1] - 1
|
||||
logger.warning(f"Market changed, {metadata['pair']} profit is {profit}")
|
||||
# if profit < 0: # force sell
|
||||
last_candle = np.zeros(df.shape[0])
|
||||
last_candle[-1] = 1
|
||||
cond = [df["do_predict"] != 1, last_candle]
|
||||
df.loc[reduce(lambda x, y : x & y, cond),
|
||||
[f"exit_{'short' if trades[0].is_short else 'long'}", "exit_tag"]] = (1, "OOD Exit")
|
||||
return df
|
||||
|
||||
def get_ticker_indicator(self):
|
||||
return int(self.config["timeframe"][:-1])
|
||||
"""
|
||||
def custom_exit(
|
||||
self, pair: str, trade: Trade, current_time, current_rate, current_profit, **kwargs
|
||||
):
|
||||
|
||||
dataframe, _ = self.dp.get_analyzed_dataframe(pair=pair, timeframe=self.timeframe)
|
||||
|
||||
trade_date = timeframe_to_prev_date(self.config["timeframe"], trade.open_date_utc)
|
||||
trade_candle = dataframe.loc[(dataframe["date"] == trade_date)]
|
||||
|
||||
if trade_candle.empty:
|
||||
return None
|
||||
trade_candle = trade_candle.squeeze()
|
||||
|
||||
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
|
||||
|
||||
if not follow_mode:
|
||||
pair_dict = self.model.bridge.dd.pair_dict
|
||||
else:
|
||||
pair_dict = self.model.bridge.dd.follower_dict
|
||||
|
||||
entry_tag = trade.enter_tag
|
||||
|
||||
if (
|
||||
"prediction" + entry_tag not in pair_dict[pair]
|
||||
or pair_dict[pair]["prediction" + entry_tag] > 0
|
||||
):
|
||||
with self.model.bridge.lock:
|
||||
if entry_tag == "long":
|
||||
pair_dict[pair]["prediction" + entry_tag] = abs(trade_candle["&s-maxima"])
|
||||
else:
|
||||
pair_dict[pair]["prediction" + entry_tag] = abs(trade_candle["&-s_close"])
|
||||
if not follow_mode:
|
||||
self.model.bridge.dd.save_drawer_to_disk()
|
||||
else:
|
||||
self.model.bridge.dd.save_follower_dict_to_disk()
|
||||
|
||||
roi_price = pair_dict[pair]["prediction" + entry_tag]
|
||||
roi_time = self.max_roi_time_long.value
|
||||
|
||||
roi_decay = roi_price * (
|
||||
1 - ((current_time - trade.open_date_utc).seconds) / (roi_time * 60)
|
||||
)
|
||||
if roi_decay < 0:
|
||||
roi_decay = self.linear_roi_offset.value
|
||||
else:
|
||||
roi_decay += self.linear_roi_offset.value
|
||||
|
||||
if current_profit > roi_decay:
|
||||
return "roi_custom_win"
|
||||
|
||||
if current_profit < -roi_decay:
|
||||
return "roi_custom_loss"
|
||||
"""
|
||||
def confirm_trade_exit(
|
||||
self,
|
||||
pair: str,
|
||||
trade: Trade,
|
||||
order_type: str,
|
||||
amount: float,
|
||||
rate: float,
|
||||
time_in_force: str,
|
||||
exit_reason: str,
|
||||
current_time,
|
||||
**kwargs,
|
||||
) -> bool:
|
||||
|
||||
entry_tag = trade.enter_tag
|
||||
follow_mode = self.config.get("freqai", {}).get("follow_mode", False)
|
||||
if not follow_mode:
|
||||
pair_dict = self.freqai.dd.pair_dict
|
||||
else:
|
||||
pair_dict = self.freqai.dd.follower_dict
|
||||
|
||||
pair_dict[pair]["prediction" + entry_tag] = 0
|
||||
if not follow_mode:
|
||||
self.freqai.dd.save_drawer_to_disk()
|
||||
else:
|
||||
self.freqai.dd.save_follower_dict_to_disk()
|
||||
|
||||
return True
|
||||
|
||||
def confirm_trade_entry(
|
||||
self,
|
||||
pair: str,
|
||||
order_type: str,
|
||||
amount: float,
|
||||
rate: float,
|
||||
time_in_force: str,
|
||||
current_time,
|
||||
entry_tag,
|
||||
side: str,
|
||||
**kwargs,
|
||||
) -> bool:
|
||||
|
||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = df.iloc[-1].squeeze()
|
||||
|
||||
if side == "long":
|
||||
if rate > (last_candle["close"] * (1 + 0.0025)):
|
||||
return False
|
||||
else:
|
||||
if rate < (last_candle["close"] * (1 - 0.0025)):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def adjust_trade_position(self, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float,
|
||||
min_stake: Optional[float], max_stake: float,
|
||||
**kwargs) -> Optional[float]:
|
||||
"""
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
|
||||
This means extra buy orders with additional fees.
|
||||
Only called when `position_adjustment_enable` is set to True.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns None
|
||||
|
||||
:param trade: trade object.
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Current buy rate.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param min_stake: Minimal stake size allowed by exchange.
|
||||
:param max_stake: Balance available for trading.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: Stake amount to adjust your trade
|
||||
"""
|
||||
if not trade.is_short:
|
||||
if current_profit < -0.02:
|
||||
df, _ = self.dp.get_analyzed_dataframe(trade.pair, self.timeframe)
|
||||
try:
|
||||
new_local_minima = [df["&s-minima"] > self.minima_threhsold,
|
||||
(df["close"] / current_rate - 1) < 1e-3]
|
||||
if df.shape[0] - df.loc[reduce(lambda x, y: x & y, new_local_minima)].index[-1] <= 10:
|
||||
return 20
|
||||
except:
|
||||
pass
|
||||
return None
|
Loading…
Reference in New Issue
Block a user