Merge branch 'develop' into timeframe

This commit is contained in:
Matthias
2020-06-15 06:35:55 +02:00
47 changed files with 893 additions and 367 deletions

View File

@@ -16,7 +16,7 @@ from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
# must align with columns in backtest.py
BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "duration",
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_time", "close_time", "index", "duration",
"open_rate", "close_rate", "open_at_end", "sell_reason"]
@@ -99,7 +99,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "open_time", "close_time", "profit", "profitperc",
columns = ["pair", "open_time", "close_time", "profit", "profit_percent",
"open_rate", "close_rate", "amount", "duration", "sell_reason",
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
"stake_amount", "max_rate", "min_rate", "id", "exchange",
@@ -190,7 +190,7 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
"""
Adds a column `col_name` with the cumulative profit for the given trades array.
:param df: DataFrame with date index
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
:param col_name: Column name that will be assigned the results
:param timeframe: Timeframe used during the operations
:return: Returns df with one additional column, col_name, containing the cumulative profit.
@@ -201,7 +201,8 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
from freqtrade.exchange import timeframe_to_minutes
timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time')[['profitperc']].sum()
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time'
)[['profit_percent']].sum()
df.loc[:, col_name] = _trades_sum.cumsum()
# Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0
@@ -211,13 +212,13 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
value_col: str = 'profitperc'
value_col: str = 'profit_percent'
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
:param value_col: Column in DataFrame to use for values (defaults to 'profitperc')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_percent')
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
:raise: ValueError if trade-dataframe was found empty.
"""

View File

@@ -197,7 +197,7 @@ def trades_to_ohlcv(trades: List, timeframe: str) -> DataFrame:
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
return df_new[DEFAULT_DATAFRAME_COLUMNS]
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):