Add ohlcv data interpolator
This commit is contained in:
		| @@ -5,6 +5,8 @@ import logging | ||||
| import pandas as pd | ||||
| from pandas import DataFrame, to_datetime | ||||
|  | ||||
| from freqtrade.constants import TICKER_INTERVAL_MINUTES | ||||
|  | ||||
| logger = logging.getLogger(__name__) | ||||
|  | ||||
|  | ||||
| @@ -36,6 +38,35 @@ def parse_ticker_dataframe(ticker: list) -> DataFrame: | ||||
|     return frame | ||||
|  | ||||
|  | ||||
| def ohlcv_fill_up_missing_data(dataframe: DataFrame, ticker_interval: str) -> DataFrame: | ||||
|     """ | ||||
|     Fills up missing data with 0 volume rows, | ||||
|     using the previous close as price for "open", "high" "low" and "close", volume is set to 0 | ||||
|  | ||||
|     """ | ||||
|     ohlc_dict = { | ||||
|         'open': 'first', | ||||
|         'high': 'max', | ||||
|         'low': 'min', | ||||
|         'close': 'last', | ||||
|         'volume': 'sum' | ||||
|     } | ||||
|     tick_mins = TICKER_INTERVAL_MINUTES[ticker_interval] | ||||
|     # Resample to create "NAN" values | ||||
|     df = dataframe.resample(f'{tick_mins}min', on='date').agg(ohlc_dict) | ||||
|  | ||||
|     # Forwardfill close for missing columns | ||||
|     df['close'] = df['close'].fillna(method='ffill') | ||||
|     # Use close for "open, high, low" | ||||
|     df.loc[:, ['open', 'high', 'low']] = df[['open', 'high', 'low']].fillna( | ||||
|         value={'open': df['close'], | ||||
|                'high': df['close'], | ||||
|                'low': df['close'], | ||||
|                }) | ||||
|     df.reset_index(inplace=True) | ||||
|     return df | ||||
|  | ||||
|  | ||||
| def order_book_to_dataframe(bids: list, asks: list) -> DataFrame: | ||||
|     """ | ||||
|     Gets order book list, returns dataframe with below format per suggested by creslin | ||||
|   | ||||
		Reference in New Issue
	
	Block a user