create more flexible whitelist, avoid duplicating whitelist features into corr_pairlist, update docs
This commit is contained in:
@@ -93,7 +93,7 @@ class IFreqaiModel(ABC):
|
||||
else:
|
||||
self.model = self.dh.load_data()
|
||||
|
||||
preds, do_preds = self.predict(dataframe_backtest)
|
||||
preds, do_preds = self.predict(dataframe_backtest, metadata)
|
||||
|
||||
self.dh.append_predictions(preds, do_preds, len(dataframe_backtest))
|
||||
print('predictions', len(self.dh.full_predictions),
|
||||
@@ -120,13 +120,13 @@ class IFreqaiModel(ABC):
|
||||
if retrain or not file_exists:
|
||||
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
|
||||
# dataframe = download-data
|
||||
corr_dataframes, pair_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
|
||||
corr_dataframes, base_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
|
||||
metadata)
|
||||
|
||||
unfiltered_dataframe = self.dh.use_strategy_to_populate_indicators(strategy,
|
||||
metadata,
|
||||
corr_dataframes,
|
||||
pair_dataframes)
|
||||
base_dataframes,
|
||||
metadata)
|
||||
|
||||
self.model = self.train(unfiltered_dataframe, metadata)
|
||||
self.dh.save_data(self.model)
|
||||
@@ -134,7 +134,7 @@ class IFreqaiModel(ABC):
|
||||
self.freqai_info
|
||||
|
||||
self.model = self.dh.load_data()
|
||||
preds, do_preds = self.predict(dataframe)
|
||||
preds, do_preds = self.predict(dataframe, metadata)
|
||||
self.dh.append_predictions(preds, do_preds, len(dataframe))
|
||||
# dataframe should have len 1 here
|
||||
|
||||
@@ -175,7 +175,7 @@ class IFreqaiModel(ABC):
|
||||
return
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, dataframe: DataFrame) -> Tuple[npt.ArrayLike, npt.ArrayLike]:
|
||||
def predict(self, dataframe: DataFrame, metadata: dict) -> Tuple[npt.ArrayLike, npt.ArrayLike]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
|
Reference in New Issue
Block a user