diff --git a/docs/freqai-running.md b/docs/freqai-running.md index 1eaee1bf2..f3ccc546f 100644 --- a/docs/freqai-running.md +++ b/docs/freqai-running.md @@ -128,6 +128,9 @@ The FreqAI specific parameter `label_period_candles` defines the offset (number You can choose to adopt a continual learning scheme by setting `"continual_learning": true` in the config. By enabling `continual_learning`, after training an initial model from scratch, subsequent trainings will start from the final model state of the preceding training. This gives the new model a "memory" of the previous state. By default, this is set to `False` which means that all new models are trained from scratch, without input from previous models. +???+ danger "Continual learning enforces a constant parameter space" + Since `continual_learning` means that the model parameter space *cannot* change between trainings, `principal_component_analysis` is automatically disabled when `continual_learning` is enabled. Hint: PCA changes the parameter space and the number of features, learn more about PCA [here](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis). + ## Hyperopt You can hyperopt using the same command as for [typical Freqtrade hyperopt](hyperopt.md): diff --git a/freqtrade/freqai/freqai_interface.py b/freqtrade/freqai/freqai_interface.py index 07c357de3..b657bd811 100644 --- a/freqtrade/freqai/freqai_interface.py +++ b/freqtrade/freqai/freqai_interface.py @@ -105,6 +105,9 @@ class IFreqaiModel(ABC): self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1) self.can_short = True # overridden in start() with strategy.can_short self.model: Any = None + if self.ft_params.get('principal_component_analysis', False) and self.continual_learning: + self.ft_params.update({'principal_component_analysis': False}) + logger.warning('User tried to use PCA with continual learning. Deactivating PCA.') record_params(config, self.full_path) @@ -154,8 +157,7 @@ class IFreqaiModel(ABC): dk = self.start_backtesting(dataframe, metadata, self.dk, strategy) dataframe = dk.remove_features_from_df(dk.return_dataframe) else: - logger.info( - "Backtesting using historic predictions (live models)") + logger.info("Backtesting using historic predictions (live models)") dk = self.start_backtesting_from_historic_predictions( dataframe, metadata, self.dk) dataframe = dk.return_dataframe