Merge branch 'develop' into feat/freqai
This commit is contained in:
@@ -514,6 +514,7 @@ You can then load the trades to perform further analysis as shown in the [data a
|
||||
|
||||
Since backtesting lacks some detailed information about what happens within a candle, it needs to take a few assumptions:
|
||||
|
||||
- Exchange [trading limits](#trading-limits-in-backtesting) are respected
|
||||
- Buys happen at open-price
|
||||
- All orders are filled at the requested price (no slippage, no unfilled orders)
|
||||
- Exit-signal exits happen at open-price of the consecutive candle
|
||||
@@ -543,7 +544,24 @@ Also, keep in mind that past results don't guarantee future success.
|
||||
|
||||
In addition to the above assumptions, strategy authors should carefully read the [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies) section, to avoid using data in backtesting which is not available in real market conditions.
|
||||
|
||||
### Improved backtest accuracy
|
||||
### Trading limits in backtesting
|
||||
|
||||
Exchanges have certain trading limits, like minimum base currency, or minimum stake (quote) currency.
|
||||
These limits are usually listed in the exchange documentation as "trading rules" or similar.
|
||||
|
||||
Backtesting (as well as live and dry-run) does honor these limits, and will ensure that a stoploss can be placed below this value - so the value will be slightly higher than what the exchange specifies.
|
||||
Freqtrade has however no information about historic limits.
|
||||
|
||||
This can lead to situations where trading-limits are inflated by using a historic price, resulting in minimum amounts > 50$.
|
||||
|
||||
For example:
|
||||
|
||||
BTC minimum tradable amount is 0.001.
|
||||
BTC trades at 22.000\$ today (0.001 BTC is related to this) - but the backtesting period includes prices as high as 50.000\$.
|
||||
Today's minimum would be `0.001 * 22_000` - or 22\$.
|
||||
However the limit could also be 50$ - based on `0.001 * 50_000` in some historic setting.
|
||||
|
||||
## Improved backtest accuracy
|
||||
|
||||
One big limitation of backtesting is it's inability to know how prices moved intra-candle (was high before close, or viceversa?).
|
||||
So assuming you run backtesting with a 1h timeframe, there will be 4 prices for that candle (Open, High, Low, Close).
|
||||
|
@@ -105,7 +105,7 @@ This is similar to using multiple `--config` parameters, but simpler in usage as
|
||||
|
||||
``` json title="Result"
|
||||
{
|
||||
"max_open_trades": 10,
|
||||
"max_open_trades": 3,
|
||||
"stake_currency": "USDT",
|
||||
"stake_amount": "unlimited"
|
||||
}
|
||||
|
@@ -68,6 +68,36 @@ def test_method_to_test(caplog):
|
||||
|
||||
```
|
||||
|
||||
### Debug configuration
|
||||
|
||||
To debug freqtrade, we recommend VSCode with the following launch configuration (located in `.vscode/launch.json`).
|
||||
Details will obviously vary between setups - but this should work to get you started.
|
||||
|
||||
``` json
|
||||
{
|
||||
"name": "freqtrade trade",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"module": "freqtrade",
|
||||
"console": "integratedTerminal",
|
||||
"args": [
|
||||
"trade",
|
||||
// Optional:
|
||||
// "--userdir", "user_data",
|
||||
"--strategy",
|
||||
"MyAwesomeStrategy",
|
||||
]
|
||||
},
|
||||
```
|
||||
|
||||
Command line arguments can be added in the `"args"` array.
|
||||
This method can also be used to debug a strategy, by setting the breakpoints within the strategy.
|
||||
|
||||
A similar setup can also be taken for Pycharm - using `freqtrade` as module name, and setting the command line arguments as "parameters".
|
||||
|
||||
!!! Note "Startup directory"
|
||||
This assumes that you have the repository checked out, and the editor is started at the repository root level (so setup.py is at the top level of your repository).
|
||||
|
||||
## ErrorHandling
|
||||
|
||||
Freqtrade Exceptions all inherit from `FreqtradeException`.
|
||||
|
@@ -623,12 +623,13 @@ class AwesomeStrategy(IStrategy):
|
||||
|
||||
!!! Warning
|
||||
`confirm_trade_exit()` can prevent stoploss exits, causing significant losses as this would ignore stoploss exits.
|
||||
`confirm_trade_exit()` will not be called for Liquidations - as liquidations are forced by the exchange, and therefore cannot be rejected.
|
||||
|
||||
## Adjust trade position
|
||||
|
||||
The `position_adjustment_enable` strategy property enables the usage of `adjust_trade_position()` callback in the strategy.
|
||||
For performance reasons, it's disabled by default and freqtrade will show a warning message on startup if enabled.
|
||||
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging).
|
||||
`adjust_trade_position()` can be used to perform additional orders, for example to manage risk with DCA (Dollar Cost Averaging) or to increase or decrease positions.
|
||||
|
||||
`max_entry_position_adjustment` property is used to limit the number of additional buys per trade (on top of the first buy) that the bot can execute. By default, the value is -1 which means the bot have no limit on number of adjustment buys.
|
||||
|
||||
@@ -636,10 +637,13 @@ The strategy is expected to return a stake_amount (in stake currency) between `m
|
||||
If there are not enough funds in the wallet (the return value is above `max_stake`) then the signal will be ignored.
|
||||
Additional orders also result in additional fees and those orders don't count towards `max_open_trades`.
|
||||
|
||||
This callback is **not** called when there is an open order (either buy or sell) waiting for execution, or when you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`.
|
||||
This callback is **not** called when there is an open order (either buy or sell) waiting for execution.
|
||||
|
||||
`adjust_trade_position()` is called very frequently for the duration of a trade, so you must keep your implementation as performant as possible.
|
||||
|
||||
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position, no matter if it's a long or short trade. Modifications to leverage are not possible.
|
||||
Additional Buys are ignored once you have reached the maximum amount of extra buys that you have set on `max_entry_position_adjustment`, but the callback is called anyway looking for partial exits.
|
||||
|
||||
Position adjustments will always be applied in the direction of the trade, so a positive value will always increase your position (negative values will decrease your position), no matter if it's a long or short trade. Modifications to leverage are not possible.
|
||||
|
||||
!!! Note "About stake size"
|
||||
Using fixed stake size means it will be the amount used for the first order, just like without position adjustment.
|
||||
@@ -648,12 +652,12 @@ Position adjustments will always be applied in the direction of the trade, so a
|
||||
|
||||
!!! Warning
|
||||
Stoploss is still calculated from the initial opening price, not averaged price.
|
||||
Regular stoploss rules still apply (cannot move down).
|
||||
|
||||
!!! Warning "/stopbuy"
|
||||
While `/stopbuy` command stops the bot from entering new trades, the position adjustment feature will continue buying new orders on existing trades.
|
||||
|
||||
!!! Warning "Backtesting"
|
||||
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so performance will be affected.
|
||||
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
@@ -674,7 +678,7 @@ class DigDeeperStrategy(IStrategy):
|
||||
max_dca_multiplier = 5.5
|
||||
|
||||
# This is called when placing the initial order (opening trade)
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
||||
proposed_stake: float, min_stake: Optional[float], max_stake: float,
|
||||
leverage: float, entry_tag: Optional[str], side: str,
|
||||
**kwargs) -> float:
|
||||
@@ -684,22 +688,41 @@ def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: f
|
||||
return proposed_stake / self.max_dca_multiplier
|
||||
|
||||
def adjust_trade_position(self, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float, min_stake: Optional[float],
|
||||
max_stake: float, **kwargs):
|
||||
current_rate: float, current_profit: float,
|
||||
min_stake: Optional[float], max_stake: float,
|
||||
current_entry_rate: float, current_exit_rate: float,
|
||||
current_entry_profit: float, current_exit_profit: float,
|
||||
**kwargs) -> Optional[float]:
|
||||
"""
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
|
||||
This means extra buy orders with additional fees.
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be
|
||||
increased or decreased.
|
||||
This means extra buy or sell orders with additional fees.
|
||||
Only called when `position_adjustment_enable` is set to True.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns None
|
||||
|
||||
:param trade: trade object.
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Current buy rate.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param min_stake: Minimal stake size allowed by exchange.
|
||||
:param max_stake: Balance available for trading.
|
||||
:param min_stake: Minimal stake size allowed by exchange (for both entries and exits)
|
||||
:param max_stake: Maximum stake allowed (either through balance, or by exchange limits).
|
||||
:param current_entry_rate: Current rate using entry pricing.
|
||||
:param current_exit_rate: Current rate using exit pricing.
|
||||
:param current_entry_profit: Current profit using entry pricing.
|
||||
:param current_exit_profit: Current profit using exit pricing.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: Stake amount to adjust your trade
|
||||
:return float: Stake amount to adjust your trade,
|
||||
Positive values to increase position, Negative values to decrease position.
|
||||
Return None for no action.
|
||||
"""
|
||||
|
||||
if current_profit > 0.05 and trade.nr_of_successful_exits == 0:
|
||||
# Take half of the profit at +5%
|
||||
return -(trade.stake_amount / 2)
|
||||
|
||||
if current_profit > -0.05:
|
||||
return None
|
||||
|
||||
@@ -734,6 +757,25 @@ def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: f
|
||||
|
||||
```
|
||||
|
||||
### Position adjust calculations
|
||||
|
||||
* Entry rates are calculated using weighted averages.
|
||||
* Exits will not influence the average entry rate.
|
||||
* Partial exit relative profit is relative to the average entry price at this point.
|
||||
* Final exit relative profit is calculated based on the total invested capital. (See example below)
|
||||
|
||||
??? example "Calculation example"
|
||||
*This example assumes 0 fees for simplicity, and a long position on an imaginary coin.*
|
||||
|
||||
* Buy 100@8\$
|
||||
* Buy 100@9\$ -> Avg price: 8.5\$
|
||||
* Sell 100@10\$ -> Avg price: 8.5\$, realized profit 150\$, 17.65%
|
||||
* Buy 150@11\$ -> Avg price: 10\$, realized profit 150\$, 17.65%
|
||||
* Sell 100@12\$ -> Avg price: 10\$, total realized profit 350\$, 20%
|
||||
* Sell 150@14\$ -> Avg price: 10\$, total realized profit 950\$, 40%
|
||||
|
||||
The total profit for this trade was 950$ on a 3350$ investment (`100@8$ + 100@9$ + 150@11$`). As such - the final relative profit is 28.35% (`950 / 3350`).
|
||||
|
||||
## Adjust Entry Price
|
||||
|
||||
The `adjust_entry_price()` callback may be used by strategy developer to refresh/replace limit orders upon arrival of new candles.
|
||||
|
@@ -646,6 +646,9 @@ This is where calling `self.dp.current_whitelist()` comes in handy.
|
||||
return informative_pairs
|
||||
```
|
||||
|
||||
??? Note "Plotting with current_whitelist"
|
||||
Current whitelist is not supported for `plot-dataframe`, as this command is usually used by providing an explicit pairlist - and would therefore make the return values of this method misleading.
|
||||
|
||||
### *get_pair_dataframe(pair, timeframe)*
|
||||
|
||||
``` python
|
||||
@@ -731,6 +734,23 @@ if self.dp:
|
||||
!!! Warning "Warning about backtesting"
|
||||
This method will always return up-to-date values - so usage during backtesting / hyperopt will lead to wrong results.
|
||||
|
||||
### Send Notification
|
||||
|
||||
The dataprovider `.send_msg()` function allows you to send custom notifications from your strategy.
|
||||
Identical notifications will only be sent once per candle, unless the 2nd argument (`always_send`) is set to True.
|
||||
|
||||
``` python
|
||||
self.dp.send_msg(f"{metadata['pair']} just got hot!")
|
||||
|
||||
# Force send this notification, avoid caching (Please read warning below!)
|
||||
self.dp.send_msg(f"{metadata['pair']} just got hot!", always_send=True)
|
||||
```
|
||||
|
||||
Notifications will only be sent in trading modes (Live/Dry-run) - so this method can be called without conditions for backtesting.
|
||||
|
||||
!!! Warning "Spamming"
|
||||
You can spam yourself pretty good by setting `always_send=True` in this method. Use this with great care and only in conditions you know will not happen throughout a candle to avoid a message every 5 seconds.
|
||||
|
||||
### Complete Data-provider sample
|
||||
|
||||
```python
|
||||
|
@@ -18,7 +18,7 @@ Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `fo
|
||||
* [`check_buy_timeout()` -> `check_entry_timeout()`](#custom_entry_timeout)
|
||||
* [`check_sell_timeout()` -> `check_exit_timeout()`](#custom_entry_timeout)
|
||||
* New `side` argument to callbacks without trade object
|
||||
* [`custom_stake_amount`](#custom-stake-amount)
|
||||
* [`custom_stake_amount`](#custom_stake_amount)
|
||||
* [`confirm_trade_entry`](#confirm_trade_entry)
|
||||
* [`custom_entry_price`](#custom_entry_price)
|
||||
* [Changed argument name in `confirm_trade_exit`](#confirm_trade_exit)
|
||||
@@ -192,7 +192,7 @@ class AwesomeStrategy(IStrategy):
|
||||
return False
|
||||
```
|
||||
|
||||
### Custom-stake-amount
|
||||
### `custom_stake_amount`
|
||||
|
||||
New string argument `side` - which can be either `"long"` or `"short"`.
|
||||
|
||||
|
@@ -98,6 +98,7 @@ Example configuration showing the different settings:
|
||||
"exit_fill": "off",
|
||||
"protection_trigger": "off",
|
||||
"protection_trigger_global": "on",
|
||||
"strategy_msg": "off",
|
||||
"show_candle": "off"
|
||||
},
|
||||
"reload": true,
|
||||
@@ -109,7 +110,8 @@ Example configuration showing the different settings:
|
||||
`exit` notifications are sent when the order is placed, while `exit_fill` notifications are sent when the order is filled on the exchange.
|
||||
`*_fill` notifications are off by default and must be explicitly enabled.
|
||||
`protection_trigger` notifications are sent when a protection triggers and `protection_trigger_global` notifications trigger when global protections are triggered.
|
||||
`show_candle` - show candle values as part of entry/exit messages. Only possible value is "ohlc".
|
||||
`strategy_msg` - Receive notifications from the strategy, sent via `self.dp.send_msg()` from the strategy [more details](strategy-customization.md#send-notification).
|
||||
`show_candle` - show candle values as part of entry/exit messages. Only possible values are `"ohlc"` or `"off"`.
|
||||
|
||||
`balance_dust_level` will define what the `/balance` command takes as "dust" - Currencies with a balance below this will be shown.
|
||||
`reload` allows you to disable reload-buttons on selected messages.
|
||||
|
Reference in New Issue
Block a user