Automatically generate documentation from jupyter notebook
This commit is contained in:
@@ -135,78 +135,9 @@ print(f"Loaded len(candles) rows of data for {pair} from {data_location}")
|
||||
candles.head()
|
||||
```
|
||||
|
||||
## Strategy debugging example
|
||||
Further Data analysis documents:
|
||||
|
||||
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
|
||||
|
||||
### Define variables used in analyses
|
||||
|
||||
You can override strategy settings as demonstrated below.
|
||||
|
||||
```python
|
||||
# Customize these according to your needs.
|
||||
|
||||
# Define some constants
|
||||
ticker_interval = "5m"
|
||||
# Name of the strategy class
|
||||
strategy_name = 'SampleStrategy'
|
||||
# Path to user data
|
||||
user_data_dir = 'user_data'
|
||||
# Location of the strategy
|
||||
strategy_location = Path(user_data_dir, 'strategies')
|
||||
# Location of the data
|
||||
data_location = Path(user_data_dir, 'data', 'binance')
|
||||
# Pair to analyze - Only use one pair here
|
||||
pair = "BTC_USDT"
|
||||
```
|
||||
|
||||
### Load exchange data
|
||||
|
||||
```python
|
||||
from pathlib import Path
|
||||
from freqtrade.data.history import load_pair_history
|
||||
|
||||
# Load data using values set above
|
||||
candles = load_pair_history(datadir=data_location,
|
||||
ticker_interval=ticker_interval,
|
||||
pair=pair)
|
||||
|
||||
# Confirm success
|
||||
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
|
||||
candles.head()
|
||||
```
|
||||
|
||||
### Load and run strategy
|
||||
|
||||
* Rerun each time the strategy file is changed
|
||||
|
||||
```python
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
|
||||
# Load strategy using values set above
|
||||
strategy = StrategyResolver({'strategy': strategy_name,
|
||||
'user_data_dir': user_data_dir,
|
||||
'strategy_path': strategy_location}).strategy
|
||||
|
||||
# Generate buy/sell signals using strategy
|
||||
df = strategy.analyze_ticker(candles, {'pair': pair})
|
||||
```
|
||||
|
||||
### Display the trade details
|
||||
|
||||
* Note that using `data.tail()` is preferable to `data.head()` as most indicators have some "startup" data at the top of the dataframe.
|
||||
* Some possible problems
|
||||
* Columns with NaN values at the end of the dataframe
|
||||
* Columns used in `crossed*()` functions with completely different units
|
||||
* Comparison with full backtest
|
||||
* having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
|
||||
* Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29). The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
|
||||
|
||||
```python
|
||||
# Report results
|
||||
print(f"Generated {df['buy'].sum()} buy signals")
|
||||
data = df.set_index('date', drop=True)
|
||||
data.tail()
|
||||
```
|
||||
* [Strategy debugging](strategy_analysis_example.md)
|
||||
* [Plotting](plotting.md)
|
||||
|
||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||
|
||||
Reference in New Issue
Block a user