flake8 passing, use pathlib in lieu of os.path to accommodate windows/mac OS

This commit is contained in:
robcaulk
2022-05-04 17:42:34 +02:00
parent 2600ba4e74
commit 99f7e44c30
7 changed files with 593 additions and 439 deletions

View File

@@ -1,64 +1,77 @@
import json
import os
import copy
import datetime
import json
import pickle as pk
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
import pandas as pd
from joblib import dump, load
from pandas import DataFrame
from joblib import dump
from joblib import load
from sklearn.model_selection import train_test_split
from sklearn.metrics.pairwise import pairwise_distances
import datetime
from typing import Any, Dict, List, Tuple
import pickle as pk
from sklearn.model_selection import train_test_split
from freqtrade.configuration import TimeRange
SECONDS_IN_DAY = 86400
class DataHandler:
"""
Class designed to handle all the data for the IFreqaiModel class model.
Class designed to handle all the data for the IFreqaiModel class model.
Functionalities include holding, saving, loading, and analyzing the data.
author: Robert Caulk, rob.caulk@gmail.com
"""
def __init__(self, config: Dict[str, Any], dataframe: DataFrame, data: List):
def __init__(self, config: Dict[str, Any], dataframe: DataFrame):
self.full_dataframe = dataframe
(self.training_timeranges,
self.backtesting_timeranges) = self.split_timerange(
config['freqai']['full_timerange'],
config['freqai']['train_period'],
config['freqai']['backtest_period'])
self.data = data
self.data_dictionary = {}
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
config["freqai"]["full_timerange"],
config["freqai"]["train_period"],
config["freqai"]["backtest_period"],
)
self.data: Dict[Any, Any] = {}
self.config = config
self.freq_config = config['freqai']
self.freq_config = config["freqai"]
self.predictions = np.array([])
self.do_predict = np.array([])
self.target_mean = np.array([])
self.target_std = np.array([])
self.model_path = Path()
self.model_filename = ""
def save_data(self, model: Any) -> None:
"""
Saves all data associated with a model for a single sub-train time range
:params:
:model: User trained model which can be reused for inferencing to generate
:model: User trained model which can be reused for inferencing to generate
predictions
"""
if not os.path.exists(self.model_path): os.mkdir(self.model_path)
save_path = self.model_path + self.model_filename
if not self.model_path.is_dir():
self.model_path.mkdir(parents=True, exist_ok=True)
save_path = Path(self.model_path)
# if not os.path.exists(self.model_path):
# os.mkdir(self.model_path)
# save_path = self.model_path + self.model_filename
# Save the trained model
dump(model, save_path+"_model.joblib")
self.data['model_path'] = self.model_path
self.data['model_filename'] = self.model_filename
self.data['training_features_list'] = list(self.data_dictionary['train_features'].columns)
dump(model, save_path / str(self.model_filename + "_model.joblib"))
self.data["model_path"] = self.model_path
self.data["model_filename"] = self.model_filename
self.data["training_features_list"] = list(self.data_dictionary["train_features"].columns)
# store the metadata
with open(save_path+"_metadata.json", 'w') as fp:
json.dump(self.data, fp, default=self.np_encoder)
with open(save_path / str(self.model_filename + "_metadata.json"), "w") as fp:
json.dump(self.data, fp, default=self.np_encoder)
# save the train data to file so we can check preds for area of applicability later
self.data_dictionary['train_features'].to_pickle(save_path+"_trained_df.pkl")
self.data_dictionary["train_features"].to_pickle(
save_path / str(self.model_filename + "_trained_df.pkl")
)
return
@@ -68,156 +81,210 @@ class DataHandler:
:returns:
:model: User trained model which can be inferenced for new predictions
"""
model = load(self.model_path+self.model_filename+"_model.joblib")
model = load(self.model_path / str(self.model_filename + "_model.joblib"))
with open(self.model_path+self.model_filename+"_metadata.json", 'r') as fp:
with open(self.model_path / str(self.model_filename + "_metadata.json"), "r") as fp:
self.data = json.load(fp)
if self.data.get('training_features_list'):
self.training_features_list = [*self.data.get('training_features_list')]
self.training_features_list = self.data["training_features_list"]
# if self.data.get("training_features_list"):
# self.training_features_list = [*self.data.get("training_features_list")]
self.data_dictionary['train_features'] = pd.read_pickle(self.model_path+
self.model_filename+"_trained_df.pkl")
self.data_dictionary["train_features"] = pd.read_pickle(
self.model_path / str(self.model_filename + "_trained_df.pkl")
)
self.model_path = self.data['model_path']
self.model_filename = self.data['model_filename']
if self.config['freqai']['feature_parameters']['principal_component_analysis']:
self.pca = pk.load(open(self.model_path+self.model_filename+"_pca_object.pkl","rb"))
self.model_path = self.data["model_path"]
self.model_filename = self.data["model_filename"]
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
self.pca = pk.load(
open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "rb")
)
return model
def make_train_test_datasets(self, filtered_dataframe: DataFrame, labels: DataFrame) -> None:
'''
Given the dataframe for the full history for training, split the data into
training and test data according to user specified parameters in configuration
file.
def make_train_test_datasets(
self, filtered_dataframe: DataFrame, labels: DataFrame
) -> Dict[Any, Any]:
"""
Given the dataframe for the full history for training, split the data into
training and test data according to user specified parameters in configuration
file.
:filtered_dataframe: cleaned dataframe ready to be split.
:labels: cleaned labels ready to be split.
'''
"""
if self.config['freqai']['feature_parameters']['weight_factor'] > 0:
if self.config["freqai"]["feature_parameters"]["weight_factor"] > 0:
weights = self.set_weights_higher_recent(len(filtered_dataframe))
else: weights = np.ones(len(filtered_dataframe))
else:
weights = np.ones(len(filtered_dataframe))
(train_features, test_features, train_labels,
test_labels, train_weights, test_weights) = train_test_split(
filtered_dataframe[:filtered_dataframe.shape[0]],
(
train_features,
test_features,
train_labels,
test_labels,
train_weights,
test_weights,
) = train_test_split(
filtered_dataframe[: filtered_dataframe.shape[0]],
labels,
weights,
**self.config['freqai']['data_split_parameters']
**self.config["freqai"]["data_split_parameters"]
)
return self.build_data_dictionary(
train_features,test_features,
train_labels,test_labels,
train_weights,test_weights)
train_features, test_features, train_labels, test_labels, train_weights, test_weights
)
def filter_features(self, unfiltered_dataframe: DataFrame, training_feature_list: List,
labels: DataFrame = None, training_filter: bool=True) -> Tuple[DataFrame, DataFrame]:
'''
Filter the unfiltered dataframe to extract the user requested features and properly
remove all NaNs. Any row with a NaN is removed from training dataset or replaced with
0s in the prediction dataset. However, prediction dataset do_predict will reflect any
def filter_features(
self,
unfiltered_dataframe: DataFrame,
training_feature_list: List,
labels: DataFrame = pd.DataFrame(),
training_filter: bool = True,
) -> Tuple[DataFrame, DataFrame]:
"""
Filter the unfiltered dataframe to extract the user requested features and properly
remove all NaNs. Any row with a NaN is removed from training dataset or replaced with
0s in the prediction dataset. However, prediction dataset do_predict will reflect any
row that had a NaN and will shield user from that prediction.
:params:
:unfiltered_dataframe: the full dataframe for the present training period
:training_feature_list: list, the training feature list constructed by self.build_feature_list()
according to user specified parameters in the configuration file.
:training_feature_list: list, the training feature list constructed by
self.build_feature_list() according to user specified parameters in the configuration file.
:labels: the labels for the dataset
:training_filter: boolean which lets the function know if it is training data or
prediction data to be filtered.
:training_filter: boolean which lets the function know if it is training data or
prediction data to be filtered.
:returns:
:filtered_dataframe: dataframe cleaned of NaNs and only containing the user
requested feature set.
:labels: labels cleaned of NaNs.
'''
"""
filtered_dataframe = unfiltered_dataframe.filter(training_feature_list, axis=1)
drop_index = pd.isnull(filtered_dataframe).any(1) # get the rows that have NaNs,
if training_filter: # we don't care about total row number (total no. datapoints) in training, we only care about removing any row with NaNs
drop_index = pd.isnull(filtered_dataframe).any(1) # get the rows that have NaNs,
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
if (
training_filter
): # we don't care about total row number (total no. datapoints) in training, we only care
# about removing any row with NaNs
drop_index_labels = pd.isnull(labels)
filtered_dataframe = filtered_dataframe[(drop_index==False) & (drop_index_labels==False)] # dropping values
labels = labels[(drop_index==False) & (drop_index_labels==False)] # assuming the labels depend entirely on the dataframe here.
print('dropped',len(unfiltered_dataframe)-len(filtered_dataframe),
'training data points due to NaNs, ensure you have downloaded all historical training data')
self.data['filter_drop_index_training'] = drop_index
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
filtered_dataframe = filtered_dataframe[
(drop_index == 0) & (drop_index_labels == 0)
] # dropping values
labels = labels[
(drop_index == 0) & (drop_index_labels == 0)
] # assuming the labels depend entirely on the dataframe here.
print(
"dropped",
len(unfiltered_dataframe) - len(filtered_dataframe),
"training data points due to NaNs, ensure you have downloaded",
"all historical training data",
)
self.data["filter_drop_index_training"] = drop_index
else: # we are backtesting so we need to preserve row number to send back to strategy, so now we use do_predict to avoid any prediction based on a NaN
else:
# we are backtesting so we need to preserve row number to send back to strategy,
# so now we use do_predict to avoid any prediction based on a NaN
drop_index = pd.isnull(filtered_dataframe).any(1)
self.data['filter_drop_index_prediction'] = drop_index
filtered_dataframe.fillna(0, inplace=True) # replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction that was based on a single NaN is ultimately protected from buys with do_predict
self.data["filter_drop_index_prediction"] = drop_index
filtered_dataframe.fillna(0, inplace=True)
# replacing all NaNs with zeros to avoid issues in 'prediction', but any prediction
# that was based on a single NaN is ultimately protected from buys with do_predict
drop_index = ~drop_index
self.do_predict = np.array(drop_index.replace(True,1).replace(False,0))
print('dropped',len(self.do_predict) - self.do_predict.sum(),'of',len(filtered_dataframe),
'prediction data points due to NaNs. These are protected from prediction with do_predict vector returned to strategy.')
self.do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
print(
"dropped",
len(self.do_predict) - self.do_predict.sum(),
"of",
len(filtered_dataframe),
"prediction data points due to NaNs. These are protected from prediction",
"with do_predict vector returned to strategy.",
)
return filtered_dataframe, labels
def build_data_dictionary(self, train_df: DataFrame, test_df: DataFrame,
train_labels: DataFrame, test_labels: DataFrame,
train_weights: Any, test_weights: Any) -> Dict:
def build_data_dictionary(
self,
train_df: DataFrame,
test_df: DataFrame,
train_labels: DataFrame,
test_labels: DataFrame,
train_weights: Any,
test_weights: Any,
) -> Dict:
self.data_dictionary = {'train_features': train_df,
'test_features': test_df,
'train_labels': train_labels,
'test_labels': test_labels,
'train_weights': train_weights,
'test_weights': test_weights}
self.data_dictionary = {
"train_features": train_df,
"test_features": test_df,
"train_labels": train_labels,
"test_labels": test_labels,
"train_weights": train_weights,
"test_weights": test_weights,
}
return self.data_dictionary
def standardize_data(self, data_dictionary: Dict) -> None:
'''
def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
"""
Standardize all data in the data_dictionary according to the training dataset
:params:
:data_dictionary: dictionary containing the cleaned and split training/test data/labels
:returns:
:data_dictionary: updated dictionary with standardized values.
'''
"""
# standardize the data by training stats
train_mean = data_dictionary['train_features'].mean()
train_std = data_dictionary['train_features'].std()
data_dictionary['train_features'] = (data_dictionary['train_features'] - train_mean) / train_std
data_dictionary['test_features'] = (data_dictionary['test_features'] - train_mean) / train_std
train_mean = data_dictionary["train_features"].mean()
train_std = data_dictionary["train_features"].std()
data_dictionary["train_features"] = (
data_dictionary["train_features"] - train_mean
) / train_std
data_dictionary["test_features"] = (
data_dictionary["test_features"] - train_mean
) / train_std
train_labels_std = data_dictionary['train_labels'].std()
train_labels_mean = data_dictionary['train_labels'].mean()
data_dictionary['train_labels'] = (data_dictionary['train_labels'] - train_labels_mean) / train_labels_std
data_dictionary['test_labels'] = (data_dictionary['test_labels'] - train_labels_mean) / train_labels_std
train_labels_std = data_dictionary["train_labels"].std()
train_labels_mean = data_dictionary["train_labels"].mean()
data_dictionary["train_labels"] = (
data_dictionary["train_labels"] - train_labels_mean
) / train_labels_std
data_dictionary["test_labels"] = (
data_dictionary["test_labels"] - train_labels_mean
) / train_labels_std
for item in train_std.keys():
self.data[item+'_std'] = train_std[item]
self.data[item+'_mean'] = train_mean[item]
self.data[item + "_std"] = train_std[item]
self.data[item + "_mean"] = train_mean[item]
self.data['labels_std'] = train_labels_std
self.data['labels_mean'] = train_labels_mean
self.data["labels_std"] = train_labels_std
self.data["labels_mean"] = train_labels_mean
return data_dictionary
def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
'''
Standardizes a set of data using the mean and standard deviation from
"""
Standardizes a set of data using the mean and standard deviation from
the associated training data.
:params:
:df: Dataframe to be standardized
'''
"""
for item in df.keys():
df[item] = (df[item] - self.data[item+'_mean']) / self.data[item+'_std']
df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
return df
def split_timerange(self, tr: Dict, train_split: int=28, bt_split: int=7) -> list:
'''
def split_timerange(
self, tr: str, train_split: int = 28, bt_split: int = 7
) -> Tuple[list, list]:
"""
Function which takes a single time range (tr) and splits it
into sub timeranges to train and backtest on based on user input
tr: str, full timerange to train on
train_split: the period length for the each training (days). Specified in user
configuration file
bt_split: the backtesting length (dats). Specified in user configuration file
'''
"""
train_period = train_split * SECONDS_IN_DAY
bt_period = bt_split * SECONDS_IN_DAY
@@ -230,22 +297,24 @@ class DataHandler:
tr_backtesting_list = []
first = True
while True:
if not first: timerange_train.startts = timerange_train.startts + bt_period
if not first:
timerange_train.startts = timerange_train.startts + bt_period
timerange_train.stopts = timerange_train.startts + train_period
# if a full training period doesnt fit, we stop
if timerange_train.stopts > full_timerange.stopts: break
if timerange_train.stopts > full_timerange.stopts:
break
first = False
start = datetime.datetime.utcfromtimestamp(timerange_train.startts)
stop = datetime.datetime.utcfromtimestamp(timerange_train.stopts)
tr_training_list.append(start.strftime("%Y%m%d")+'-'+stop.strftime("%Y%m%d"))
tr_training_list.append(start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d"))
## associated backtest period
timerange_backtest.startts = timerange_train.stopts
timerange_backtest.stopts = timerange_backtest.startts + bt_period
# associated backtest period
timerange_backtest.startts = timerange_train.stopts
timerange_backtest.stopts = timerange_backtest.startts + bt_period
start = datetime.datetime.utcfromtimestamp(timerange_backtest.startts)
stop = datetime.datetime.utcfromtimestamp(timerange_backtest.stopts)
tr_backtesting_list.append(start.strftime("%Y%m%d")+'-'+stop.strftime("%Y%m%d"))
tr_backtesting_list.append(start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d"))
return tr_training_list, tr_backtesting_list
@@ -260,8 +329,8 @@ class DataHandler:
timerange = TimeRange.parse_timerange(tr)
start = datetime.datetime.fromtimestamp(timerange.startts, tz=datetime.timezone.utc)
stop = datetime.datetime.fromtimestamp(timerange.stopts, tz=datetime.timezone.utc)
df = df.loc[df['date'] >= start, :]
df = df.loc[df['date'] <= stop, :]
df = df.loc[df["date"] >= start, :]
df = df.loc[df["date"] <= stop, :]
return df
@@ -272,128 +341,171 @@ class DataHandler:
No parameters or returns, it acts on the data_dictionary held by the DataHandler.
"""
from sklearn.decomposition import PCA # avoid importing if we dont need it
from sklearn.decomposition import PCA # avoid importing if we dont need it
n_components = self.data_dictionary['train_features'].shape[1]
n_components = self.data_dictionary["train_features"].shape[1]
pca = PCA(n_components=n_components)
pca = pca.fit(self.data_dictionary['train_features'])
pca = pca.fit(self.data_dictionary["train_features"])
n_keep_components = np.argmin(pca.explained_variance_ratio_.cumsum() < 0.999)
pca2 = PCA(n_components=n_keep_components)
self.data['n_kept_components'] = n_keep_components
pca2 = pca2.fit(self.data_dictionary['train_features'])
print('reduced feature dimension by',n_components-n_keep_components)
print("explained variance",np.sum(pca2.explained_variance_ratio_))
train_components = pca2.transform(self.data_dictionary['train_features'])
test_components = pca2.transform(self.data_dictionary['test_features'])
self.data["n_kept_components"] = n_keep_components
pca2 = pca2.fit(self.data_dictionary["train_features"])
print("reduced feature dimension by", n_components - n_keep_components)
print("explained variance", np.sum(pca2.explained_variance_ratio_))
train_components = pca2.transform(self.data_dictionary["train_features"])
test_components = pca2.transform(self.data_dictionary["test_features"])
self.data_dictionary['train_features'] = pd.DataFrame(data=train_components,
columns = ['PC'+str(i) for i in range(0,n_keep_components)],
index = self.data_dictionary['train_features'].index)
self.data_dictionary["train_features"] = pd.DataFrame(
data=train_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["train_features"].index,
)
self.data_dictionary['test_features'] = pd.DataFrame(data=test_components,
columns = ['PC'+str(i) for i in range(0,n_keep_components)],
index = self.data_dictionary['test_features'].index)
self.data_dictionary["test_features"] = pd.DataFrame(
data=test_components,
columns=["PC" + str(i) for i in range(0, n_keep_components)],
index=self.data_dictionary["test_features"].index,
)
self.data['n_kept_components'] = n_keep_components
self.data["n_kept_components"] = n_keep_components
self.pca = pca2
if not os.path.exists(self.model_path): os.mkdir(self.model_path)
pk.dump(pca2, open(self.model_path + self.model_filename+"_pca_object.pkl","wb"))
if not self.model_path.is_dir():
self.model_path.mkdir(parents=True, exist_ok=True)
pk.dump(pca2, open(self.model_path / str(self.model_filename + "_pca_object.pkl"), "wb"))
return None
def compute_distances(self) -> float:
print('computing average mean distance for all training points')
pairwise = pairwise_distances(self.data_dictionary['train_features'],n_jobs=-1)
print("computing average mean distance for all training points")
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=-1)
avg_mean_dist = pairwise.mean(axis=1).mean()
print('avg_mean_dist',avg_mean_dist)
print("avg_mean_dist", avg_mean_dist)
return avg_mean_dist
def remove_outliers(self,predict: bool) -> None:
def remove_outliers(self, predict: bool) -> None:
"""
Remove data that looks like an outlier based on the distribution of each
variable.
Remove data that looks like an outlier based on the distribution of each
variable.
:params:
:predict: boolean which tells the function if this is prediction data or
training data coming in.
:predict: boolean which tells the function if this is prediction data or
training data coming in.
"""
lower_quantile = self.data_dictionary['train_features'].quantile(0.001)
upper_quantile = self.data_dictionary['train_features'].quantile(0.999)
lower_quantile = self.data_dictionary["train_features"].quantile(0.001)
upper_quantile = self.data_dictionary["train_features"].quantile(0.999)
if predict:
df = self.data_dictionary['prediction_features'][(self.data_dictionary['prediction_features']<upper_quantile) & (self.data_dictionary['prediction_features']>lower_quantile)]
df = self.data_dictionary["prediction_features"][
(self.data_dictionary["prediction_features"] < upper_quantile)
& (self.data_dictionary["prediction_features"] > lower_quantile)
]
drop_index = pd.isnull(df).any(1)
self.data_dictionary['prediction_features'].fillna(0,inplace=True)
self.data_dictionary["prediction_features"].fillna(0, inplace=True)
drop_index = ~drop_index
do_predict = np.array(drop_index.replace(True,1).replace(False,0))
print('remove_outliers() tossed',len(do_predict)-do_predict.sum(),'predictions because they were beyond 3 std deviations from training data.')
do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
print(
"remove_outliers() tossed",
len(do_predict) - do_predict.sum(),
"predictions because they were beyond 3 std deviations from training data.",
)
self.do_predict += do_predict
self.do_predict -= 1
else:
filter_train_df = self.data_dictionary['train_features'][(self.data_dictionary['train_features']<upper_quantile) & (self.data_dictionary['train_features']>lower_quantile)]
filter_train_df = self.data_dictionary["train_features"][
(self.data_dictionary["train_features"] < upper_quantile)
& (self.data_dictionary["train_features"] > lower_quantile)
]
drop_index = pd.isnull(filter_train_df).any(1)
self.data_dictionary['train_features'] = self.data_dictionary['train_features'][(drop_index==False)]
self.data_dictionary['train_labels'] = self.data_dictionary['train_labels'][(drop_index==False)]
self.data_dictionary['train_weights'] = self.data_dictionary['train_weights'][(drop_index==False)]
drop_index = drop_index.replace(True, 1).replace(False, 0)
self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
(drop_index == 0)
]
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
(drop_index == 0)
]
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
(drop_index == 0)
]
# do the same for the test data
filter_test_df = self.data_dictionary['test_features'][(self.data_dictionary['test_features']<upper_quantile) & (self.data_dictionary['test_features']>lower_quantile)]
filter_test_df = self.data_dictionary["test_features"][
(self.data_dictionary["test_features"] < upper_quantile)
& (self.data_dictionary["test_features"] > lower_quantile)
]
drop_index = pd.isnull(filter_test_df).any(1)
#pdb.set_trace()
self.data_dictionary['test_labels'] = self.data_dictionary['test_labels'][(drop_index==False)]
self.data_dictionary['test_features'] = self.data_dictionary['test_features'][(drop_index==False)]
self.data_dictionary['test_weights'] = self.data_dictionary['test_weights'][(drop_index==False)]
drop_index = drop_index.replace(True, 1).replace(False, 0)
self.data_dictionary["test_labels"] = self.data_dictionary["test_labels"][
(drop_index == 0)
]
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
(drop_index == 0)
]
self.data_dictionary["test_weights"] = self.data_dictionary["test_weights"][
(drop_index == 0)
]
return
def build_feature_list(self, config: dict) -> int:
def build_feature_list(self, config: dict) -> list:
"""
Build the list of features that will be used to filter
the full dataframe. Feature list is construced from the
Build the list of features that will be used to filter
the full dataframe. Feature list is construced from the
user configuration file.
:params:
:config: Canonical freqtrade config file containing all
user defined input in config['freqai] dictionary.
"""
features = []
for tf in config['freqai']['timeframes']:
for ft in config['freqai']['base_features']:
for n in range(config['freqai']['feature_parameters']['shift']+1):
shift=''
if n>0: shift = '_shift-'+str(n)
features.append(ft+shift+'_'+tf)
for p in config['freqai']['corr_pairlist']:
features.append(p.split("/")[0]+'-'+ft+shift+'_'+tf)
for tf in config["freqai"]["timeframes"]:
for ft in config["freqai"]["base_features"]:
for n in range(config["freqai"]["feature_parameters"]["shift"] + 1):
shift = ""
if n > 0:
shift = "_shift-" + str(n)
features.append(ft + shift + "_" + tf)
for p in config["freqai"]["corr_pairlist"]:
features.append(p.split("/")[0] + "-" + ft + shift + "_" + tf)
print('number of features',len(features))
print("number of features", len(features))
return features
def check_if_pred_in_training_spaces(self) -> None:
"""
Compares the distance from each prediction point to each training data
Compares the distance from each prediction point to each training data
point. It uses this information to estimate a Dissimilarity Index (DI)
and avoid making predictions on any points that are too far away
from the training data set.
and avoid making predictions on any points that are too far away
from the training data set.
"""
print('checking if prediction features are in AOA')
distance = pairwise_distances(self.data_dictionary['train_features'],
self.data_dictionary['prediction_features'],n_jobs=-1)
print("checking if prediction features are in AOA")
distance = pairwise_distances(
self.data_dictionary["train_features"],
self.data_dictionary["prediction_features"],
n_jobs=-1,
)
do_predict = np.where(distance.min(axis=0) /
self.data['avg_mean_dist'] < self.config['freqai']['feature_parameters']['DI_threshold'],1,0)
do_predict = np.where(
distance.min(axis=0) / self.data["avg_mean_dist"]
< self.config["freqai"]["feature_parameters"]["DI_threshold"],
1,
0,
)
print('Distance checker tossed',len(do_predict)-do_predict.sum(),
'predictions for being too far from training data')
print(
"Distance checker tossed",
len(do_predict) - do_predict.sum(),
"predictions for being too far from training data",
)
self.do_predict += do_predict
self.do_predict += do_predict
self.do_predict -= 1
def set_weights_higher_recent(self, num_weights: int) -> int:
"""
Set weights so that recent data is more heavily weighted during
@@ -401,8 +513,9 @@ class DataHandler:
"""
weights = np.zeros(num_weights)
for i in range(1, len(weights)):
weights[len(weights) - i] = np.exp(-i/
(self.config['freqai']['feature_parameters']['weight_factor']*num_weights))
weights[len(weights) - i] = np.exp(
-i / (self.config["freqai"]["feature_parameters"]["weight_factor"] * num_weights)
)
return weights
def append_predictions(self, predictions, do_predict, len_dataframe):
@@ -411,12 +524,12 @@ class DataHandler:
"""
ones = np.ones(len_dataframe)
s_mean, s_std = ones*self.data['s_mean'], ones*self.data['s_std']
s_mean, s_std = ones * self.data["s_mean"], ones * self.data["s_std"]
self.predictions = np.append(self.predictions,predictions)
self.do_predict = np.append(self.do_predict,do_predict)
self.target_mean = np.append(self.target_mean,s_mean)
self.target_std = np.append(self.target_std,s_std)
self.predictions = np.append(self.predictions, predictions)
self.do_predict = np.append(self.do_predict, do_predict)
self.target_mean = np.append(self.target_mean, s_mean)
self.target_std = np.append(self.target_std, s_std)
return
@@ -426,14 +539,14 @@ class DataHandler:
when it goes back to the strategy. These rows are not included in the backtest.
"""
filler = np.zeros(len_dataframe -len(self.predictions)) # startup_candle_count
self.predictions = np.append(filler,self.predictions)
self.do_predict = np.append(filler,self.do_predict)
self.target_mean = np.append(filler,self.target_mean)
self.target_std = np.append(filler,self.target_std)
filler = np.zeros(len_dataframe - len(self.predictions)) # startup_candle_count
self.predictions = np.append(filler, self.predictions)
self.do_predict = np.append(filler, self.do_predict)
self.target_mean = np.append(filler, self.target_mean)
self.target_std = np.append(filler, self.target_std)
return
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()

View File

@@ -1,20 +1,23 @@
import gc
import shutil
from abc import ABC
from pathlib import Path
from typing import Any, Dict, Tuple
import os
import numpy as np
import pandas as pd
from pandas import DataFrame
import shutil
import gc
from typing import Any, Dict, Optional, Tuple
from abc import ABC
from freqtrade.freqai.data_handler import DataHandler
pd.options.mode.chained_assignment = None
class IFreqaiModel(ABC):
"""
Class containing all tools for training and prediction in the strategy.
User models should inherit from this class as shown in
User models should inherit from this class as shown in
templates/ExamplePredictionModel.py where the user overrides
train(), predict(), fit(), and make_labels().
Author: Robert Caulk, rob.caulk@gmail.com
@@ -23,61 +26,71 @@ class IFreqaiModel(ABC):
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.freqai_info = config['freqai']
self.data_split_parameters = config['freqai']['data_split_parameters']
self.model_training_parameters = config['freqai']['model_training_parameters']
self.feature_parameters = config['freqai']['feature_parameters']
self.full_path = (str(config['user_data_dir'])+
"/models/"+self.freqai_info['full_timerange']+
'-'+self.freqai_info['identifier'])
self.metadata = {}
self.data = {}
self.freqai_info = config["freqai"]
self.data_split_parameters = config["freqai"]["data_split_parameters"]
self.model_training_parameters = config["freqai"]["model_training_parameters"]
self.feature_parameters = config["freqai"]["feature_parameters"]
self.full_path = Path(
config["user_data_dir"]
/ "models"
/ str(self.freqai_info["full_timerange"] + self.freqai_info["identifier"])
)
self.time_last_trained = None
self.current_time = None
self.model = None
self.predictions = None
if not os.path.exists(self.full_path):
os.mkdir(self.full_path)
shutil.copy(self.config['config_files'][0],self.full_path+"/"+self.config['config_files'][0])
if not self.full_path.is_dir():
self.full_path.mkdir(parents=True, exist_ok=True)
shutil.copy(
self.config["config_files"][0],
Path(self.full_path / self.config["config_files"][0]),
)
def start(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Entry point to the FreqaiModel, it will train a new model if
Entry point to the FreqaiModel, it will train a new model if
necesssary before making the prediction.
The backtesting and training paradigm is a sliding training window
with a following backtest window. Both windows slide according to the
length of the backtest window. This function is not intended to be
overridden by children of IFreqaiModel, but technically, it can be
length of the backtest window. This function is not intended to be
overridden by children of IFreqaiModel, but technically, it can be
if the user wishes to make deeper changes to the sliding window
logic.
:params:
:dataframe: Full dataframe coming from strategy - it contains entire
backtesting timerange + additional historical data necessary to train
backtesting timerange + additional historical data necessary to train
the model.
:metadata: pair metadataa coming from strategy.
:metadata: pair metadataa coming from strategy.
"""
self.pair = metadata['pair']
self.dh = DataHandler(self.config, dataframe, self.data)
self.pair = metadata["pair"]
self.dh = DataHandler(self.config, dataframe)
print('going to train',len(self.dh.training_timeranges),
'timeranges:',self.dh.training_timeranges)
print(
"going to train",
len(self.dh.training_timeranges),
"timeranges:",
self.dh.training_timeranges,
)
# Loop enforcing the sliding window training/backtesting paragigm
# tr_train is the training time range e.g. 1 historical month
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(self.dh.training_timeranges,
self.dh.backtesting_timeranges):
for tr_train, tr_backtest in zip(
self.dh.training_timeranges, self.dh.backtesting_timeranges
):
gc.collect()
#self.config['timerange'] = tr_train
self.dh.data = {} # clean the pair specific data between models
self.freqai_info['training_timerange'] = tr_train
# self.config['timerange'] = tr_train
self.dh.data = {} # clean the pair specific data between models
self.freqai_info["training_timerange"] = tr_train
dataframe_train = self.dh.slice_dataframe(tr_train, dataframe)
dataframe_backtest = self.dh.slice_dataframe(tr_backtest, dataframe)
print("training",self.pair,"for",tr_train)
self.dh.model_path = self.full_path+"/"+ 'sub-train'+'-'+str(tr_train)+'/'
print("training", self.pair, "for", tr_train)
# self.dh.model_path = self.full_path + "/" + "sub-train" + "-" + str(tr_train) + "/"
self.dh.model_path = Path(self.full_path / str("sub-train" + "-" + str(tr_train)))
if not self.model_exists(self.pair, training_timerange=tr_train):
self.model = self.train(dataframe_train, metadata)
self.dh.save_data(self.model)
@@ -86,8 +99,8 @@ class IFreqaiModel(ABC):
preds, do_preds = self.predict(dataframe_backtest)
self.dh.append_predictions(preds,do_preds,len(dataframe_backtest))
self.dh.append_predictions(preds, do_preds, len(dataframe_backtest))
self.dh.fill_predictions(len(dataframe))
return self.dh.predictions, self.dh.do_predict, self.dh.target_mean, self.dh.target_std
@@ -107,7 +120,7 @@ class IFreqaiModel(ABC):
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
@@ -116,40 +129,40 @@ class IFreqaiModel(ABC):
def fit(self) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:params:
:data_dictionary: the dictionary constructed by DataHandler to hold
:data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
return None
def predict(self) -> Optional[Tuple[DataFrame, DataFrame]]:
return Any
def predict(self, dataframe: DataFrame) -> Tuple[np.array, np.array]:
"""
Filter the prediction features data and predict with it.
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
:return:
:return:
:predictions: np.array of predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (PCA and DI index)
"""
return None
return np.array([]), np.array([])
def model_exists(self, pair: str, training_timerange: str = None) -> bool:
def model_exists(self, pair: str, training_timerange: str) -> bool:
"""
Given a pair and path, check if a model already exists
:param pair: pair e.g. BTC/USD
:param path: path to model
"""
coin,_ = pair.split('/')
self.dh.model_filename = f"cb_"+coin.lower()+"_"+training_timerange
file_exists = os.path.isfile(self.dh.model_path+
self.dh.model_filename+"_model.joblib")
coin, _ = pair.split("/")
self.dh.model_filename = "cb_" + coin.lower() + "_" + training_timerange
path_to_modelfile = Path(self.dh.model_path / str(self.dh.model_filename + "_model.joblib"))
file_exists = path_to_modelfile.is_file()
if file_exists:
print("Found model at", self.dh.model_path+self.dh.model_filename)
else: print("Could not find model at",
self.dh.model_path+self.dh.model_filename)
print("Found model at", self.dh.model_path / self.dh.model_filename)
else:
print("Could not find model at", self.dh.model_path / self.dh.model_filename)
return file_exists

View File

@@ -3,10 +3,10 @@ from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
class CustomModel:
"""
A bridge between the user defined IFreqaiModel class
A bridge between the user defined IFreqaiModel class
and the strategy.
"""
def __init__(self,config):
def __init__(self, config):
self.bridge = FreqaiModelResolver.load_freqaimodel(config)