merged with feat/short

This commit is contained in:
Sam Germain
2021-09-15 22:28:10 -06:00
parent 8e83cb4d64
commit 98b00e8daf
93 changed files with 673 additions and 2067 deletions

View File

@@ -22,7 +22,7 @@ if __version__ == 'develop':
# subprocess.check_output(
# ['git', 'log', '--format="%h"', '-n 1'],
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception:
except Exception: # pragma: no cover
# git not available, ignore
try:
# Try Fallback to freqtrade_commit file (created by CI while building docker image)

View File

@@ -11,11 +11,11 @@ from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data, start_download_data,
start_list_data)
from freqtrade.commands.deploy_commands import (start_create_userdir, start_install_ui,
start_new_hyperopt, start_new_strategy)
start_new_strategy)
from freqtrade.commands.hyperopt_commands import start_hyperopt_list, start_hyperopt_show
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_hyperopts,
start_list_markets, start_list_strategies,
start_list_timeframes, start_show_trades)
from freqtrade.commands.list_commands import (start_list_exchanges, start_list_markets,
start_list_strategies, start_list_timeframes,
start_show_trades)
from freqtrade.commands.optimize_commands import start_backtesting, start_edge, start_hyperopt
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import start_plot_dataframe, start_plot_profit

View File

@@ -55,8 +55,6 @@ ARGS_BUILD_CONFIG = ["config"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
@@ -92,10 +90,10 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-data",
"list-hyperopts", "hyperopt-list", "hyperopt-show",
"hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit", "show-trades"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
class Arguments:
@@ -174,12 +172,11 @@ class Arguments:
from freqtrade.commands import (start_backtesting, start_convert_data, start_create_userdir,
start_download_data, start_edge, start_hyperopt,
start_hyperopt_list, start_hyperopt_show, start_install_ui,
start_list_data, start_list_exchanges, start_list_hyperopts,
start_list_markets, start_list_strategies,
start_list_timeframes, start_new_config, start_new_hyperopt,
start_new_strategy, start_plot_dataframe, start_plot_profit,
start_show_trades, start_test_pairlist, start_trading,
start_webserver)
start_list_data, start_list_exchanges, start_list_markets,
start_list_strategies, start_list_timeframes,
start_new_config, start_new_strategy, start_plot_dataframe,
start_plot_profit, start_show_trades, start_test_pairlist,
start_trading, start_webserver)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
@@ -206,12 +203,6 @@ class Arguments:
build_config_cmd.set_defaults(func=start_new_config)
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
# add new-hyperopt subcommand
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
help="Create new hyperopt")
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
@@ -300,15 +291,6 @@ class Arguments:
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
# Add list-hyperopts subcommand
list_hyperopts_cmd = subparsers.add_parser(
'list-hyperopts',
help='Print available hyperopt classes.',
parents=[_common_parser],
)
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
# Add list-markets subcommand
list_markets_cmd = subparsers.add_parser(
'list-markets',

View File

@@ -61,13 +61,13 @@ def ask_user_config() -> Dict[str, Any]:
"type": "text",
"name": "stake_currency",
"message": "Please insert your stake currency:",
"default": 'BTC',
"default": 'USDT',
},
{
"type": "text",
"name": "stake_amount",
"message": f"Please insert your stake amount (Number or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "0.01",
"default": "100",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
"filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"'
if val == UNLIMITED_STAKE_AMOUNT
@@ -105,6 +105,8 @@ def ask_user_config() -> Dict[str, Any]:
"bittrex",
"kraken",
"ftx",
"kucoin",
"gateio",
Separator(),
"other",
],
@@ -128,6 +130,12 @@ def ask_user_config() -> Dict[str, Any]:
"message": "Insert Exchange Secret",
"when": lambda x: not x['dry_run']
},
{
"type": "password",
"name": "exchange_key_password",
"message": "Insert Exchange API Key password",
"when": lambda x: not x['dry_run'] and x['exchange_name'] == 'kucoin'
},
{
"type": "confirm",
"name": "telegram",

View File

@@ -1,7 +1,7 @@
"""
Definition of cli arguments used in arguments.py
"""
from argparse import ArgumentTypeError
from argparse import SUPPRESS, ArgumentTypeError
from freqtrade import __version__, constants
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN
@@ -203,13 +203,13 @@ AVAILABLE_CLI_OPTIONS = {
# Hyperopt
"hyperopt": Arg(
'--hyperopt',
help='Specify hyperopt class name which will be used by the bot.',
help=SUPPRESS,
metavar='NAME',
required=False,
),
"hyperopt_path": Arg(
'--hyperopt-path',
help='Specify additional lookup path for Hyperopt and Hyperopt Loss functions.',
help='Specify additional lookup path for Hyperopt Loss functions.',
metavar='PATH',
),
"epochs": Arg(

View File

@@ -7,7 +7,7 @@ import requests
from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import copy_sample_files, create_userdata_dir
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template, render_template_with_fallback
@@ -87,56 +87,6 @@ def start_new_strategy(args: Dict[str, Any]) -> None:
raise OperationalException("`new-strategy` requires --strategy to be set.")
def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: str) -> None:
"""
Deploys a new hyperopt template to hyperopt_path
"""
fallback = 'full'
buy_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_guards_{fallback}.j2",
)
sell_guards = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_guards_{fallback}.j2",
)
buy_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_buy_space_{fallback}.j2",
)
sell_space = render_template_with_fallback(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",
templatefallbackfile=f"subtemplates/hyperopt_sell_space_{fallback}.j2",
)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_guards,
"sell_guards": sell_guards,
"buy_space": buy_space,
"sell_space": sell_space,
})
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
hyperopt_path.write_text(strategy_text)
def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if 'hyperopt' in args and args['hyperopt']:
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args['hyperopt'] + '.py')
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Hyperopt Name.")
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
else:
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")
def clean_ui_subdir(directory: Path):
if directory.is_dir():
logger.info("Removing UI directory content.")

View File

@@ -102,3 +102,4 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
# TODO-lev: Hyperopt optimal leverage

View File

@@ -10,7 +10,7 @@ from colorama import init as colorama_init
from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.constants import USERPATH_STRATEGIES
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import market_is_active, validate_exchanges
@@ -92,25 +92,6 @@ def start_list_strategies(args: Dict[str, Any]) -> None:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_hyperopts(args: Dict[str, Any]) -> None:
"""
Print files with HyperOpt custom classes available in the directory
"""
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('hyperopt_path', config['user_data_dir'] / USERPATH_HYPEROPTS))
hyperopt_objs = HyperOptResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
hyperopt_objs = sorted(hyperopt_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in hyperopt_objs]))
else:
_print_objs_tabular(hyperopt_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None:
"""
Print timeframes available on Exchange
@@ -148,6 +129,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
quote_currencies = args.get('quote_currencies', [])
try:
# TODO-lev: Add leverage amount to get markets that support a certain leverage
pairs = exchange.get_markets(base_currencies=base_currencies,
quote_currencies=quote_currencies,
pairs_only=pairs_only,

View File

@@ -1,6 +1,6 @@
# flake8: noqa: F401
from freqtrade.configuration.check_exchange import check_exchange, remove_credentials
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.configuration.configuration import Configuration

View File

@@ -10,19 +10,6 @@ from freqtrade.exchange import (available_exchanges, is_exchange_known_ccxt,
logger = logging.getLogger(__name__)
def remove_credentials(config: Dict[str, Any]) -> None:
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.
Modifies the input dict!
"""
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
config['exchange']['password'] = ''
config['exchange']['uid'] = ''
config['dry_run'] = True
def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool:
"""
Check if the exchange name in the config file is supported by Freqtrade

View File

@@ -3,7 +3,6 @@ from typing import Any, Dict
from freqtrade.enums import RunMode
from .check_exchange import remove_credentials
from .config_validation import validate_config_consistency
from .configuration import Configuration
@@ -21,8 +20,8 @@ def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str
configuration = Configuration(args, method)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
remove_credentials(config)
# Ensure these modes are using Dry-run
config['dry_run'] = True
validate_config_consistency(config)
return config

View File

@@ -69,9 +69,7 @@ DUST_PER_COIN = {
# Source files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGIES,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': USERPATH_NOTEBOOKS,
}

View File

@@ -197,7 +197,8 @@ def _download_pair_history(pair: str, *,
timeframe=timeframe,
since_ms=since_ms if since_ms else
arrow.utcnow().shift(
days=-new_pairs_days).int_timestamp * 1000
days=-new_pairs_days).int_timestamp * 1000,
is_new_pair=data.empty
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,

View File

@@ -3,7 +3,7 @@ from enum import Enum
class SignalType(Enum):
"""
Enum to distinguish between buy and sell signals
Enum to distinguish between enter and exit signals
"""
BUY = "buy"
SELL = "sell"

View File

@@ -1,6 +1,6 @@
# flake8: noqa: F401
# isort: off
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.common import remove_credentials, MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
# isort: on
from freqtrade.exchange.bibox import Bibox

View File

@@ -3,6 +3,7 @@ import logging
from datetime import datetime
from typing import Dict, List, Optional
import arrow
import ccxt
from freqtrade.exceptions import (DDosProtection, InsufficientFundsError, InvalidOrderException,
@@ -19,6 +20,7 @@ class Binance(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"order_time_in_force": ['gtc', 'fok', 'ioc'],
"time_in_force_parameter": "timeInForce",
"ohlcv_candle_limit": 1000,
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
@@ -117,5 +119,25 @@ class Binance(Exchange):
if premium_index is None:
raise OperationalException("Funding rate cannot be None for Binance._get_funding_fee")
nominal_value = mark_price * contract_size
adjustment = nominal_value * _calculate_funding_rate(pair, premium_index)
funding_rate = self._calculate_funding_rate(pair, premium_index)
if funding_rate is None:
raise OperationalException("Funding rate should never be none on Binance")
adjustment = nominal_value * funding_rate
return adjustment
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, is_new_pair: bool
) -> List:
"""
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
Does not work for other exchanges, which don't return the earliest data when called with "0"
"""
if is_new_pair:
x = await self._async_get_candle_history(pair, timeframe, 0)
if x and x[2] and x[2][0] and x[2][0][0] > since_ms:
# Set starting date to first available candle.
since_ms = x[2][0][0]
logger.info(f"Candle-data for {pair} available starting with "
f"{arrow.get(since_ms // 1000).isoformat()}.")
return await super()._async_get_historic_ohlcv(
pair=pair, timeframe=timeframe, since_ms=since_ms, is_new_pair=is_new_pair)

View File

@@ -51,6 +51,19 @@ EXCHANGE_HAS_OPTIONAL = [
]
def remove_credentials(config) -> None:
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.
Modifies the input dict!
"""
if config.get('dry_run', False):
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
config['exchange']['password'] = ''
config['exchange']['uid'] = ''
def calculate_backoff(retrycount, max_retries):
"""
Calculate backoff

View File

@@ -26,9 +26,9 @@ from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFun
InvalidOrderException, OperationalException, PricingError,
RetryableOrderError, TemporaryError)
from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGES,
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED, retrier,
retrier_async)
from freqtrade.misc import deep_merge_dicts, safe_value_fallback2
EXCHANGE_HAS_OPTIONAL, EXCHANGE_HAS_REQUIRED,
remove_credentials, retrier, retrier_async)
from freqtrade.misc import chunks, deep_merge_dicts, safe_value_fallback2
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@@ -54,12 +54,16 @@ class Exchange:
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
_params: Dict = {}
# Additional headers - added to the ccxt object
_headers: Dict = {}
# Dict to specify which options each exchange implements
# This defines defaults, which can be selectively overridden by subclasses using _ft_has
# or by specifying them in the configuration.
_ft_has_default: Dict = {
"stoploss_on_exchange": False,
"order_time_in_force": ["gtc"],
"time_in_force_parameter": "timeInForce",
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_partial_candle": True,
@@ -101,6 +105,7 @@ class Exchange:
# Holds all open sell orders for dry_run
self._dry_run_open_orders: Dict[str, Any] = {}
remove_credentials(config)
if config['dry_run']:
logger.info('Instance is running with dry_run enabled')
@@ -170,7 +175,7 @@ class Exchange:
asyncio.get_event_loop().run_until_complete(self._api_async.close())
def _init_ccxt(self, exchange_config: Dict[str, Any], ccxt_module: CcxtModuleType = ccxt,
ccxt_kwargs: dict = None) -> ccxt.Exchange:
ccxt_kwargs: Dict = {}) -> ccxt.Exchange:
"""
Initialize ccxt with given config and return valid
ccxt instance.
@@ -189,6 +194,10 @@ class Exchange:
}
if ccxt_kwargs:
logger.info('Applying additional ccxt config: %s', ccxt_kwargs)
if self._headers:
# Inject static headers after the above output to not confuse users.
ccxt_kwargs = deep_merge_dicts({'headers': self._headers}, ccxt_kwargs)
if ccxt_kwargs:
ex_config.update(ccxt_kwargs)
try:
@@ -717,7 +726,8 @@ class Exchange:
params = self._params.copy()
if time_in_force != 'gtc' and ordertype != 'market':
params.update({'timeInForce': time_in_force})
param = self._ft_has.get('time_in_force_parameter', '')
params.update({param: time_in_force})
try:
# Set the precision for amount and price(rate) as accepted by the exchange
@@ -1186,7 +1196,7 @@ class Exchange:
# Historic data
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List:
since_ms: int, is_new_pair: bool = False) -> List:
"""
Get candle history using asyncio and returns the list of candles.
Handles all async work for this.
@@ -1198,7 +1208,7 @@ class Exchange:
"""
return asyncio.get_event_loop().run_until_complete(
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
since_ms=since_ms))
since_ms=since_ms, is_new_pair=is_new_pair))
def get_historic_ohlcv_as_df(self, pair: str, timeframe: str,
since_ms: int) -> DataFrame:
@@ -1213,11 +1223,12 @@ class Exchange:
return ohlcv_to_dataframe(ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=self._ohlcv_partial_candle)
async def _async_get_historic_ohlcv(self, pair: str,
timeframe: str,
since_ms: int) -> List:
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int, is_new_pair: bool
) -> List:
"""
Download historic ohlcv
:param is_new_pair: used by binance subclass to allow "fast" new pair downloading
"""
one_call = timeframe_to_msecs(timeframe) * self.ohlcv_candle_limit(timeframe)
@@ -1230,21 +1241,22 @@ class Exchange:
pair, timeframe, since) for since in
range(since_ms, arrow.utcnow().int_timestamp * 1000, one_call)]
results = await asyncio.gather(*input_coroutines, return_exceptions=True)
# Combine gathered results
data: List = []
for res in results:
if isinstance(res, Exception):
logger.warning("Async code raised an exception: %s", res.__class__.__name__)
continue
# Deconstruct tuple if it's not an exception
p, _, new_data = res
if p == pair:
data.extend(new_data)
# Chunk requests into batches of 100 to avoid overwelming ccxt Throttling
for input_coro in chunks(input_coroutines, 100):
results = await asyncio.gather(*input_coro, return_exceptions=True)
for res in results:
if isinstance(res, Exception):
logger.warning("Async code raised an exception: %s", res.__class__.__name__)
continue
# Deconstruct tuple if it's not an exception
p, _, new_data = res
if p == pair:
data.extend(new_data)
# Sort data again after extending the result - above calls return in "async order"
data = sorted(data, key=lambda x: x[0])
logger.info("Downloaded data for %s with length %s.", pair, len(data))
logger.info(f"Downloaded data for {pair} with length {len(data)}.")
return data
def refresh_latest_ohlcv(self, pair_list: ListPairsWithTimeframes, *,
@@ -1564,9 +1576,10 @@ class Exchange:
def _get_funding_fee(
self,
pair: str,
contract_size: float,
mark_price: float,
funding_rate: Optional[float],
premium_index: Optional[float],
# index_price: float,
# interest_rate: float)
) -> float:

View File

@@ -161,9 +161,12 @@ class Ftx(Exchange):
def _get_funding_fee(
self,
pair: str,
contract_size: float,
mark_price: float,
funding_rate: Optional[float],
premium_index: Optional[float],
# index_price: float,
# interest_rate: float)
) -> float:
"""
Calculates a single funding fee

View File

@@ -21,3 +21,5 @@ class Gateio(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
}
_headers = {'X-Gate-Channel-Id': 'freqtrade'}

View File

@@ -21,4 +21,6 @@ class Kucoin(Exchange):
_ft_has: Dict = {
"l2_limit_range": [20, 100],
"l2_limit_range_required": False,
"order_time_in_force": ['gtc', 'fok', 'ioc'],
"time_in_force_parameter": "timeInForce",
}

View File

@@ -67,6 +67,7 @@ class FreqtradeBot(LoggingMixin):
init_db(self.config.get('db_url', None), clean_open_orders=self.config['dry_run'])
# TODO-lev: Do anything with this?
self.wallets = Wallets(self.config, self.exchange)
PairLocks.timeframe = self.config['timeframe']
@@ -78,6 +79,7 @@ class FreqtradeBot(LoggingMixin):
# so anything in the Freqtradebot instance should be ready (initialized), including
# the initial state of the bot.
# Keep this at the end of this initialization method.
# TODO-lev: Do I need to consider the rpc, pairlists or dataprovider?
self.rpc: RPCManager = RPCManager(self)
self.pairlists = PairListManager(self.exchange, self.config)
@@ -100,7 +102,7 @@ class FreqtradeBot(LoggingMixin):
self.state = State[initial_state.upper()] if initial_state else State.STOPPED
# Protect sell-logic from forcesell and vice versa
self._sell_lock = Lock()
self._exit_lock = Lock()
LoggingMixin.__init__(self, logger, timeframe_to_seconds(self.strategy.timeframe))
if 'trading_mode' in self.config:
@@ -177,14 +179,14 @@ class FreqtradeBot(LoggingMixin):
self.strategy.analyze(self.active_pair_whitelist)
with self._sell_lock:
with self._exit_lock:
# Check and handle any timed out open orders
self.check_handle_timedout()
# Protect from collisions with forcesell.
# Protect from collisions with forceexit.
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
# while selling is in process, since telegram messages arrive in an different thread.
with self._sell_lock:
with self._exit_lock:
trades = Trade.get_open_trades()
# First process current opened trades (positions)
self.exit_positions(trades)
@@ -312,16 +314,16 @@ class FreqtradeBot(LoggingMixin):
def handle_insufficient_funds(self, trade: Trade):
"""
Determine if we ever opened a sell order for this trade.
If not, try update buy fees - otherwise "refind" the open order we obviously lost.
Determine if we ever opened a exiting order for this trade.
If not, try update entering fees - otherwise "refind" the open order we obviously lost.
"""
sell_order = trade.select_order('sell', None)
if sell_order:
self.refind_lost_order(trade)
else:
self.reupdate_buy_order_fees(trade)
self.reupdate_enter_order_fees(trade)
def reupdate_buy_order_fees(self, trade: Trade):
def reupdate_enter_order_fees(self, trade: Trade):
"""
Get buy order from database, and try to reupdate.
Handles trades where the initial fee-update did not work.
@@ -335,7 +337,7 @@ class FreqtradeBot(LoggingMixin):
def refind_lost_order(self, trade):
"""
Try refinding a lost trade.
Only used when InsufficientFunds appears on sell orders (stoploss or sell).
Only used when InsufficientFunds appears on exit orders (stoploss or long sell/short buy).
Tries to walk the stored orders and sell them off eventually.
"""
logger.info(f"Trying to refind lost order for {trade}")
@@ -346,7 +348,7 @@ class FreqtradeBot(LoggingMixin):
logger.debug(f"Order {order} is no longer open.")
continue
if order.ft_order_side == 'buy':
# Skip buy side - this is handled by reupdate_buy_order_fees
# Skip buy side - this is handled by reupdate_enter_order_fees
continue
try:
fo = self.exchange.fetch_order_or_stoploss_order(order.order_id, order.ft_pair,
@@ -373,7 +375,7 @@ class FreqtradeBot(LoggingMixin):
def enter_positions(self) -> int:
"""
Tries to execute buy orders for new trades (positions)
Tries to execute entry orders for new trades (positions)
"""
trades_created = 0
@@ -389,7 +391,7 @@ class FreqtradeBot(LoggingMixin):
if not whitelist:
logger.info("No currency pair in active pair whitelist, "
"but checking to sell open trades.")
"but checking to exit open trades.")
return trades_created
if PairLocks.is_global_lock():
lock = PairLocks.get_pair_longest_lock('*')
@@ -408,7 +410,7 @@ class FreqtradeBot(LoggingMixin):
logger.warning('Unable to create trade for %s: %s', pair, exception)
if not trades_created:
logger.debug("Found no buy signals for whitelisted currencies. Trying again...")
logger.debug("Found no enter signals for whitelisted currencies. Trying again...")
return trades_created
@@ -499,21 +501,21 @@ class FreqtradeBot(LoggingMixin):
time_in_force = self.strategy.order_time_in_force['buy']
if price:
buy_limit_requested = price
enter_limit_requested = price
else:
# Calculate price
proposed_buy_rate = self.exchange.get_rate(pair, refresh=True, side="buy")
proposed_enter_rate = self.exchange.get_rate(pair, refresh=True, side="buy")
custom_entry_price = strategy_safe_wrapper(self.strategy.custom_entry_price,
default_retval=proposed_buy_rate)(
default_retval=proposed_enter_rate)(
pair=pair, current_time=datetime.now(timezone.utc),
proposed_rate=proposed_buy_rate)
proposed_rate=proposed_enter_rate)
buy_limit_requested = self.get_valid_price(custom_entry_price, proposed_buy_rate)
enter_limit_requested = self.get_valid_price(custom_entry_price, proposed_enter_rate)
if not buy_limit_requested:
if not enter_limit_requested:
raise PricingError('Could not determine buy price.')
min_stake_amount = self.exchange.get_min_pair_stake_amount(pair, buy_limit_requested,
min_stake_amount = self.exchange.get_min_pair_stake_amount(pair, enter_limit_requested,
self.strategy.stoploss)
if not self.edge:
@@ -521,7 +523,7 @@ class FreqtradeBot(LoggingMixin):
stake_amount = strategy_safe_wrapper(self.strategy.custom_stake_amount,
default_retval=stake_amount)(
pair=pair, current_time=datetime.now(timezone.utc),
current_rate=buy_limit_requested, proposed_stake=stake_amount,
current_rate=enter_limit_requested, proposed_stake=stake_amount,
min_stake=min_stake_amount, max_stake=max_stake_amount)
stake_amount = self.wallets._validate_stake_amount(pair, stake_amount, min_stake_amount)
@@ -531,27 +533,29 @@ class FreqtradeBot(LoggingMixin):
logger.info(f"Buy signal found: about create a new trade for {pair} with stake_amount: "
f"{stake_amount} ...")
amount = stake_amount / buy_limit_requested
amount = stake_amount / enter_limit_requested
order_type = self.strategy.order_types['buy']
if forcebuy:
# Forcebuy can define a different ordertype
# TODO-lev: get a forceshort? What is this
order_type = self.strategy.order_types.get('forcebuy', order_type)
# TODO-lev: Will this work for shorting?
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
pair=pair, order_type=order_type, amount=amount, rate=buy_limit_requested,
pair=pair, order_type=order_type, amount=amount, rate=enter_limit_requested,
time_in_force=time_in_force, current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of buying {pair}")
return False
amount = self.exchange.amount_to_precision(pair, amount)
order = self.exchange.create_order(pair=pair, ordertype=order_type, side="buy",
amount=amount, rate=buy_limit_requested,
amount=amount, rate=enter_limit_requested,
time_in_force=time_in_force)
order_obj = Order.parse_from_ccxt_object(order, pair, 'buy')
order_id = order['id']
order_status = order.get('status', None)
# we assume the order is executed at the price requested
buy_limit_filled_price = buy_limit_requested
enter_limit_filled_price = enter_limit_requested
amount_requested = amount
if order_status == 'expired' or order_status == 'rejected':
@@ -574,13 +578,13 @@ class FreqtradeBot(LoggingMixin):
)
stake_amount = order['cost']
amount = safe_value_fallback(order, 'filled', 'amount')
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# in case of FOK the order may be filled immediately and fully
elif order_status == 'closed':
stake_amount = order['cost']
amount = safe_value_fallback(order, 'filled', 'amount')
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
@@ -598,9 +602,9 @@ class FreqtradeBot(LoggingMixin):
amount_requested=amount_requested,
fee_open=fee,
fee_close=fee,
open_rate=buy_limit_filled_price,
open_rate_requested=buy_limit_requested,
open_date=open_date,
open_rate=enter_limit_filled_price,
open_rate_requested=enter_limit_requested,
open_date=datetime.utcnow(),
exchange=self.exchange.id,
open_order_id=order_id,
strategy=self.strategy.get_strategy_name(),
@@ -621,13 +625,13 @@ class FreqtradeBot(LoggingMixin):
# Updating wallets
self.wallets.update()
self._notify_buy(trade, order_type)
self._notify_enter(trade, order_type)
return True
def _notify_buy(self, trade: Trade, order_type: str) -> None:
def _notify_enter(self, trade: Trade, order_type: str) -> None:
"""
Sends rpc notification when a buy occurred.
Sends rpc notification when a entry order occurred.
"""
msg = {
'trade_id': trade.id,
@@ -648,9 +652,9 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def _notify_buy_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
def _notify_enter_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a buy cancel occurred.
Sends rpc notification when a entry order cancel occurred.
"""
current_rate = self.exchange.get_rate(trade.pair, refresh=False, side="buy")
@@ -674,7 +678,7 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def _notify_buy_fill(self, trade: Trade) -> None:
def _notify_enter_fill(self, trade: Trade) -> None:
msg = {
'trade_id': trade.id,
'type': RPCMessageType.BUY_FILL,
@@ -696,7 +700,7 @@ class FreqtradeBot(LoggingMixin):
def exit_positions(self, trades: List[Any]) -> int:
"""
Tries to execute sell orders for open trades (positions)
Tries to execute exit orders for open trades (positions)
"""
trades_closed = 0
for trade in trades:
@@ -712,7 +716,7 @@ class FreqtradeBot(LoggingMixin):
trades_closed += 1
except DependencyException as exception:
logger.warning('Unable to sell trade %s: %s', trade.pair, exception)
logger.warning('Unable to exit trade %s: %s', trade.pair, exception)
# Updating wallets if any trade occurred
if trades_closed:
@@ -722,8 +726,8 @@ class FreqtradeBot(LoggingMixin):
def handle_trade(self, trade: Trade) -> bool:
"""
Sells the current pair if the threshold is reached and updates the trade record.
:return: True if trade has been sold, False otherwise
Sells/exits_short the current pair if the threshold is reached and updates the trade record.
:return: True if trade has been sold/exited_short, False otherwise
"""
if not trade.is_open:
raise DependencyException(f'Attempt to handle closed trade: {trade}')
@@ -731,7 +735,7 @@ class FreqtradeBot(LoggingMixin):
logger.debug('Handling %s ...', trade)
(buy, sell) = (False, False)
# TODO-lev: change to use_exit_signal, ignore_roi_if_enter_signal
if (self.config.get('use_sell_signal', True) or
self.config.get('ignore_roi_if_buy_signal', False)):
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
@@ -744,8 +748,8 @@ class FreqtradeBot(LoggingMixin):
)
logger.debug('checking sell')
sell_rate = self.exchange.get_rate(trade.pair, refresh=True, side="sell")
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
exit_rate = self.exchange.get_rate(trade.pair, refresh=True, side="sell")
if self._check_and_execute_exit(trade, exit_rate, buy, sell):
return True
logger.debug('Found no sell signal for %s.', trade)
@@ -775,7 +779,7 @@ class FreqtradeBot(LoggingMixin):
except InvalidOrderException as e:
trade.stoploss_order_id = None
logger.error(f'Unable to place a stoploss order on exchange. {e}')
logger.warning('Selling the trade forcefully')
logger.warning('Exiting the trade forcefully')
self.execute_trade_exit(trade, trade.stop_loss, sell_reason=SellCheckTuple(
sell_type=SellType.EMERGENCY_SELL))
@@ -789,6 +793,8 @@ class FreqtradeBot(LoggingMixin):
Check if trade is fulfilled in which case the stoploss
on exchange should be added immediately if stoploss on exchange
is enabled.
# TODO-lev: liquidation price will always be on exchange, even though
# TODO-lev: stoploss_on_exchange might not be enabled
"""
logger.debug('Handling stoploss on exchange %s ...', trade)
@@ -807,13 +813,14 @@ class FreqtradeBot(LoggingMixin):
# We check if stoploss order is fulfilled
if stoploss_order and stoploss_order['status'] in ('closed', 'triggered'):
# TODO-lev: Update to exit reason
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
self.update_trade_state(trade, trade.stoploss_order_id, stoploss_order,
stoploss_order=True)
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
reason='Auto lock')
self._notify_sell(trade, "stoploss")
self._notify_exit(trade, "stoploss")
return True
if trade.open_order_id or not trade.is_open:
@@ -822,7 +829,7 @@ class FreqtradeBot(LoggingMixin):
# The trade can be closed already (sell-order fill confirmation came in this iteration)
return False
# If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange
# If enter order is fulfilled but there is no stoploss, we add a stoploss on exchange
if not stoploss_order:
stoploss = self.edge.stoploss(pair=trade.pair) if self.edge else self.strategy.stoploss
stop_price = trade.open_rate * (1 + stoploss)
@@ -882,19 +889,19 @@ class FreqtradeBot(LoggingMixin):
logger.warning(f"Could not create trailing stoploss order "
f"for pair {trade.pair}.")
def _check_and_execute_sell(self, trade: Trade, sell_rate: float,
def _check_and_execute_exit(self, trade: Trade, exit_rate: float,
buy: bool, sell: bool) -> bool:
"""
Check and execute sell
Check and execute exit
"""
should_sell = self.strategy.should_sell(
trade, sell_rate, datetime.now(timezone.utc), buy, sell,
trade, exit_rate, datetime.now(timezone.utc), buy, sell,
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
)
if should_sell.sell_flag:
logger.info(f'Executing Sell for {trade.pair}. Reason: {should_sell.sell_type}')
self.execute_trade_exit(trade, sell_rate, should_sell)
self.execute_trade_exit(trade, exit_rate, should_sell)
return True
return False
@@ -937,7 +944,7 @@ class FreqtradeBot(LoggingMixin):
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['TIMEOUT'])
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['TIMEOUT'])
elif (order['side'] == 'sell' and (order['status'] == 'open' or fully_cancelled) and (
fully_cancelled
@@ -946,7 +953,7 @@ class FreqtradeBot(LoggingMixin):
default_retval=False)(pair=trade.pair,
trade=trade,
order=order))):
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['TIMEOUT'])
self.handle_cancel_exit(trade, order, constants.CANCEL_REASON['TIMEOUT'])
def cancel_all_open_orders(self) -> None:
"""
@@ -962,17 +969,18 @@ class FreqtradeBot(LoggingMixin):
continue
if order['side'] == 'buy':
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
elif order['side'] == 'sell':
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
self.handle_cancel_exit(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
Trade.commit()
def handle_cancel_buy(self, trade: Trade, order: Dict, reason: str) -> bool:
def handle_cancel_enter(self, trade: Trade, order: Dict, reason: str) -> bool:
"""
Buy cancel - cancel order
:return: True if order was fully cancelled
"""
# TODO-lev: Pay back borrowed/interest and transfer back on leveraged trades
was_trade_fully_canceled = False
# Cancelled orders may have the status of 'canceled' or 'closed'
@@ -1017,6 +1025,8 @@ class FreqtradeBot(LoggingMixin):
# to the order dict acquired before cancelling.
# we need to fall back to the values from order if corder does not contain these keys.
trade.amount = filled_amount
# TODO-lev: Check edge cases, we don't want to make leverage > 1.0 if we don't have to
trade.stake_amount = trade.amount * trade.open_rate
self.update_trade_state(trade, trade.open_order_id, corder)
@@ -1025,13 +1035,13 @@ class FreqtradeBot(LoggingMixin):
reason += f", {constants.CANCEL_REASON['PARTIALLY_FILLED']}"
self.wallets.update()
self._notify_buy_cancel(trade, order_type=self.strategy.order_types['buy'],
reason=reason)
self._notify_enter_cancel(trade, order_type=self.strategy.order_types['buy'],
reason=reason)
return was_trade_fully_canceled
def handle_cancel_sell(self, trade: Trade, order: Dict, reason: str) -> str:
def handle_cancel_exit(self, trade: Trade, order: Dict, reason: str) -> str:
"""
Sell cancel - cancel order and update trade
exit order cancel - cancel order and update trade
:return: Reason for cancel
"""
# if trade is not partially completed, just cancel the order
@@ -1063,14 +1073,14 @@ class FreqtradeBot(LoggingMixin):
reason = constants.CANCEL_REASON['PARTIALLY_FILLED_KEEP_OPEN']
self.wallets.update()
self._notify_sell_cancel(
self._notify_exit_cancel(
trade,
order_type=self.strategy.order_types['sell'],
reason=reason
)
return reason
def _safe_sell_amount(self, pair: str, amount: float) -> float:
def _safe_exit_amount(self, pair: str, amount: float) -> float:
"""
Get sellable amount.
Should be trade.amount - but will fall back to the available amount if necessary.
@@ -1081,6 +1091,7 @@ class FreqtradeBot(LoggingMixin):
:return: amount to sell
:raise: DependencyException: if available balance is not within 2% of the available amount.
"""
# TODO-lev Maybe update?
# Update wallets to ensure amounts tied up in a stoploss is now free!
self.wallets.update()
trade_base_currency = self.exchange.get_pair_base_currency(pair)
@@ -1093,7 +1104,7 @@ class FreqtradeBot(LoggingMixin):
return wallet_amount
else:
raise DependencyException(
f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}")
f"Not enough amount to exit trade. Trade-amount: {amount}, Wallet: {wallet_amount}")
def execute_trade_exit(self, trade: Trade, limit: float, sell_reason: SellCheckTuple) -> bool:
"""
@@ -1103,7 +1114,7 @@ class FreqtradeBot(LoggingMixin):
:param sell_reason: Reason the sell was triggered
:return: True if it succeeds (supported) False (not supported)
"""
sell_type = 'sell'
sell_type = 'sell' # TODO-lev: Update to exit
if sell_reason.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
sell_type = 'stoploss'
@@ -1142,23 +1153,26 @@ class FreqtradeBot(LoggingMixin):
# but we allow this value to be changed)
order_type = self.strategy.order_types.get("forcesell", order_type)
amount = self._safe_sell_amount(trade.pair, trade.amount)
amount = self._safe_exit_amount(trade.pair, trade.amount)
time_in_force = self.strategy.order_time_in_force['sell']
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
time_in_force=time_in_force, sell_reason=sell_reason.sell_reason,
current_time=datetime.now(timezone.utc)):
logger.info(f"User requested abortion of selling {trade.pair}")
current_time=datetime.now(timezone.utc)): # TODO-lev: Update to exit
logger.info(f"User requested abortion of exiting {trade.pair}")
return False
try:
# Execute sell and update trade record
order = self.exchange.create_order(pair=trade.pair,
ordertype=order_type, side="sell",
amount=amount, rate=limit,
time_in_force=time_in_force
)
order = self.exchange.create_order(
pair=trade.pair,
ordertype=order_type,
side="sell",
amount=amount,
rate=limit,
time_in_force=time_in_force
)
except InsufficientFundsError as e:
logger.warning(f"Unable to place order {e}.")
# Try to figure out what went wrong
@@ -1177,15 +1191,15 @@ class FreqtradeBot(LoggingMixin):
self.update_trade_state(trade, trade.open_order_id, order)
Trade.commit()
# Lock pair for one candle to prevent immediate re-buys
# Lock pair for one candle to prevent immediate re-trading
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
reason='Auto lock')
self._notify_sell(trade, order_type)
self._notify_exit(trade, order_type)
return True
def _notify_sell(self, trade: Trade, order_type: str, fill: bool = False) -> None:
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False) -> None:
"""
Sends rpc notification when a sell occurred.
"""
@@ -1227,7 +1241,7 @@ class FreqtradeBot(LoggingMixin):
# Send the message
self.rpc.send_msg(msg)
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
def _notify_exit_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
"""
Sends rpc notification when a sell cancel occurred.
"""
@@ -1322,13 +1336,13 @@ class FreqtradeBot(LoggingMixin):
# Updating wallets when order is closed
if not trade.is_open:
if not stoploss_order and not trade.open_order_id:
self._notify_sell(trade, '', True)
self._notify_exit(trade, '', True)
self.protections.stop_per_pair(trade.pair)
self.protections.global_stop()
self.wallets.update()
elif not trade.open_order_id:
# Buy fill
self._notify_buy_fill(trade)
self._notify_enter_fill(trade)
return False
@@ -1341,6 +1355,7 @@ class FreqtradeBot(LoggingMixin):
self.wallets.update()
if fee_abs != 0 and self.wallets.get_free(trade_base_currency) >= amount:
# Eat into dust if we own more than base currency
# TODO-lev: won't be in "base"(quote) currency for shorts
logger.info(f"Fee amount for {trade} was in base currency - "
f"Eating Fee {fee_abs} into dust.")
elif fee_abs != 0:
@@ -1417,6 +1432,7 @@ class FreqtradeBot(LoggingMixin):
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
# TODO-lev: leverage?
logger.warning(f"Amount {amount} does not match amount {trade.amount}")
raise DependencyException("Half bought? Amounts don't match")

View File

@@ -87,7 +87,7 @@ def setup_logging(config: Dict[str, Any]) -> None:
# syslog config. The messages should be equal for this.
handler_sl.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
logging.root.addHandler(handler_sl)
elif s[0] == 'journald':
elif s[0] == 'journald': # pragma: no cover
try:
from systemd.journal import JournaldLogHandler
except ImportError:

View File

@@ -9,7 +9,7 @@ from typing import Any, List
# check min. python version
if sys.version_info < (3, 7):
if sys.version_info < (3, 7): # pragma: no cover
sys.exit("Freqtrade requires Python version >= 3.7")
from freqtrade.commands import Arguments
@@ -46,7 +46,7 @@ def main(sysargv: List[str] = None) -> None:
"`freqtrade --help` or `freqtrade <command> --help`."
)
except SystemExit as e:
except SystemExit as e: # pragma: no cover
return_code = e
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
@@ -60,5 +60,5 @@ def main(sysargv: List[str] = None) -> None:
sys.exit(return_code)
if __name__ == '__main__':
if __name__ == '__main__': # pragma: no cover
main()

View File

@@ -11,7 +11,7 @@ from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.constants import DATETIME_PRINT_FORMAT
from freqtrade.data import history
from freqtrade.data.btanalysis import trade_list_to_dataframe
@@ -61,8 +61,7 @@ class Backtesting:
self.config = config
self.results: Optional[Dict[str, Any]] = None
# Reset keys for backtesting
remove_credentials(self.config)
config['dry_run'] = True
self.strategylist: List[IStrategy] = []
self.all_results: Dict[str, Dict] = {}

View File

@@ -7,7 +7,7 @@ import logging
from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.edge import Edge
from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
@@ -28,8 +28,8 @@ class EdgeCli:
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
# Reset keys for edge
remove_credentials(self.config)
# Ensure using dry-run
self.config['dry_run'] = True
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.strategy = StrategyResolver.load_strategy(self.config)

View File

@@ -22,6 +22,7 @@ from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
@@ -30,7 +31,7 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
# Suppress scikit-learn FutureWarnings from skopt
@@ -78,10 +79,10 @@ class Hyperopt:
if not self.config.get('hyperopt'):
self.custom_hyperopt = HyperOptAuto(self.config)
self.auto_hyperopt = True
else:
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.auto_hyperopt = False
raise OperationalException(
"Using separate Hyperopt files has been removed in 2021.9. Please convert "
"your existing Hyperopt file to the new Hyperoptable strategy interface")
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
@@ -103,31 +104,6 @@ class Hyperopt:
self.num_epochs_saved = 0
self.current_best_epoch: Optional[Dict[str, Any]] = None
if not self.auto_hyperopt:
# Populate "fallback" functions here
# (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
logger.warning(
"DEPRECATED: Using `populate_indicators()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_indicators = ( # type: ignore
self.custom_hyperopt.populate_indicators) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
logger.warning(
"DEPRECATED: Using `populate_buy_trend()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_buy_trend = ( # type: ignore
self.custom_hyperopt.populate_buy_trend) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
logger.warning(
"DEPRECATED: Using `populate_sell_trend()` in the hyperopt file is deprecated. "
"Please move these methods to your strategy."
)
self.backtesting.strategy.populate_sell_trend = ( # type: ignore
self.custom_hyperopt.populate_sell_trend) # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
@@ -256,7 +232,7 @@ class Hyperopt:
"""
Assign the dimensions in the hyperoptimization space.
"""
if self.auto_hyperopt and HyperoptTools.has_space(self.config, 'protection'):
if HyperoptTools.has_space(self.config, 'protection'):
# Protections can only be optimized when using the Parameter interface
logger.debug("Hyperopt has 'protection' space")
# Enable Protections if protection space is selected.
@@ -285,6 +261,15 @@ class Hyperopt:
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
+ self.roi_space + self.stoploss_space + self.trailing_space)
def assign_params(self, params_dict: Dict, category: str) -> None:
"""
Assign hyperoptable parameters
"""
for attr_name, attr in self.backtesting.strategy.enumerate_parameters(category):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
"""
Used Optimize function.
@@ -296,18 +281,13 @@ class Hyperopt:
# Apply parameters
if HyperoptTools.has_space(self.config, 'buy'):
self.backtesting.strategy.advise_buy = ( # type: ignore
self.custom_hyperopt.buy_strategy_generator(params_dict))
self.assign_params(params_dict, 'buy')
if HyperoptTools.has_space(self.config, 'sell'):
self.backtesting.strategy.advise_sell = ( # type: ignore
self.custom_hyperopt.sell_strategy_generator(params_dict))
self.assign_params(params_dict, 'sell')
if HyperoptTools.has_space(self.config, 'protection'):
for attr_name, attr in self.backtesting.strategy.enumerate_parameters('protection'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params_dict[attr_name]
self.assign_params(params_dict, 'protection')
if HyperoptTools.has_space(self.config, 'roi'):
self.backtesting.strategy.minimal_roi = ( # type: ignore
@@ -517,11 +497,10 @@ class Hyperopt:
f"saved to '{self.results_file}'.")
if self.current_best_epoch:
if self.auto_hyperopt:
HyperoptTools.try_export_params(
self.config,
self.backtesting.strategy.get_strategy_name(),
self.current_best_epoch)
HyperoptTools.try_export_params(
self.config,
self.backtesting.strategy.get_strategy_name(),
self.current_best_epoch)
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
self.print_json)

View File

@@ -4,9 +4,9 @@ This module implements a convenience auto-hyperopt class, which can be used toge
that implement IHyperStrategy interface.
"""
from contextlib import suppress
from typing import Any, Callable, Dict, List
from typing import Callable, Dict, List
from pandas import DataFrame
from freqtrade.exceptions import OperationalException
with suppress(ImportError):
@@ -15,6 +15,14 @@ with suppress(ImportError):
from freqtrade.optimize.hyperopt_interface import IHyperOpt
def _format_exception_message(space: str) -> str:
raise OperationalException(
f"The '{space}' space is included into the hyperoptimization "
f"but no parameter for this space was not found in your Strategy. "
f"Please make sure to have parameters for this space enabled for optimization "
f"or remove the '{space}' space from hyperoptimization.")
class HyperOptAuto(IHyperOpt):
"""
This class delegates functionality to Strategy(IHyperStrategy) and Strategy.HyperOpt classes.
@@ -22,26 +30,6 @@ class HyperOptAuto(IHyperOpt):
sell_indicator_space methods, but other hyperopt methods can be overridden as well.
"""
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def populate_buy_trend(dataframe: DataFrame, metadata: dict):
for attr_name, attr in self.strategy.enumerate_parameters('buy'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params[attr_name]
return self.strategy.populate_buy_trend(dataframe, metadata)
return populate_buy_trend
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
def populate_sell_trend(dataframe: DataFrame, metadata: dict):
for attr_name, attr in self.strategy.enumerate_parameters('sell'):
if attr.optimize:
# noinspection PyProtectedMember
attr.value = params[attr_name]
return self.strategy.populate_sell_trend(dataframe, metadata)
return populate_sell_trend
def _get_func(self, name) -> Callable:
"""
Return a function defined in Strategy.HyperOpt class, or one defined in super() class.
@@ -60,21 +48,22 @@ class HyperOptAuto(IHyperOpt):
if attr.optimize:
yield attr.get_space(attr_name)
def _get_indicator_space(self, category, fallback_method_name):
def _get_indicator_space(self, category):
# TODO: is this necessary, or can we call "generate_space" directly?
indicator_space = list(self._generate_indicator_space(category))
if len(indicator_space) > 0:
return indicator_space
else:
return self._get_func(fallback_method_name)()
_format_exception_message(category)
def indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('buy', 'indicator_space')
return self._get_indicator_space('buy')
def sell_indicator_space(self) -> List['Dimension']:
return self._get_indicator_space('sell', 'sell_indicator_space')
return self._get_indicator_space('sell')
def protection_space(self) -> List['Dimension']:
return self._get_indicator_space('protection', 'protection_space')
return self._get_indicator_space('protection')
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
return self._get_func('generate_roi_table')(params)

View File

@@ -5,11 +5,10 @@ This module defines the interface to apply for hyperopt
import logging
import math
from abc import ABC
from typing import Any, Callable, Dict, List
from typing import Dict, List
from skopt.space import Categorical, Dimension, Integer
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import round_dict
from freqtrade.optimize.space import SKDecimal
@@ -19,13 +18,6 @@ from freqtrade.strategy import IStrategy
logger = logging.getLogger(__name__)
def _format_exception_message(method: str, space: str) -> str:
return (f"The '{space}' space is included into the hyperoptimization "
f"but {method}() method is not found in your "
f"custom Hyperopt class. You should either implement this "
f"method or remove the '{space}' space from hyperoptimization.")
class IHyperOpt(ABC):
"""
Interface for freqtrade hyperopt
@@ -45,37 +37,6 @@ class IHyperOpt(ABC):
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
IHyperOpt.timeframe = str(config['timeframe'])
def buy_strategy_generator(self, params: Dict[str, Any]) -> Callable:
"""
Create a buy strategy generator.
"""
raise OperationalException(_format_exception_message('buy_strategy_generator', 'buy'))
def sell_strategy_generator(self, params: Dict[str, Any]) -> Callable:
"""
Create a sell strategy generator.
"""
raise OperationalException(_format_exception_message('sell_strategy_generator', 'sell'))
def protection_space(self) -> List[Dimension]:
"""
Create a protection space.
Only supported by the Parameter interface.
"""
raise OperationalException(_format_exception_message('indicator_space', 'protection'))
def indicator_space(self) -> List[Dimension]:
"""
Create an indicator space.
"""
raise OperationalException(_format_exception_message('indicator_space', 'buy'))
def sell_indicator_space(self) -> List[Dimension]:
"""
Create a sell indicator space.
"""
raise OperationalException(_format_exception_message('sell_indicator_space', 'sell'))
def generate_roi_table(self, params: Dict) -> Dict[int, float]:
"""
Create a ROI table.

View File

@@ -555,7 +555,7 @@ class LocalTrade():
if self.is_open:
payment = "BUY" if self.is_short else "SELL"
# TODO-lev: On shorts, you buy a little bit more than the amount (amount + interest)
# This wll only print the original amount
# TODO-lev: This wll only print the original amount
logger.info(f'{order_type.upper()}_{payment} has been fulfilled for {self}.')
# TODO-lev: Double check this
self.close(safe_value_fallback(order, 'average', 'price'))

View File

@@ -18,6 +18,7 @@ class PrecisionFilter(IPairList):
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
# TODO-lev: Liquidation price?
if 'stoploss' not in self._config:
raise OperationalException(
'PrecisionFilter can only work with stoploss defined. Please add the '

View File

@@ -123,7 +123,7 @@ class VolumePairList(IPairList):
filtered_tickers = [
v for k, v in tickers.items()
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
and v[self._sort_key] is not None)]
and (self._use_range or v[self._sort_key] is not None))]
pairlist = [s['symbol'] for s in filtered_tickers]
pairlist = self.filter_pairlist(pairlist, tickers)

View File

@@ -17,7 +17,7 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
if keep_invalid:
for pair_wc in wildcardpl:
try:
comp = re.compile(pair_wc)
comp = re.compile(pair_wc, re.IGNORECASE)
result_partial = [
pair for pair in available_pairs if re.fullmatch(comp, pair)
]
@@ -33,7 +33,7 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
else:
for pair_wc in wildcardpl:
try:
comp = re.compile(pair_wc)
comp = re.compile(pair_wc, re.IGNORECASE)
result += [
pair for pair in available_pairs if re.fullmatch(comp, pair)
]

View File

@@ -127,7 +127,7 @@ class PairListManager():
:return: pairlist - whitelisted pairs
"""
try:
# TODO-lev: filter for pairlists that are able to trade at the desired leverage
whitelist = expand_pairlist(pairlist, self._exchange.get_markets().keys(), keep_invalid)
except ValueError as err:
logger.error(f"Pair whitelist contains an invalid Wildcard: {err}")

View File

@@ -36,6 +36,7 @@ class MaxDrawdown(IProtection):
"""
LockReason to use
"""
# TODO-lev: < for shorts?
return (f'{drawdown} > {self._max_allowed_drawdown} in {self.lookback_period_str}, '
f'locking for {self.stop_duration_str}.')

View File

@@ -32,6 +32,7 @@ class StoplossGuard(IProtection):
def _reason(self) -> str:
"""
LockReason to use
#TODO-lev: check if min is the right word for shorts
"""
return (f'{self._trade_limit} stoplosses in {self._lookback_period} min, '
f'locking for {self._stop_duration} min.')
@@ -51,6 +52,7 @@ class StoplossGuard(IProtection):
# if pair:
# filters.append(Trade.pair == pair)
# trades = Trade.get_trades(filters).all()
# TODO-lev: Liquidation price?
trades1 = Trade.get_trades_proxy(pair=pair, is_open=False, close_date=look_back_until)
trades = [trade for trade in trades1 if (str(trade.sell_reason) in (

View File

@@ -9,7 +9,6 @@ from typing import Dict
from freqtrade.constants import HYPEROPT_LOSS_BUILTIN, USERPATH_HYPEROPTS
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.resolvers import IResolver
@@ -17,43 +16,6 @@ from freqtrade.resolvers import IResolver
logger = logging.getLogger(__name__)
class HyperOptResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt class
"""
object_type = IHyperOpt
object_type_str = "Hyperopt"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = None
@staticmethod
def load_hyperopt(config: Dict) -> IHyperOpt:
"""
Load the custom hyperopt class from config parameter
:param config: configuration dictionary
"""
if not config.get('hyperopt'):
raise OperationalException("No Hyperopt set. Please use `--hyperopt` to specify "
"the Hyperopt class to use.")
hyperopt_name = config['hyperopt']
hyperopt = HyperOptResolver.load_object(hyperopt_name, config,
kwargs={'config': config},
extra_dir=config.get('hyperopt_path'))
if not hasattr(hyperopt, 'populate_indicators'):
logger.info("Hyperopt class does not provide populate_indicators() method. "
"Using populate_indicators from the strategy.")
if not hasattr(hyperopt, 'populate_buy_trend'):
logger.info("Hyperopt class does not provide populate_buy_trend() method. "
"Using populate_buy_trend from the strategy.")
if not hasattr(hyperopt, 'populate_sell_trend'):
logger.info("Hyperopt class does not provide populate_sell_trend() method. "
"Using populate_sell_trend from the strategy.")
return hyperopt
class HyperOptLossResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt loss class

View File

@@ -5,6 +5,20 @@ import time
import uvicorn
def asyncio_setup() -> None: # pragma: no cover
# Set eventloop for win32 setups
# Reverts a change done in uvicorn 0.15.0 - which now sets the eventloop
# via policy.
import sys
if sys.version_info >= (3, 8) and sys.platform == "win32":
import asyncio
import selectors
selector = selectors.SelectSelector()
loop = asyncio.SelectorEventLoop(selector)
asyncio.set_event_loop(loop)
class UvicornServer(uvicorn.Server):
"""
Multithreaded server - as found in https://github.com/encode/uvicorn/issues/742
@@ -28,7 +42,7 @@ class UvicornServer(uvicorn.Server):
try:
import uvloop # noqa
except ImportError: # pragma: no cover
from uvicorn.loops.asyncio import asyncio_setup
asyncio_setup()
else:
asyncio.set_event_loop(uvloop.new_event_loop())

View File

@@ -36,6 +36,7 @@ class RPCException(Exception):
raise RPCException('*Status:* `no active trade`')
"""
# TODO-lev: Add new configuration options introduced with leveraged/short trading
def __init__(self, message: str) -> None:
super().__init__(self)
@@ -403,8 +404,11 @@ class RPC:
# Doing the sum is not right - overall profit needs to be based on initial capital
profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0
starting_balance = self._freqtrade.wallets.get_starting_balance()
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
profit_closed_ratio_fromstart = 0
profit_all_ratio_fromstart = 0
if starting_balance:
profit_closed_ratio_fromstart = profit_closed_coin_sum / starting_balance
profit_all_ratio_fromstart = profit_all_coin_sum / starting_balance
profit_all_fiat = self._fiat_converter.convert_amount(
profit_all_coin_sum,
@@ -545,12 +549,12 @@ class RPC:
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
if order['side'] == 'buy':
fully_canceled = self._freqtrade.handle_cancel_buy(
fully_canceled = self._freqtrade.handle_cancel_enter(
trade, order, CANCEL_REASON['FORCE_SELL'])
if order['side'] == 'sell':
# Cancel order - so it is placed anew with a fresh price.
self._freqtrade.handle_cancel_sell(trade, order, CANCEL_REASON['FORCE_SELL'])
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_SELL'])
if not fully_canceled:
# Get current rate and execute sell
@@ -563,7 +567,7 @@ class RPC:
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
with self._freqtrade._sell_lock:
with self._freqtrade._exit_lock:
if trade_id == 'all':
# Execute sell for all open orders
for trade in Trade.get_open_trades():
@@ -625,7 +629,7 @@ class RPC:
Handler for delete <id>.
Delete the given trade and close eventually existing open orders.
"""
with self._freqtrade._sell_lock:
with self._freqtrade._exit_lock:
c_count = 0
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
if not trade:

View File

@@ -168,7 +168,7 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
Check buy enter timeout function callback.
This method can be used to override the enter-timeout.
It is called whenever a limit buy/short order has been created,
It is called whenever a limit entry order has been created,
and is not yet fully filled.
Configuration options in `unfilledtimeout` will be verified before this,
so ensure to set these timeouts high enough.
@@ -178,7 +178,7 @@ class IStrategy(ABC, HyperStrategyMixin):
:param trade: trade object.
:param order: Order dictionary as returned from CCXT.
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
:return bool: When True is returned, then the buy/short-order is cancelled.
:return bool: When True is returned, then the entry order is cancelled.
"""
return False
@@ -212,7 +212,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, **kwargs) -> bool:
"""
Called right before placing a buy/short order.
Called right before placing a entry order.
Timing for this function is critical, so avoid doing heavy computations or
network requests in this method.
@@ -236,7 +236,7 @@ class IStrategy(ABC, HyperStrategyMixin):
rate: float, time_in_force: str, sell_reason: str,
current_time: datetime, **kwargs) -> bool:
"""
Called right before placing a regular sell/exit_short order.
Called right before placing a regular exit order.
Timing for this function is critical, so avoid doing heavy computations or
network requests in this method.
@@ -410,7 +410,7 @@ class IStrategy(ABC, HyperStrategyMixin):
Checks if a pair is currently locked
The 2nd, optional parameter ensures that locks are applied until the new candle arrives,
and not stop at 14:00:00 - while the next candle arrives at 14:00:02 leaving a gap
of 2 seconds for a buy/short to happen on an old signal.
of 2 seconds for an entry order to happen on an old signal.
:param pair: "Pair to check"
:param candle_date: Date of the last candle. Optional, defaults to current date
:returns: locking state of the pair in question.
@@ -426,7 +426,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Parses the given candle (OHLCV) data and returns a populated DataFrame
add several TA indicators and buy/short signal to it
add several TA indicators and entry order signal to it
:param dataframe: Dataframe containing data from exchange
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
@@ -541,7 +541,7 @@ class IStrategy(ABC, HyperStrategyMixin):
dataframe: DataFrame
) -> Tuple[bool, bool, Optional[str]]:
"""
Calculates current signal based based on the buy/short or sell/exit_short
Calculates current signal based based on the entry order or exit order
columns of the dataframe.
Used by Bot to get the signal to buy, sell, short, or exit_short
:param pair: pair in format ANT/BTC
@@ -606,7 +606,7 @@ class IStrategy(ABC, HyperStrategyMixin):
sell: bool, low: float = None, high: float = None,
force_stoploss: float = 0) -> SellCheckTuple:
"""
This function evaluates if one of the conditions required to trigger a sell/exit_short
This function evaluates if one of the conditions required to trigger an exit order
has been reached, which can either be a stop-loss, ROI or exit-signal.
:param low: Only used during backtesting to simulate (long)stoploss/(short)ROI
:param high: Only used during backtesting, to simulate (short)stoploss/(long)ROI
@@ -810,7 +810,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy/short signal for the given dataframe
Based on TA indicators, populates the entry order signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param metadata: Additional information dictionary, with details like the
@@ -829,7 +829,7 @@ class IStrategy(ABC, HyperStrategyMixin):
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell/exit_short signal for the given dataframe
Based on TA indicators, populates the exit order signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param metadata: Additional information dictionary, with details like the

View File

@@ -1,3 +1,10 @@
{%set volume_pairlist = '{
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"min_value": 0,
"refresh_period": 1800
}' %}
{
"max_open_trades": {{ max_open_trades }},
"stake_currency": "{{ stake_currency }}",
@@ -29,7 +36,7 @@
},
{{ exchange | indent(4) }},
"pairlists": [
{"method": "StaticPairList"}
{{ '{"method": "StaticPairList"}' if exchange_name == 'bittrex' else volume_pairlist }}
],
"edge": {
"enabled": false,

View File

@@ -1,137 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class {{ hyperopt }}(IHyperOpt):
"""
This is a Hyperopt template to get you started.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
{{ buy_space | indent(12) }}
]
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ buy_guards | indent(12) }}
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower':
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
{{ sell_space | indent(12) }}
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
{{ sell_guards | indent(12) }}
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_upper':
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'], dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
conditions.append(qtpylib.crossed_above(
dataframe['sar'], dataframe['close']
))
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend

View File

@@ -1,180 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# isort: skip_file
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class SampleHyperOpt(IHyperOpt):
"""
This is a sample Hyperopt to inspire you.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
An easier way to get a new hyperopt file is by using
`freqtrade new-hyperopt --hyperopt MyCoolHyperopt`.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need 'roi' and 'stoploss' spaces that
differ from the defaults offered by Freqtrade.
Sample implementation of these methods will be copied to `user_data/hyperopts` when
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
or is available online under the following URL:
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
"""
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['boll', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
long_conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
long_conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
long_conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
long_conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
long_conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'boll':
long_conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
long_conditions.append(qtpylib.crossed_above(
dataframe['macd'],
dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
long_conditions.append(qtpylib.crossed_above(
dataframe['close'],
dataframe['sar']
))
# Check that volume is not 0
long_conditions.append(dataframe['volume'] > 0)
if long_conditions:
dataframe.loc[
reduce(lambda x, y: x & y, long_conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-boll',
'sell-macd_cross_signal',
'sell-sar_reversal'],
name='sell-trigger'
)
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
exit_long_conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
exit_long_conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
exit_long_conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
exit_long_conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
exit_long_conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-boll':
exit_long_conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
exit_long_conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'],
dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
exit_long_conditions.append(qtpylib.crossed_above(
dataframe['sar'],
dataframe['close']
))
# Check that volume is not 0
exit_long_conditions.append(dataframe['volume'] > 0)
if exit_long_conditions:
dataframe.loc[
reduce(lambda x, y: x & y, exit_long_conditions),
'sell'] = 1
return dataframe
return populate_sell_trend

View File

@@ -1,272 +0,0 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# isort: skip_file
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class AdvancedSampleHyperOpt(IHyperOpt):
"""
This is a sample hyperopt to inspire you.
Feel free to customize it.
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The methods roi_space, generate_roi_table and stoploss_space are not required
and are provided by default.
However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
This sample illustrates how to override these methods.
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
This method can also be loaded from the strategy, if it doesn't exist in the hyperopt class.
"""
dataframe['adx'] = ta.ADX(dataframe)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['mfi'] = ta.MFI(dataframe)
dataframe['rsi'] = ta.RSI(dataframe)
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['boll', 'macd_cross_signal', 'sar_reversal'], name='trigger')
]
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
long_conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
long_conditions.append(dataframe['mfi'] < params['mfi-value'])
if 'fastd-enabled' in params and params['fastd-enabled']:
long_conditions.append(dataframe['fastd'] < params['fastd-value'])
if 'adx-enabled' in params and params['adx-enabled']:
long_conditions.append(dataframe['adx'] > params['adx-value'])
if 'rsi-enabled' in params and params['rsi-enabled']:
long_conditions.append(dataframe['rsi'] < params['rsi-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'boll':
long_conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
if params['trigger'] == 'macd_cross_signal':
long_conditions.append(qtpylib.crossed_above(
dataframe['macd'], dataframe['macdsignal']
))
if params['trigger'] == 'sar_reversal':
long_conditions.append(qtpylib.crossed_above(
dataframe['close'], dataframe['sar']
))
# Check that volume is not 0
long_conditions.append(dataframe['volume'] > 0)
if long_conditions:
dataframe.loc[
reduce(lambda x, y: x & y, long_conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-boll',
'sell-macd_cross_signal',
'sell-sar_reversal'],
name='sell-trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
"""
# print(params)
exit_long_conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
exit_long_conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
exit_long_conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
exit_long_conditions.append(dataframe['adx'] < params['sell-adx-value'])
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
exit_long_conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-boll':
exit_long_conditions.append(dataframe['close'] > dataframe['bb_upperband'])
if params['sell-trigger'] == 'sell-macd_cross_signal':
exit_long_conditions.append(qtpylib.crossed_above(
dataframe['macdsignal'],
dataframe['macd']
))
if params['sell-trigger'] == 'sell-sar_reversal':
exit_long_conditions.append(qtpylib.crossed_above(
dataframe['sar'],
dataframe['close']
))
# Check that volume is not 0
exit_long_conditions.append(dataframe['volume'] > 0)
if exit_long_conditions:
dataframe.loc[
reduce(lambda x, y: x & y, exit_long_conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
This implementation generates the default legacy Freqtrade ROI tables.
Change it if you need different number of steps in the generated
ROI tables or other structure of the ROI tables.
Please keep it aligned with parameters in the 'roi' optimization
hyperspace defined by the roi_space method.
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
Override it if you need some different ranges for the parameters in the
'roi' optimization hyperspace.
Please keep it aligned with the implementation of the
generate_roi_table method.
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
SKDecimal(0.01, 0.04, decimals=3, name='roi_p1'),
SKDecimal(0.01, 0.07, decimals=3, name='roi_p2'),
SKDecimal(0.01, 0.20, decimals=3, name='roi_p3'),
]
@staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Override it if you need some different range for the parameter in the
'stoploss' optimization hyperspace.
"""
return [
SKDecimal(-0.35, -0.02, decimals=3, name='stoploss'),
]
@staticmethod
def trailing_space() -> List[Dimension]:
"""
Create a trailing stoploss space.
You may override it in your custom Hyperopt class.
"""
return [
# It was decided to always set trailing_stop is to True if the 'trailing' hyperspace
# is used. Otherwise hyperopt will vary other parameters that won't have effect if
# trailing_stop is set False.
# This parameter is included into the hyperspace dimensions rather than assigning
# it explicitly in the code in order to have it printed in the results along with
# other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'),
SKDecimal(0.01, 0.35, decimals=3, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
SKDecimal(0.001, 0.1, decimals=3, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]

View File

@@ -8,34 +8,8 @@
"rateLimit": 200
},
"pair_whitelist": [
"ALGO/BTC",
"ATOM/BTC",
"BAT/BTC",
"BCH/BTC",
"BRD/BTC",
"EOS/BTC",
"ETH/BTC",
"IOTA/BTC",
"LINK/BTC",
"LTC/BTC",
"NEO/BTC",
"NXS/BTC",
"XMR/BTC",
"XRP/BTC",
"XTZ/BTC"
],
"pair_blacklist": [
"BNB/BTC",
"BNB/BUSD",
"BNB/ETH",
"BNB/EUR",
"BNB/NGN",
"BNB/PAX",
"BNB/RUB",
"BNB/TRY",
"BNB/TUSD",
"BNB/USDC",
"BNB/USDS",
"BNB/USDT"
"BNB/.*"
]
}

View File

@@ -15,16 +15,6 @@
"rateLimit": 500
},
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"XRP/BTC",
"TRX/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
]

View File

@@ -7,28 +7,10 @@
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 1000
// Enable the below for downoading data.
//"rateLimit": 3100
},
"pair_whitelist": [
"ADA/EUR",
"ATOM/EUR",
"BAT/EUR",
"BCH/EUR",
"BTC/EUR",
"DAI/EUR",
"DASH/EUR",
"EOS/EUR",
"ETC/EUR",
"ETH/EUR",
"LINK/EUR",
"LTC/EUR",
"QTUM/EUR",
"REP/EUR",
"WAVES/EUR",
"XLM/EUR",
"XMR/EUR",
"XRP/EUR",
"XTZ/EUR",
"ZEC/EUR"
],
"pair_blacklist": [

View File

@@ -0,0 +1,18 @@
"exchange": {
"name": "{{ exchange_name | lower }}",
"key": "{{ exchange_key }}",
"secret": "{{ exchange_secret }}",
"password": "{{ exchange_key_password }}",
"ccxt_config": {
"enableRateLimit": true
"rateLimit": 200
},
"ccxt_async_config": {
"enableRateLimit": true,
"rateLimit": 200
},
"pair_whitelist": [
],
"pair_blacklist": [
]
}

View File

@@ -1,8 +0,0 @@
if params.get('mfi-enabled'):
conditions.append(dataframe['mfi'] < params['mfi-value'])
if params.get('fastd-enabled'):
conditions.append(dataframe['fastd'] < params['fastd-value'])
if params.get('adx-enabled'):
conditions.append(dataframe['adx'] > params['adx-value'])
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])

View File

@@ -1,2 +0,0 @@
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])

View File

@@ -1,9 +0,0 @@
Integer(10, 25, name='mfi-value'),
Integer(15, 45, name='fastd-value'),
Integer(20, 50, name='adx-value'),
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='mfi-enabled'),
Categorical([True, False], name='fastd-enabled'),
Categorical([True, False], name='adx-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')

View File

@@ -1,3 +0,0 @@
Integer(20, 40, name='rsi-value'),
Categorical([True, False], name='rsi-enabled'),
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')

View File

@@ -1,8 +0,0 @@
if params.get('sell-mfi-enabled'):
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
if params.get('sell-fastd-enabled'):
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
if params.get('sell-adx-enabled'):
conditions.append(dataframe['adx'] < params['sell-adx-value'])
if params.get('sell-rsi-enabled'):
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

View File

@@ -1,2 +0,0 @@
if params.get('sell-rsi-enabled'):
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])

View File

@@ -1,11 +0,0 @@
Integer(75, 100, name='sell-mfi-value'),
Integer(50, 100, name='sell-fastd-value'),
Integer(50, 100, name='sell-adx-value'),
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-mfi-enabled'),
Categorical([True, False], name='sell-fastd-enabled'),
Categorical([True, False], name='sell-adx-enabled'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')

View File

@@ -1,5 +0,0 @@
Integer(60, 100, name='sell-rsi-value'),
Categorical([True, False], name='sell-rsi-enabled'),
Categorical(['sell-bb_upper',
'sell-macd_cross_signal',
'sell-sar_reversal'], name='sell-trigger')