Merge branch 'develop' into db_keep_orders

This commit is contained in:
Matthias
2020-09-11 20:01:28 +02:00
11 changed files with 233 additions and 22 deletions

View File

@@ -435,7 +435,7 @@ def test_api_logs(botclient):
assert len(rc.json) == 2
assert 'logs' in rc.json
# Using a fixed comparison here would make this test fail!
assert rc.json['log_count'] > 10
assert rc.json['log_count'] > 1
assert len(rc.json['logs']) == rc.json['log_count']
assert isinstance(rc.json['logs'][0], list)
@@ -471,6 +471,7 @@ def test_api_edge_disabled(botclient, mocker, ticker, fee, markets):
assert rc.json == {"error": "Error querying _edge: Edge is not enabled."}
@pytest.mark.usefixtures("init_persistence")
def test_api_profit(botclient, mocker, ticker, fee, markets, limit_buy_order, limit_sell_order):
ftbot, client = botclient
patch_get_signal(ftbot, (True, False))
@@ -498,6 +499,7 @@ def test_api_profit(botclient, mocker, ticker, fee, markets, limit_buy_order, li
assert rc.json['best_pair'] == ''
assert rc.json['best_rate'] == 0
trade = Trade.query.first()
trade.update(limit_sell_order)
trade.close_date = datetime.utcnow()

View File

@@ -0,0 +1,88 @@
import pandas as pd
import numpy as np
from freqtrade.strategy import merge_informative_pair, timeframe_to_minutes
def generate_test_data(timeframe: str, size: int):
np.random.seed(42)
tf_mins = timeframe_to_minutes(timeframe)
base = np.random.normal(20, 2, size=size)
date = pd.period_range('2020-07-05', periods=size, freq=f'{tf_mins}min').to_timestamp()
df = pd.DataFrame({
'date': date,
'open': base,
'high': base + np.random.normal(2, 1, size=size),
'low': base - np.random.normal(2, 1, size=size),
'close': base + np.random.normal(0, 1, size=size),
'volume': np.random.normal(200, size=size)
}
)
df = df.dropna()
return df
def test_merge_informative_pair():
data = generate_test_data('15m', 40)
informative = generate_test_data('1h', 40)
result = merge_informative_pair(data, informative, '15m', '1h', ffill=True)
assert isinstance(result, pd.DataFrame)
assert len(result) == len(data)
assert 'date' in result.columns
assert result['date'].equals(data['date'])
assert 'date_1h' in result.columns
assert 'open' in result.columns
assert 'open_1h' in result.columns
assert result['open'].equals(data['open'])
assert 'close' in result.columns
assert 'close_1h' in result.columns
assert result['close'].equals(data['close'])
assert 'volume' in result.columns
assert 'volume_1h' in result.columns
assert result['volume'].equals(data['volume'])
# First 4 rows are empty
assert result.iloc[0]['date_1h'] is pd.NaT
assert result.iloc[1]['date_1h'] is pd.NaT
assert result.iloc[2]['date_1h'] is pd.NaT
assert result.iloc[3]['date_1h'] is pd.NaT
# Next 4 rows contain the starting date (0:00)
assert result.iloc[4]['date_1h'] == result.iloc[0]['date']
assert result.iloc[5]['date_1h'] == result.iloc[0]['date']
assert result.iloc[6]['date_1h'] == result.iloc[0]['date']
assert result.iloc[7]['date_1h'] == result.iloc[0]['date']
# Next 4 rows contain the next Hourly date original date row 4
assert result.iloc[8]['date_1h'] == result.iloc[4]['date']
def test_merge_informative_pair_same():
data = generate_test_data('15m', 40)
informative = generate_test_data('15m', 40)
result = merge_informative_pair(data, informative, '15m', '15m', ffill=True)
assert isinstance(result, pd.DataFrame)
assert len(result) == len(data)
assert 'date' in result.columns
assert result['date'].equals(data['date'])
assert 'date_15m' in result.columns
assert 'open' in result.columns
assert 'open_15m' in result.columns
assert result['open'].equals(data['open'])
assert 'close' in result.columns
assert 'close_15m' in result.columns
assert result['close'].equals(data['close'])
assert 'volume' in result.columns
assert 'volume_15m' in result.columns
assert result['volume'].equals(data['volume'])
# Dates match 1:1
assert result['date_15m'].equals(result['date'])