added daily sharpe ratio hyperopt loss method, ty @djacky (#2826)
* more consistent backtesting tables and labels * added rounding to Tot Profit % on Sell Reasosn table to be consistent with other percentiles on table. * added daily sharpe ratio hyperopt loss method, ty @djacky * removed commented code * removed unused profit_abs * added proper slippage to each trade * replaced use of old value total_profit * Align quotes in same area * added daily sharpe ratio test and modified hyperopt_loss_sharpe_daily * fixed some more line alignments * updated docs to include SharpeHyperOptLossDaily * Update dockerfile to 3.8.1 * Run tests against 3.8 * added daily sharpe ratio hyperopt loss method, ty @djacky * removed commented code * removed unused profit_abs * added proper slippage to each trade * replaced use of old value total_profit * added daily sharpe ratio test and modified hyperopt_loss_sharpe_daily * updated docs to include SharpeHyperOptLossDaily * docs fixes * missed one fix * fixed standard deviation line * fixed to bracket notation * fixed to bracket notation * fixed syntax error * better readability, kept np.sqrt(365) which results in annualized sharpe ratio * fixed method arguments indentation * updated commented out debug print line * renamed after slippage profit_percent so it wont affect _calculate_results_metrics() * Reworked to fill leading and trailing days * No need for np; make flake happy * Fix risk free rate Co-authored-by: Matthias <xmatthias@outlook.com> Co-authored-by: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
This commit is contained in:
parent
b5ee4f17cb
commit
9639ffb140
@ -337,8 +337,8 @@ optional arguments:
|
||||
generate completely different results, since the
|
||||
target for optimization is different. Built-in
|
||||
Hyperopt-loss-functions are: DefaultHyperOptLoss,
|
||||
OnlyProfitHyperOptLoss, SharpeHyperOptLoss (default:
|
||||
`DefaultHyperOptLoss`).
|
||||
OnlyProfitHyperOptLoss, SharpeHyperOptLoss,
|
||||
SharpeHyperOptLossDaily (default: `DefaultHyperOptLoss`).
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
@ -75,8 +75,8 @@ Copy the file `user_data/hyperopts/sample_hyperopt.py` into `user_data/hyperopts
|
||||
|
||||
There are two places you need to change in your hyperopt file to add a new buy hyperopt for testing:
|
||||
|
||||
- Inside `indicator_space()` - the parameters hyperopt shall be optimizing.
|
||||
- Inside `populate_buy_trend()` - applying the parameters.
|
||||
* Inside `indicator_space()` - the parameters hyperopt shall be optimizing.
|
||||
* Inside `populate_buy_trend()` - applying the parameters.
|
||||
|
||||
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||
|
||||
@ -192,6 +192,7 @@ Currently, the following loss functions are builtin:
|
||||
* `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function)
|
||||
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
|
||||
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
|
||||
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on daily trade returns)
|
||||
|
||||
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
|
||||
|
||||
@ -372,6 +373,7 @@ In order to use this best ROI table found by Hyperopt in backtesting and for liv
|
||||
118: 0
|
||||
}
|
||||
```
|
||||
|
||||
As stated in the comment, you can also use it as the value of the `minimal_roi` setting in the configuration file.
|
||||
|
||||
#### Default ROI Search Space
|
||||
@ -379,7 +381,7 @@ As stated in the comment, you can also use it as the value of the `minimal_roi`
|
||||
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point):
|
||||
|
||||
| # step | 1m | | 5m | | 1h | | 1d | |
|
||||
|---|---|---|---|---|---|---|---|---|
|
||||
| ------ | ------ | ----------------- | -------- | ----------- | ---------- | ----------------- | ------------ | ----------------- |
|
||||
| 1 | 0 | 0.01161...0.11992 | 0 | 0.03...0.31 | 0 | 0.06883...0.71124 | 0 | 0.12178...1.25835 |
|
||||
| 2 | 2...8 | 0.00774...0.04255 | 10...40 | 0.02...0.11 | 120...480 | 0.04589...0.25238 | 2880...11520 | 0.08118...0.44651 |
|
||||
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
|
||||
@ -416,6 +418,7 @@ In order to use this best stoploss value found by Hyperopt in backtesting and fo
|
||||
# This attribute will be overridden if the config file contains "stoploss"
|
||||
stoploss = -0.27996
|
||||
```
|
||||
|
||||
As stated in the comment, you can also use it as the value of the `stoploss` setting in the configuration file.
|
||||
|
||||
#### Default Stoploss Search Space
|
||||
@ -452,6 +455,7 @@ In order to use these best trailing stop parameters found by Hyperopt in backtes
|
||||
trailing_stop_positive_offset = 0.06038
|
||||
trailing_only_offset_is_reached = True
|
||||
```
|
||||
|
||||
As stated in the comment, you can also use it as the values of the corresponding settings in the configuration file.
|
||||
|
||||
#### Default Trailing Stop Search Space
|
||||
|
@ -256,7 +256,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
|
||||
'Different functions can generate completely different results, '
|
||||
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
|
||||
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss.'
|
||||
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
|
||||
'(default: `%(default)s`).',
|
||||
metavar='NAME',
|
||||
default=constants.DEFAULT_HYPEROPT_LOSS,
|
||||
|
61
freqtrade/optimize/hyperopt_loss_sharpe_daily.py
Normal file
61
freqtrade/optimize/hyperopt_loss_sharpe_daily.py
Normal file
@ -0,0 +1,61 @@
|
||||
"""
|
||||
SharpeHyperOptLossDaily
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
import math
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class SharpeHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Sharpe Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Sharpe Ratio calculation.
|
||||
"""
|
||||
resample_freq = '1D'
|
||||
slippage_per_trade_ratio = 0.0005
|
||||
days_in_year = 365
|
||||
annual_risk_free_rate = 0.0
|
||||
risk_free_rate = annual_risk_free_rate / days_in_year
|
||||
|
||||
# apply slippage per trade to profit_percent
|
||||
results.loc[:, 'profit_percent_after_slippage'] = \
|
||||
results['profit_percent'] - slippage_per_trade_ratio
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(start=min_date, end=max_date, freq=resample_freq)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_time').agg(
|
||||
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
|
||||
expected_returns_mean = total_profit.mean()
|
||||
up_stdev = total_profit.std()
|
||||
|
||||
if (up_stdev != 0.):
|
||||
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -20.
|
||||
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
|
||||
return -sharp_ratio
|
@ -42,7 +42,13 @@ def hyperopt_results():
|
||||
'profit_percent': [-0.1, 0.2, 0.3],
|
||||
'profit_abs': [-0.2, 0.4, 0.6],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'sell_reason': [SellType.STOP_LOSS, SellType.ROI, SellType.ROI]
|
||||
'sell_reason': [SellType.STOP_LOSS, SellType.ROI, SellType.ROI],
|
||||
'close_time':
|
||||
[
|
||||
datetime(2019, 1, 1, 9, 26, 3, 478039),
|
||||
datetime(2019, 2, 1, 9, 26, 3, 478039),
|
||||
datetime(2019, 3, 1, 9, 26, 3, 478039)
|
||||
]
|
||||
}
|
||||
)
|
||||
|
||||
@ -336,6 +342,24 @@ def test_sharpe_loss_prefers_higher_profits(default_conf, hyperopt_results) -> N
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sharpe_loss_daily_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
|
Loading…
Reference in New Issue
Block a user