added daily sharpe ratio hyperopt loss method, ty @djacky (#2826)

* more consistent backtesting tables and labels

* added rounding to Tot Profit % on Sell Reasosn table to be consistent with other percentiles on table.

* added daily sharpe ratio hyperopt loss method, ty @djacky

* removed commented code

* removed unused profit_abs

* added proper slippage to each trade

* replaced use of old value total_profit

* Align quotes in same area

* added daily sharpe ratio test and modified hyperopt_loss_sharpe_daily

* fixed some more line alignments

* updated docs to include SharpeHyperOptLossDaily

* Update dockerfile to 3.8.1

* Run tests against 3.8

* added daily sharpe ratio hyperopt loss method, ty @djacky

* removed commented code

* removed unused profit_abs

* added proper slippage to each trade

* replaced use of old value total_profit

* added daily sharpe ratio test and modified hyperopt_loss_sharpe_daily

* updated docs to include SharpeHyperOptLossDaily

* docs fixes

* missed one fix

* fixed standard deviation line

* fixed to bracket notation

* fixed to bracket notation

* fixed syntax error

* better readability, kept np.sqrt(365) which results in  annualized sharpe ratio

* fixed method arguments indentation

* updated commented out debug print line

* renamed after slippage profit_percent so it wont affect _calculate_results_metrics()

* Reworked to fill leading and trailing days

* No need for np; make flake happy

* Fix risk free rate

Co-authored-by: Matthias <xmatthias@outlook.com>
Co-authored-by: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
This commit is contained in:
Yazeed Al Oyoun
2020-02-06 06:49:08 +01:00
committed by GitHub
parent b5ee4f17cb
commit 9639ffb140
5 changed files with 110 additions and 21 deletions

View File

@@ -0,0 +1,61 @@
"""
SharpeHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SharpeHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
annual_risk_free_rate = 0.0
risk_free_rate = annual_risk_free_rate / days_in_year
# apply slippage per trade to profit_percent
results.loc[:, 'profit_percent_after_slippage'] = \
results['profit_percent'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
expected_returns_mean = total_profit.mean()
up_stdev = total_profit.std()
if (up_stdev != 0.):
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio