Merge pull request #2196 from freqtrade/new_release

New release 2018-8
This commit is contained in:
Matthias 2019-08-28 19:26:35 +02:00 committed by GitHub
commit 9634e516a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
103 changed files with 3920 additions and 1968 deletions

17
.dependabot/config.yml Normal file
View File

@ -0,0 +1,17 @@
version: 1
update_configs:
- package_manager: "python"
directory: "/"
update_schedule: "weekly"
allowed_updates:
- match:
update_type: "all"
target_branch: "develop"
- package_manager: "docker"
directory: "/"
update_schedule: "daily"
allowed_updates:
- match:
update_type: "all"

View File

@ -5,6 +5,7 @@ If it hasn't been reported, please create a new issue.
## Step 2: Describe your environment
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Branch: Master | Develop

11
.gitignore vendored
View File

@ -6,7 +6,10 @@ config*.json
.hyperopt
logfile.txt
hyperopt_trials.pickle
user_data/
user_data/*
!user_data/notebooks
user_data/notebooks/*
!user_data/notebooks/*example.ipynb
freqtrade-plot.html
freqtrade-profit-plot.html
@ -80,8 +83,7 @@ docs/_build/
target/
# Jupyter Notebook
.ipynb_checkpoints
*.ipynb
*.ipynb_checkpoints
# pyenv
.python-version
@ -93,3 +95,6 @@ target/
.pytest_cache/
.mypy_cache/
#exceptions
!*.gitkeep

View File

@ -1,37 +0,0 @@
# autogenerated pyup.io config file
# see https://pyup.io/docs/configuration/ for all available options
# configure updates globally
# default: all
# allowed: all, insecure, False
update: all
# configure dependency pinning globally
# default: True
# allowed: True, False
pin: True
# update schedule
# default: empty
# allowed: "every day", "every week", ..
schedule: "every week"
search: False
# Specify requirement files by hand, default is empty
# default: empty
# allowed: list
requirements:
- requirements.txt
- requirements-dev.txt
- requirements-plot.txt
- requirements-common.txt
# configure the branch prefix the bot is using
# default: pyup-
branch_prefix: pyup/
# allow to close stale PRs
# default: True
close_prs: True

View File

@ -10,15 +10,11 @@ services:
env:
global:
- IMAGE_NAME=freqtradeorg/freqtrade
addons:
apt:
packages:
- libelf-dev
- libdw-dev
- binutils-dev
install:
- cd build_helpers && ./install_ta-lib.sh; cd ..
- export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
- cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
- export TA_LIBRARY_PATH=${HOME}/dependencies/lib
- export TA_INCLUDE_PATH=${HOME}/dependencies/lib/include
- pip install -r requirements-dev.txt
- pip install -e .
jobs:
@ -40,6 +36,11 @@ jobs:
name: hyperopt
- script: flake8 freqtrade scripts
name: flake8
- script:
# Test Documentation boxes -
# !!! <TYPE>: is not allowed!
- grep -Er '^!{3}\s\S+:' docs/*; test $? -ne 0
name: doc syntax
- script: mypy freqtrade scripts
name: mypy
@ -55,4 +56,4 @@ notifications:
cache:
pip: True
directories:
- /usr/local/lib/
- $HOME/dependencies

View File

@ -1,4 +1,4 @@
FROM python:3.7.3-slim-stretch
FROM python:3.7.4-slim-stretch
RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev \

View File

@ -1,8 +1,14 @@
if [ ! -f "/usr/local/lib/libta_lib.a" ]; then
if [ -z "$1" ]; then
INSTALL_LOC=/usr/local
else
INSTALL_LOC=${1}
fi
echo "Installing to ${INSTALL_LOC}"
if [ ! -f "${INSTALL_LOC}/lib/libta_lib.a" ]; then
tar zxvf ta-lib-0.4.0-src.tar.gz
cd ta-lib \
&& sed -i.bak "s|0.00000001|0.000000000000000001 |g" src/ta_func/ta_utility.h \
&& ./configure \
&& ./configure --prefix=${INSTALL_LOC}/ \
&& make \
&& which sudo && sudo make install || make install \
&& cd ..

View File

@ -3,9 +3,43 @@
This page explains how to validate your strategy performance by using
Backtesting.
## Getting data for backtesting and hyperopt
To download data (candles / OHLCV) needed for backtesting and hyperoptimization use the `freqtrade download-data` command.
If no additional parameter is specified, freqtrade will download data for `"1m"` and `"5m"` timeframes.
Exchange and pairs will come from `config.json` (if specified using `-c/--config`). Otherwise `--exchange` becomes mandatory.
Alternatively, a `pairs.json` file can be used.
If you are using Binance for example:
- create a directory `user_data/data/binance` and copy `pairs.json` in that directory.
- update the `pairs.json` to contain the currency pairs you are interested in.
```bash
mkdir -p user_data/data/binance
cp freqtrade/tests/testdata/pairs.json user_data/data/binance
```
Then run:
```bash
freqtrade download-data --exchange binance
```
This will download ticker data for all the currency pairs you defined in `pairs.json`.
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the tickers, please use a different configuration file (you'll probably need to adjust ratelimits etc.)
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download ticker data for only 10 days, use `--days 10` (defaults to 30 days).
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with most other options.
## Test your strategy with Backtesting
Now you have good Buy and Sell strategies, you want to test it against
Now you have good Buy and Sell strategies and some historic data, you want to test it against
real data. This is what we call
[backtesting](https://en.wikipedia.org/wiki/Backtesting).
@ -33,22 +67,13 @@ freqtrade backtesting
freqtrade backtesting --ticker-interval 1m
```
#### Update cached pairs with the latest data
```bash
freqtrade backtesting --refresh-pairs-cached
```
#### With live data (do not alter your testdata files)
```bash
freqtrade backtesting --live
```
#### Using a different on-disk ticker-data source
Assume you downloaded the history data from the Bittrex exchange and kept it in the `user_data/data/bittrex-20180101` directory.
You can then use this data for backtesting as follows:
```bash
freqtrade backtesting --datadir freqtrade/tests/testdata-20180101
freqtrade backtesting --datadir user_data/data/bittrex-20180101
```
#### With a (custom) strategy file
@ -57,7 +82,15 @@ freqtrade backtesting --datadir freqtrade/tests/testdata-20180101
freqtrade -s TestStrategy backtesting
```
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory
Where `-s TestStrategy` refers to the class name within the strategy file `test_strategy.py` found in the `freqtrade/user_data/strategies` directory.
#### Comparing multiple Strategies
```bash
freqtrade backtesting --strategy-list TestStrategy1 AwesomeStrategy --ticker-interval 5m
```
Where `TestStrategy1` and `AwesomeStrategy` refer to class names of strategies.
#### Exporting trades to file
@ -101,37 +134,6 @@ The full timerange specification:
- Use tickframes between POSIX timestamps 1527595200 1527618600:
`--timerange=1527595200-1527618600`
#### Downloading new set of ticker data
To download new set of backtesting ticker data, you can use a download script.
If you are using Binance for example:
- create a directory `user_data/data/binance` and copy `pairs.json` in that directory.
- update the `pairs.json` to contain the currency pairs you are interested in.
```bash
mkdir -p user_data/data/binance
cp freqtrade/tests/testdata/pairs.json user_data/data/binance
```
Then run:
```bash
python scripts/download_backtest_data.py --exchange binance
```
This will download ticker data for all the currency pairs you defined in `pairs.json`.
- To use a different directory than the exchange specific default, use `--datadir user_data/data/some_directory`.
- To change the exchange used to download the tickers, use `--exchange`. Default is `bittrex`.
- To use `pairs.json` from some other directory, use `--pairs-file some_other_dir/pairs.json`.
- To download ticker data for only 10 days, use `--days 10`.
- Use `--timeframes` to specify which tickers to download. Default is `--timeframes 1m 5m` which will download 1-minute and 5-minute tickers.
- To use exchange, timeframe and list of pairs as defined in your configuration file, use the `-c/--config` option. With this, the script uses the whitelist defined in the config as the list of currency pairs to download data for and does not require the pairs.json file. You can combine `-c/--config` with other options.
For help about backtesting usage, please refer to [Backtesting commands](#backtesting-commands).
## Understand the backtesting result
The most important in the backtesting is to understand the result.
@ -237,7 +239,7 @@ All listed Strategies need to be in the same directory.
freqtrade backtesting --timerange 20180401-20180410 --ticker-interval 5m --strategy-list Strategy001 Strategy002 --export trades
```
This will save the results to `user_data/backtest_data/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
This will save the results to `user_data/backtest_results/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
There will be an additional table comparing win/losses of the different strategies (identical to the "Total" row in the first table).
Detailed output for all strategies one after the other will be available, so make sure to scroll up.

View File

@ -2,62 +2,70 @@
This page explains the different parameters of the bot and how to run it.
!Note:
!!! Note
If you've used `setup.sh`, don't forget to activate your virtual environment (`source .env/bin/activate`) before running freqtrade commands.
## Bot commands
```
usage: freqtrade [-h] [-v] [--logfile FILE] [--version] [-c PATH] [-d PATH]
[-s NAME] [--strategy-path PATH] [--db-url PATH]
[--sd-notify]
{backtesting,edge,hyperopt} ...
usage: freqtrade [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--userdir PATH] [-s NAME] [--strategy-path PATH]
[--db-url PATH] [--sd-notify]
{backtesting,edge,hyperopt,create-userdir,list-exchanges} ...
Free, open source crypto trading bot
positional arguments:
{backtesting,edge,hyperopt}
{backtesting,edge,hyperopt,create-userdir,list-exchanges}
backtesting Backtesting module.
edge Edge module.
hyperopt Hyperopt module.
create-userdir Create user-data directory.
list-exchanges Print available exchanges.
optional arguments:
-h, --help show this help message and exit
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified
--logfile FILE Log to the file specified.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: None). Multiple
--config options may be used. Can be set to '-' to
read config from stdin.
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to backtest data.
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
-s NAME, --strategy NAME
Specify strategy class name (default:
DefaultStrategy).
`DefaultStrategy`).
--strategy-path PATH Specify additional strategy lookup path.
--db-url PATH Override trades database URL, this is useful if
dry_run is enabled or in custom deployments (default:
None).
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run).
--sd-notify Notify systemd service manager.
```
### How to use a different configuration file?
### How to specify which configuration file be used?
The bot allows you to select which configuration file you want to use. Per
default, the bot will load the file `./config.json`
The bot allows you to select which configuration file you want to use by means of
the `-c/--config` command line option:
```bash
freqtrade -c path/far/far/away/config.json
```
Per default, the bot loads the `config.json` configuration file from the current
working directory.
### How to use multiple configuration files?
The bot allows you to use multiple configuration files by specifying multiple
`-c/--config` configuration options in the command line. Configuration parameters
defined in the last configuration file override parameters with the same name
defined in the previous configuration file specified in the command line.
`-c/--config` options in the command line. Configuration parameters
defined in the latter configuration files override parameters with the same name
defined in the previous configuration files specified in the command line earlier.
For example, you can make a separate configuration file with your key and secrete
for the Exchange you use for trading, specify default configuration file with
@ -82,6 +90,29 @@ of your configuration in the project issues or in the Internet.
See more details on this technique with examples in the documentation page on
[configuration](configuration.md).
### Where to store custom data
Freqtrade allows the creation of a user-data directory using `freqtrade create-userdir --userdir someDirectory`.
This directory will look as follows:
```
user_data/
├── backtest_results
├── data
├── hyperopts
├── hyperopts_results
├── plot
└── strategies
```
You can add the entry "user_data_dir" setting to your configuration, to always point your bot to this directory.
Alternatively, pass in `--userdir` to every command.
The bot will fail to start if the directory does not exist, but will create necessary subdirectories.
This directory should contain your custom strategies, custom hyperopts and hyperopt loss functions, backtesting historical data (downloaded using either backtesting command or the download script) and plot outputs.
It is recommended to use version control to keep track of changes to your strategies.
### How to use **--strategy**?
This parameter will allow you to load your custom strategy class.
@ -110,6 +141,7 @@ Learn more about strategy file in
This parameter allows you to add an additional strategy lookup path, which gets
checked before the default locations (The passed path must be a directory!):
```bash
freqtrade --strategy AwesomeStrategy --strategy-path /some/directory
```
@ -163,9 +195,8 @@ optional arguments:
Disable applying `max_open_trades` during backtest
(same as setting `max_open_trades` to a very high
number).
-l, --live Use live data.
--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]
Provide a commaseparated list of strategies to
Provide a space-separated list of strategies to
backtest Please note that ticker-interval needs to be
set either in config or via command line. When using
this together with --export trades, the strategy-name
@ -176,24 +207,16 @@ optional arguments:
--export-filename PATH
Save backtest results to this filename requires
--export to be set as well Example --export-
filename=user_data/backtest_data/backtest_today.json
(default: user_data/backtest_data/backtest-
filename=user_data/backtest_results/backtest_today.json
(default: user_data/backtest_results/backtest-
result.json)
```
### How to use **--refresh-pairs-cached** parameter?
### Getting historic data for backtesting
The first time your run Backtesting, it will take the pairs you have
set in your config file and download data from the Exchange.
If for any reason you want to update your data set, you use
`--refresh-pairs-cached` to force Backtesting to update the data it has.
!!! Note
Use it only if you want to update your data set. You will not be able to come back to the previous version.
To test your strategy with latest data, we recommend continuing using
the parameter `-l` or `--live`.
The first time your run Backtesting, you will need to download some historic data first.
This can be accomplished by using `freqtrade download-data`.
Check the corresponding [help page section](backtesting.md#Getting-data-for-backtesting-and-hyperopt) for more details
## Hyperopt commands
@ -207,7 +230,7 @@ usage: freqtrade hyperopt [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--customhyperopt NAME] [--hyperopt-path PATH]
[--eps] [-e INT]
[-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]]
[--dmmp] [--print-all] [-j JOBS]
[--dmmp] [--print-all] [--no-color] [-j JOBS]
[--random-state INT] [--min-trades INT] [--continue]
[--hyperopt-loss NAME]
@ -243,6 +266,8 @@ optional arguments:
(same as setting `max_open_trades` to a very high
number).
--print-all Print all results, not only the best ones.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
-j JOBS, --job-workers JOBS
The number of concurrently running jobs for
hyperoptimization (hyperopt worker processes). If -1
@ -256,17 +281,18 @@ optional arguments:
--continue Continue hyperopt from previous runs. By default,
temporary files will be removed and hyperopt will
start from scratch.
--hyperopt-loss NAME
Specify the class name of the hyperopt loss function
--hyperopt-loss NAME Specify the class name of the hyperopt loss function
class (IHyperOptLoss). Different functions can
generate completely different results, since the
target for optimization is different. (default:
`DefaultHyperOptLoss`).
target for optimization is different. Built-in
Hyperopt-loss-functions are: DefaultHyperOptLoss,
OnlyProfitHyperOptLoss, SharpeHyperOptLoss.
(default: `DefaultHyperOptLoss`).
```
## Edge commands
To know your trade expectacny and winrate against historical data, you can use Edge.
To know your trade expectancy and winrate against historical data, you can use Edge.
```
usage: freqtrade edge [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE]

View File

@ -1,15 +1,34 @@
# Configure the bot
This page explains how to configure your `config.json` file.
This page explains how to configure the bot.
## Setup config.json
## The Freqtrade configuration file
We recommend to copy and use the `config.json.example` as a template
The bot uses a set of configuration parameters during its operation that all together conform the bot configuration. It normally reads its configuration from a file (Freqtrade configuration file).
Per default, the bot loads configuration from the `config.json` file located in the current working directory.
You can change the name of the configuration file used by the bot with the `-c/--config` command line option.
In some advanced use cases, multiple configuration files can be specified and used by the bot or the bot can read its configuration parameters from the process standard input stream.
If you used the [Quick start](installation.md/#quick-start) method for installing
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
If default configuration file is not created we recommend you to copy and use the `config.json.example` as a template
for your bot configuration.
The table below will list all configuration parameters.
The Freqtrade configuration file is to be written in the JSON format.
Mandatory Parameters are marked as **Required**.
Additionally to the standard JSON syntax, you may use one-line `// ...` and multi-line `/* ... */` comments in your configuration files and trailing commas in the lists of parameters.
Do not worry if you are not familiar with JSON format -- simply open the configuration file with an editor of your choice, make some changes to the parameters you need, save your changes and, finally, restart the bot or, if it was previously stopped, run it again with the changes you made to the configuration. The bot validates syntax of the configuration file at startup and will warn you if you made any errors editing it.
## Configuration parameters
The table below will list all configuration parameters available.
Mandatory parameters are marked as **Required**.
| Command | Default | Description |
|----------|---------|-------------|
@ -53,6 +72,7 @@ Mandatory Parameters are marked as **Required**.
| `experimental.use_sell_signal` | false | Use your sell strategy in addition of the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy).
| `experimental.sell_profit_only` | false | Waits until you have made a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy).
| `experimental.ignore_roi_if_buy_signal` | false | Does not sell if the buy-signal is still active. Takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy).
| `experimental.block_bad_exchanges` | true | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now.
| `pairlist.method` | StaticPairList | Use static or dynamic volume-based pairlist. [More information below](#dynamic-pairlists).
| `pairlist.config` | None | Additional configuration for dynamic pairlists. [More information below](#dynamic-pairlists).
| `telegram.enabled` | true | **Required.** Enable or not the usage of Telegram.
@ -71,6 +91,7 @@ Mandatory Parameters are marked as **Required**.
| `internals.process_throttle_secs` | 5 | **Required.** Set the process throttle. Value in second.
| `internals.sd_notify` | false | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details.
| `logfile` | | Specify Logfile. Uses a rolling strategy of 10 files, with 1Mb per file.
| `user_data_dir` | cwd()/user_data | Directory containing user data. Defaults to `./user_data/`.
### Parameters in the strategy

View File

@ -1,42 +1,202 @@
# Analyzing bot data
# Analyzing bot data with Jupyter notebooks
After performing backtests, or after running the bot for some time, it will be interesting to analyze the results your bot generated.
You can analyze the results of backtests and trading history easily using Jupyter notebooks. Sample notebooks are located at `user_data/notebooks/`.
A good way for this is using Jupyter (notebook or lab) - which provides an interactive environment to analyze the data.
## Pro tips
The following helpers will help you loading the data into Pandas DataFrames, and may also give you some starting points in analyzing the results.
* See [jupyter.org](https://jupyter.org/documentation) for usage instructions.
* Don't forget to start a Jupyter notebook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*
* Copy the example notebook before use so your changes don't get clobbered with the next freqtrade update.
## Backtesting
## Fine print
To analyze your backtest results, you can [export the trades](#exporting-trades-to-file).
You can then load the trades to perform further analysis.
Some tasks don't work especially well in notebooks. For example, anything using asynchronous execution is a problem for Jupyter. Also, freqtrade's primary entry point is the shell cli, so using pure python in a notebook bypasses arguments that provide required objects and parameters to helper functions. You may need to set those values or create expected objects manually.
Freqtrade provides the `load_backtest_data()` helper function to easily load the backtest results, which takes the path to the the backtest-results file as parameter.
## Recommended workflow
``` python
| Task | Tool |
--- | ---
Bot operations | CLI
Repetitive tasks | Shell scripts
Data analysis & visualization | Notebook
1. Use the CLI to
* download historical data
* run a backtest
* run with real-time data
* export results
1. Collect these actions in shell scripts
* save complicated commands with arguments
* execute multi-step operations
* automate testing strategies and preparing data for analysis
1. Use a notebook to
* visualize data
* munge and plot to generate insights
## Example utility snippets
### Change directory to root
Jupyter notebooks execute from the notebook directory. The following snippet searches for the project root, so relative paths remain consistent.
```python
import os
from pathlib import Path
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
print(Path.cwd())
```
## Load existing objects into a Jupyter notebook
These examples assume that you have already generated data using the cli. They will allow you to drill deeper into your results, and perform analysis which otherwise would make the output very difficult to digest due to information overload.
### Load backtest results into a pandas dataframe
```python
from freqtrade.data.btanalysis import load_backtest_data
df = load_backtest_data("user_data/backtest-result.json")
# Load backtest results
df = load_backtest_data("user_data/backtest_results/backtest-result.json")
# Show value-counts per pair
df.groupby("pair")["sell_reason"].value_counts()
```
This will allow you to drill deeper into your backtest results, and perform analysis which otherwise would make the regular backtest-output very difficult to digest due to information overload.
If you have some ideas for interesting / helpful backtest data analysis ideas, please submit a Pull Request so the community can benefit from it.
## Live data
To analyze the trades your bot generated, you can load them to a DataFrame as follows:
### Load live trading results into a pandas dataframe
``` python
from freqtrade.data.btanalysis import load_trades_from_db
# Fetch trades from database
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
# Display results
df.groupby("pair")["sell_reason"].value_counts()
```
### Load multiple configuration files
This option can be useful to inspect the results of passing in multiple configs
``` python
import json
from freqtrade.configuration import Configuration
# Load config from multiple files
config = Configuration.from_files(["config1.json", "config2.json"])
# Show the config in memory
print(json.dumps(config, indent=1))
```
### Load exchange data to a pandas dataframe
This loads candle data to a dataframe
```python
from pathlib import Path
from freqtrade.data.history import load_pair_history
# Load data using values passed to function
ticker_interval = "5m"
data_location = Path('user_data', 'data', 'bitrex')
pair = "BTC_USDT"
candles = load_pair_history(datadir=data_location,
ticker_interval=ticker_interval,
pair=pair)
# Confirm success
print(f"Loaded len(candles) rows of data for {pair} from {data_location}")
candles.head()
```
## Strategy debugging example
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
### Define variables used in analyses
You can override strategy settings as demonstrated below.
```python
# Customize these according to your needs.
# Define some constants
ticker_interval = "5m"
# Name of the strategy class
strategy_name = 'TestStrategy'
# Path to user data
user_data_dir = 'user_data'
# Location of the strategy
strategy_location = Path(user_data_dir, 'strategies')
# Location of the data
data_location = Path(user_data_dir, 'data', 'binance')
# Pair to analyze - Only use one pair here
pair = "BTC_USDT"
```
### Load exchange data
```python
from pathlib import Path
from freqtrade.data.history import load_pair_history
# Load data using values set above
candles = load_pair_history(datadir=data_location,
ticker_interval=ticker_interval,
pair=pair)
# Confirm success
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
candles.head()
```
### Load and run strategy
* Rerun each time the strategy file is changed
```python
from freqtrade.resolvers import StrategyResolver
# Load strategy using values set above
strategy = StrategyResolver({'strategy': strategy_name,
'user_data_dir': user_data_dir,
'strategy_path': strategy_location}).strategy
# Generate buy/sell signals using strategy
df = strategy.analyze_ticker(candles, {'pair': pair})
```
### Display the trade details
* Note that using `data.tail()` is preferable to `data.head()` as most indicators have some "startup" data at the top of the dataframe.
* Some possible problems
* Columns with NaN values at the end of the dataframe
* Columns used in `crossed*()` functions with completely different units
* Comparison with full backtest
* having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
* Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29). The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
```python
# Report results
print(f"Generated {df['buy'].sum()} buy signals")
data = df.set_index('date', drop=True)
data.tail()
```
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.

View File

@ -4,12 +4,15 @@ This page contains description of the command line arguments, configuration para
and the bot features that were declared as DEPRECATED by the bot development team
and are no longer supported. Please avoid their usage in your configuration.
### the `--live` command line option
## Deprecated
`--live` in the context of backtesting allows to download the latest tick data for backtesting.
Since this only downloads one set of data (by default 500 candles) - this is not really suitable for extendet backtesting, and has therefore been deprecated.
### the `--refresh-pairs-cached` command line option
This command was deprecated in `2019.6-dev` and will be removed after the next release.
`--refresh-pairs-cached` in the context of backtesting, hyperopt and edge allows to refresh candle data for backtesting.
Since this leads to much confusion, and slows down backtesting (while not being part of backtesting) this has been singled out
as a seperate freqtrade subcommand `freqtrade download-data`.
This command line option was deprecated in `2019.7-dev` and will be removed after the next release.
## Removed features
@ -17,3 +20,9 @@ This command was deprecated in `2019.6-dev` and will be removed after the next r
This command line option was deprecated in 2018 and removed freqtrade 2019.6-dev (develop branch)
and in freqtrade 2019.7 (master branch).
### the `--live` command line option
`--live` in the context of backtesting allowed to download the latest tick data for backtesting.
Did only download the latest 500 candles, so was ineffective in getting good backtest data.
Removed in 2019-7-dev (develop branch) and in freqtrade 2019-8 (master branch)

View File

@ -12,11 +12,34 @@ Special fields for the documentation (like Note boxes, ...) can be found [here](
## Developer setup
To configure a development environment, use best use the `setup.sh` script and answer "y" when asked "Do you want to install dependencies for dev [y/N]? ".
Alternatively (if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -r requirements-dev.txt`.
To configure a development environment, best use the `setup.sh` script and answer "y" when asked "Do you want to install dependencies for dev [y/N]? ".
Alternatively (if your system is not supported by the setup.sh script), follow the manual installation process and run `pip3 install -e .[all]`.
This will install all required tools for development, including `pytest`, `flake8`, `mypy`, and `coveralls`.
### Tests
New code should be covered by basic unittests. Depending on the complexity of the feature, Reviewers may request more in-depth unittests.
If necessary, the Freqtrade team can assist and give guidance with writing good tests (however please don't expect anyone to write the tests for you).
#### Checking log content in tests
Freqtrade uses 2 main methods to check log content in tests, `log_has()` and `log_has_re()` (to check using regex, in case of dynamic log-messages).
These are available from `conftest.py` and can be imported in any test module.
A sample check looks as follows:
``` python
from freqtrade.tests.conftest import log_has, log_has_re
def test_method_to_test(caplog):
method_to_test()
assert log_has("This event happened", caplog)
# Check regex with trailing number ...
assert log_has_re(r"This dynamic event happened and produced \d+", caplog)
```
## Modules
### Dynamic Pairlist
@ -156,6 +179,8 @@ git log --oneline --no-decorate --no-merges master..develop
### Create github release / tag
Once the PR against master is merged (best right after merging):
* Use the button "Draft a new release" in the Github UI (subsection releases)
* Use the version-number specified as tag.
* Use "master" as reference (this step comes after the above PR is merged).

View File

@ -26,6 +26,10 @@ To update the image, simply run the above commands again and restart your runnin
Should you require additional libraries, please [build the image yourself](#build-your-own-docker-image).
!!! Note Docker image update frequency
The official docker images with tags `master`, `develop` and `latest` are automatically rebuild once a week to keep the base image uptodate.
In addition to that, every merge to `develop` will trigger a rebuild for `develop` and `latest`.
### Prepare the configuration files
Even though you will use docker, you'll still need some files from the github repository.

View File

@ -234,9 +234,8 @@ An example of its output:
### Update cached pairs with the latest data
```bash
freqtrade edge --refresh-pairs-cached
```
Edge requires historic data the same way as backtesting does.
Please refer to the [download section](backtesting.md#Getting-data-for-backtesting-and-hyperopt) of the documentation for details.
### Precising stoploss range

View File

@ -45,6 +45,16 @@ the tutorial [here|Testing-new-strategies-with-Hyperopt](bot-usage.md#hyperopt-c
You can use the `/forcesell all` command from Telegram.
### I get the message "RESTRICTED_MARKET"
Currently known to happen for US Bittrex users.
Bittrex split its exchange into US and International versions.
The International version has more pairs available, however the API always returns all pairs, so there is currently no automated way to detect if you're affected by the restriction.
If you have restricted pairs in your whitelist, you'll get a warning message in the log on FreqTrade startup for each restricted pair.
If you're an "International" Customer on the Bittrex exchange, then this warning will probably not impact you.
If you're a US customer, the bot will fail to create orders for these pairs, and you should remove them from your Whitelist.
## Hyperopt module
### How many epoch do I need to get a good Hyperopt result?

View File

@ -18,19 +18,24 @@ Configuring hyperopt is similar to writing your own strategy, and many tasks wil
### Checklist on all tasks / possibilities in hyperopt
Depending on the space you want to optimize, only some of the below are required.
Depending on the space you want to optimize, only some of the below are required:
* fill `populate_indicators` - probably a copy from your strategy
* fill `buy_strategy_generator` - for buy signal optimization
* fill `indicator_space` - for buy signal optimzation
* fill `sell_strategy_generator` - for sell signal optimization
* fill `sell_indicator_space` - for sell signal optimzation
* fill `roi_space` - for ROI optimization
* fill `generate_roi_table` - for ROI optimization (if you need more than 3 entries)
* fill `stoploss_space` - stoploss optimization
* Optional but recommended
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
Optional, but recommended:
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
Rarely you may also need to override:
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
* `generate_roi_table` - for custom ROI optimization (if you need more than 4 entries in the ROI table)
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
### 1. Install a Custom Hyperopt File
@ -159,7 +164,11 @@ By default, FreqTrade uses a loss function, which has been with freqtrade since
A different loss function can be specified by using the `--hyperopt-loss <Class-name>` argument.
This class should be in its own file within the `user_data/hyperopts/` directory.
Currently, the following loss functions are builtin: `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function), `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns) and `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration).
Currently, the following loss functions are builtin:
* `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function)
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
### Creating and using a custom loss function
@ -303,8 +312,10 @@ Given the following result from hyperopt:
```
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': False,
@ -341,27 +352,25 @@ def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
return dataframe
```
By default, hyperopt prints colorized results -- epochs with positive profit are printed in the green color. This highlighting helps you find epochs that can be interesting for later analysis. Epochs with zero total profit or with negative profits (losses) are printed in the normal color. If you do not need colorization of results (for instance, when you are redirecting hyperopt output to a file) you can switch colorization off by specifying the `--no-color` option in the command line.
You can use the `--print-all` command line option if you would like to see all results in the hyperopt output, not only the best ones. When `--print-all` is used, current best results are also colorized by default -- they are printed in bold (bright) style. This can also be switched off with the `--no-color` command line option.
### Understand Hyperopt ROI results
If you are optimizing ROI, you're result will look as follows and include a ROI table.
If you are optimizing ROI (i.e. if optimization search-space contains 'all' or 'roi'), your result will look as follows and include a ROI table:
```
Best result:
135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins.
with values:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': false,
'adx-enabled': False,
'rsi-enabled': True,
'trigger': 'bb_lower',
'roi_t1': 40,
'roi_t2': 57,
'roi_t3': 21,
'roi_p1': 0.03634636907306948,
'roi_p2': 0.055237357937802885,
'roi_p3': 0.015163796015548354,
'stoploss': -0.37996664668703606
}
'trigger': 'bb_lower'}
ROI table:
{ 0: 0.10674752302642071,
21: 0.09158372701087236,
@ -372,14 +381,49 @@ ROI table:
This would translate to the following ROI table:
``` python
minimal_roi = {
minimal_roi = {
"118": 0,
"78": 0.0363463,
"78": 0.0363,
"21": 0.0915,
"0": 0.106
}
```
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps) with the values that can vary in the following ranges:
| # | minutes | ROI percentage |
|---|---|---|
| 1 | always 0 | 0.03...0.31 |
| 2 | 10...40 | 0.02...0.11 |
| 3 | 20...100 | 0.01...0.04 |
| 4 | 30...220 | always 0 |
This structure of the ROI table is sufficient in most cases. Override the `roi_space()` method defining the ranges desired if you need components of the ROI tables to vary in other ranges.
Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization in these methods if you need a different structure of the ROI table or other amount of rows (steps) in the ROI tables.
### Understand Hyperopt Stoploss results
If you are optimizing stoploss values (i.e. if optimization search-space contains 'all' or 'stoploss'), your result will look as follows and include stoploss:
```
Best result:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': False,
'rsi-enabled': True,
'trigger': 'bb_lower'}
Stoploss: -0.37996664668703606
```
If you are optimizing stoploss values, Freqtrade creates the 'stoploss' optimization hyperspace for you. By default, the stoploss values in that hyperspace can vary in the range -0.5...-0.02, which is sufficient in most cases.
Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization.
### Validate backtesting results
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.

View File

@ -219,6 +219,17 @@ as the watchdog.
------
## Using Conda
Freqtrade can also be installed using Anaconda (or Miniconda).
``` bash
conda env create -f environment.yml
```
!!! Note
This requires the [ta-lib](#1-install-ta-lib) C-library to be installed first.
## Windows
We recommend that Windows users use [Docker](docker.md) as this will work much easier and smoother (also more secure).

View File

@ -15,7 +15,7 @@ pip install -U -r requirements-plot.txt
Usage for the price plotter:
``` bash
python3 script/plot_dataframe.py [-h] [-p pairs] [--live]
python3 script/plot_dataframe.py [-h] [-p pairs]
```
Example
@ -41,20 +41,12 @@ To plot multiple pairs, separate them with a comma:
python3 scripts/plot_dataframe.py -p BTC/ETH,XRP/ETH
```
To plot the current live price use the `--live` flag:
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH --live
```
To plot a timerange (to zoom in):
``` bash
python3 scripts/plot_dataframe.py -p BTC/ETH --timerange=100-200
python3 scripts/plot_dataframe.py -p BTC/ETH --timerange=20180801-20180805
```
Timerange doesn't work with live data.
To plot trades stored in a database use `--db-url` argument:
``` bash
@ -64,7 +56,7 @@ python3 scripts/plot_dataframe.py --db-url sqlite:///tradesv3.dry_run.sqlite -p
To plot trades from a backtesting result, use `--export-filename <filename>`
``` bash
python3 scripts/plot_dataframe.py --export-filename user_data/backtest_data/backtest-result.json -p BTC/ETH
python3 scripts/plot_dataframe.py --export-filename user_data/backtest_results/backtest-result.json -p BTC/ETH
```
To plot a custom strategy the strategy should have first be backtested.

View File

@ -1 +1 @@
mkdocs-material==3.1.0
mkdocs-material==4.4.0

View File

@ -274,27 +274,24 @@ Please always check the mode of operation to select the correct method to get da
#### Possible options for DataProvider
- `available_pairs` - Property with tuples listing cached pairs with their intervals. (pair, interval)
- `ohlcv(pair, ticker_interval)` - Currently cached ticker data for all pairs in the whitelist, returns DataFrame or empty DataFrame
- `historic_ohlcv(pair, ticker_interval)` - Data stored on disk
- `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval).
- `ohlcv(pair, ticker_interval)` - Currently cached ticker data for the pair, returns DataFrame or empty DataFrame.
- `historic_ohlcv(pair, ticker_interval)` - Returns historical data stored on disk.
- `get_pair_dataframe(pair, ticker_interval)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
- `runmode` - Property containing the current runmode.
#### ohlcv / historic_ohlcv
#### Example: fetch live ohlcv / historic data for the first informative pair
``` python
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
if (f'{self.stake_currency}/BTC', self.ticker_interval) in self.dp.available_pairs:
data_eth = self.dp.ohlcv(pair='{self.stake_currency}/BTC',
ticker_interval=self.ticker_interval)
else:
# Get historic ohlcv data (cached on disk).
history_eth = self.dp.historic_ohlcv(pair='{self.stake_currency}/BTC',
ticker_interval='1h')
inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair,
ticker_interval=inf_timeframe)
```
!!! Warning Warning about backtesting
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` provides the full time-range in one go,
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
!!! Warning Warning in hyperopt
@ -309,7 +306,9 @@ if self.dp:
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
```
!Warning The order book is not part of the historic data which means backtesting and hyperopt will not work if this
!!! Warning
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
method is used.
#### Available Pairs
@ -320,7 +319,6 @@ if self.dp:
print(f"available {pair}, {ticker}")
```
#### Get data for non-tradeable pairs
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies.

59
environment.yml Normal file
View File

@ -0,0 +1,59 @@
name: freqtrade
channels:
- defaults
- conda-forge
dependencies:
# Required for app
- python>=3.6
- pip
- wheel
- numpy
- pandas
- scipy
- SQLAlchemy
- scikit-learn
- arrow
- requests
- urllib3
- wrapt
- joblib
- jsonschema
- tabulate
- python-rapidjson
- filelock
- flask
- python-dotenv
- cachetools
- scikit-optimize
- python-telegram-bot
# Optional for plotting
- plotly
# Optional for development
- flake8
- pytest
- pytest-mock
- pytest-asyncio
- pytest-cov
- coveralls
- mypy
# Useful for jupyter
- jupyter
- ipykernel
- isort
- yapf
- pip:
# Required for app
- cython
- coinmarketcap
- ccxt
- TA-Lib
- py_find_1st
- sdnotify
# Optional for develpment
- flake8-tidy-imports
- flake8-type-annotations
- pytest-random-order
- -e .

View File

@ -1,5 +1,5 @@
""" FreqTrade bot """
__version__ = '2019.7'
__version__ = '2019.8'
class DependencyException(Exception):

View File

@ -1,2 +1,4 @@
from freqtrade.configuration.arguments import Arguments, TimeRange # noqa: F401
from freqtrade.configuration.arguments import Arguments # noqa: F401
from freqtrade.configuration.timerange import TimeRange # noqa: F401
from freqtrade.configuration.configuration import Configuration # noqa: F401
from freqtrade.configuration.config_validation import validate_config_consistency # noqa: F401

View File

@ -2,14 +2,12 @@
This module contains the argument manager class
"""
import argparse
import re
from typing import List, NamedTuple, Optional
from typing import List, Optional
import arrow
from freqtrade.configuration.cli_options import AVAILABLE_CLI_OPTIONS
from freqtrade import constants
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir"]
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path"]
@ -19,11 +17,12 @@ ARGS_COMMON_OPTIMIZE = ["ticker_interval", "timerange",
"max_open_trades", "stake_amount", "refresh_pairs"]
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
"live", "strategy_list", "export", "exportfilename"]
"strategy_list", "export", "exportfilename"]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"position_stacking", "epochs", "spaces",
"use_max_market_positions", "print_all", "hyperopt_jobs",
"use_max_market_positions", "print_all",
"print_colorized", "print_json", "hyperopt_jobs",
"hyperopt_random_state", "hyperopt_min_trades",
"hyperopt_continue", "hyperopt_loss"]
@ -31,27 +30,19 @@ ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_EXCHANGES = ["print_one_column"]
ARGS_DOWNLOADER = ARGS_COMMON + ["pairs", "pairs_file", "days", "exchange", "timeframes", "erase"]
ARGS_CREATE_USERDIR = ["user_data_dir"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "exchange", "timeframes", "erase"]
ARGS_PLOT_DATAFRAME = (ARGS_COMMON + ARGS_STRATEGY +
["pairs", "indicators1", "indicators2", "plot_limit", "db_url",
"trade_source", "export", "exportfilename", "timerange",
"refresh_pairs", "live"])
"refresh_pairs"])
ARGS_PLOT_PROFIT = (ARGS_COMMON + ARGS_STRATEGY +
["pairs", "timerange", "export", "exportfilename", "db_url", "trade_source"])
class TimeRange(NamedTuple):
"""
NamedTuple defining timerange inputs.
[start/stop]type defines if [start/stop]ts shall be used.
if *type is None, don't use corresponding startvalue.
"""
starttype: Optional[str] = None
stoptype: Optional[str] = None
startts: int = 0
stopts: int = 0
NO_CONF_REQURIED = ["start_download_data"]
class Arguments(object):
@ -88,7 +79,10 @@ class Arguments(object):
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
if not self._no_default_config and parsed_arg.config is None:
# Allow no-config for certain commands (like downloading / plotting)
if (not self._no_default_config and parsed_arg.config is None
and not (hasattr(parsed_arg, 'func')
and parsed_arg.func.__name__ in NO_CONF_REQURIED)):
parsed_arg.config = [constants.DEFAULT_CONFIG]
return parsed_arg
@ -106,7 +100,7 @@ class Arguments(object):
:return: None
"""
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import start_list_exchanges
from freqtrade.utils import start_create_userdir, start_download_data, start_list_exchanges
subparsers = self.parser.add_subparsers(dest='subparser')
@ -125,6 +119,11 @@ class Arguments(object):
hyperopt_cmd.set_defaults(func=start_hyperopt)
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
create_userdir_cmd = subparsers.add_parser('create-userdir',
help="Create user-data directory.")
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
@ -133,44 +132,10 @@ class Arguments(object):
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
@staticmethod
def parse_timerange(text: Optional[str]) -> TimeRange:
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange
:return: Start and End range period
"""
if text is None:
return TimeRange(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
(r'^-(\d{10})$', (None, 'date')),
(r'^(\d{10})-$', ('date', None)),
(r'^(\d{10})-(\d{10})$', ('date', 'date')),
(r'^(-\d+)$', (None, 'line')),
(r'^(\d+)-$', ('line', None)),
(r'^(\d+)-(\d+)$', ('index', 'index'))]
for rex, stype in syntax:
# Apply the regular expression to text
match = re.match(rex, text)
if match: # Regex has matched
rvals = match.groups()
index = 0
start: int = 0
stop: int = 0
if stype[0]:
starts = rvals[index]
if stype[0] == 'date' and len(starts) == 8:
start = arrow.get(starts, 'YYYYMMDD').timestamp
else:
start = int(starts)
index += 1
if stype[1]:
stops = rvals[index]
if stype[1] == 'date' and len(stops) == 8:
stop = arrow.get(stops, 'YYYYMMDD').timestamp
else:
stop = int(stops)
return TimeRange(stype[0], stype[1], start, stop)
raise Exception('Incorrect syntax for timerange "%s"' % text)
# Add download-data subcommand
download_data_cmd = subparsers.add_parser(
'download-data',
help='Download backtesting data.'
)
download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)

View File

@ -2,9 +2,9 @@ import logging
from typing import Any, Dict
from freqtrade import OperationalException
from freqtrade.exchange import (is_exchange_bad, is_exchange_available,
is_exchange_officially_supported, available_exchanges)
from freqtrade.exchange import (available_exchanges, get_exchange_bad_reason,
is_exchange_available, is_exchange_bad,
is_exchange_officially_supported)
logger = logging.getLogger(__name__)
@ -31,9 +31,8 @@ def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool:
)
if check_for_bad and is_exchange_bad(exchange):
logger.warning(f'Exchange "{exchange}" is known to not work with the bot yet. '
f'Use it only for development and testing purposes.')
return False
raise OperationalException(f'Exchange "{exchange}" is known to not work with the bot yet. '
f'Reason: {get_exchange_bad_reason(exchange)}')
if is_exchange_officially_supported(exchange):
logger.info(f'Exchange "{exchange}" is officially supported '

View File

@ -55,7 +55,12 @@ AVAILABLE_CLI_OPTIONS = {
),
"datadir": Arg(
'-d', '--datadir',
help='Path to backtest data.',
help='Path to directory with historical backtesting data.',
metavar='PATH',
),
"user_data_dir": Arg(
'--userdir', '--user-data-dir',
help='Path to userdata directory.',
metavar='PATH',
),
# Main options
@ -123,14 +128,9 @@ AVAILABLE_CLI_OPTIONS = {
action='store_false',
default=True,
),
"live": Arg(
'-l', '--live',
help='Use live data.',
action='store_true',
),
"strategy_list": Arg(
'--strategy-list',
help='Provide a comma-separated list of strategies to backtest. '
help='Provide a space-separated list of strategies to backtest. '
'Please note that ticker-interval needs to be set either in config '
'or via command line. When using this together with `--export trades`, '
'the strategy-name is injected into the filename '
@ -146,9 +146,9 @@ AVAILABLE_CLI_OPTIONS = {
'--export-filename',
help='Save backtest results to the file with this filename (default: `%(default)s`). '
'Requires `--export` to be set as well. '
'Example: `--export-filename=user_data/backtest_data/backtest_today.json`',
'Example: `--export-filename=user_data/backtest_results/backtest_today.json`',
metavar='PATH',
default=os.path.join('user_data', 'backtest_data',
default=os.path.join('user_data', 'backtest_results',
'backtest-result.json'),
),
# Edge
@ -191,6 +191,19 @@ AVAILABLE_CLI_OPTIONS = {
action='store_true',
default=False,
),
"print_colorized": Arg(
'--no-color',
help='Disable colorization of hyperopt results. May be useful if you are '
'redirecting output to a file.',
action='store_false',
default=True,
),
"print_json": Arg(
'--print-json',
help='Print best result detailization in JSON format.',
action='store_true',
default=False,
),
"hyperopt_jobs": Arg(
'-j', '--job-workers',
help='The number of concurrently running jobs for hyperoptimization '
@ -226,7 +239,9 @@ AVAILABLE_CLI_OPTIONS = {
'--hyperopt-loss',
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
'Different functions can generate completely different results, '
'since the target for optimization is different. (default: `%(default)s`).',
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss.'
'(default: `%(default)s`).',
metavar='NAME',
default=constants.DEFAULT_HYPEROPT_LOSS,
),
@ -239,7 +254,8 @@ AVAILABLE_CLI_OPTIONS = {
# Script options
"pairs": Arg(
'-p', '--pairs',
help='Show profits for only these pairs. Pairs are comma-separated.',
help='Show profits for only these pairs. Pairs are space-separated.',
nargs='+',
),
# Download data
"pairs_file": Arg(
@ -261,9 +277,10 @@ AVAILABLE_CLI_OPTIONS = {
"timeframes": Arg(
'-t', '--timeframes',
help=f'Specify which tickers to download. Space-separated list. '
f'Default: `{constants.DEFAULT_DOWNLOAD_TICKER_INTERVALS}`.',
f'Default: `1m 5m`.',
choices=['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
'6h', '8h', '12h', '1d', '3d', '1w'],
default=['1m', '5m'],
nargs='+',
),
"erase": Arg(

View File

@ -0,0 +1,113 @@
import logging
from typing import Any, Dict
from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants, OperationalException
logger = logging.getLogger(__name__)
def _extend_validator(validator_class):
"""
Extended validator for the Freqtrade configuration JSON Schema.
Currently it only handles defaults for subschemas.
"""
validate_properties = validator_class.VALIDATORS['properties']
def set_defaults(validator, properties, instance, schema):
for prop, subschema in properties.items():
if 'default' in subschema:
instance.setdefault(prop, subschema['default'])
for error in validate_properties(
validator, properties, instance, schema,
):
yield error
return validators.extend(
validator_class, {'properties': set_defaults}
)
FreqtradeValidator = _extend_validator(Draft4Validator)
def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
"""
Validate the configuration follow the Config Schema
:param conf: Config in JSON format
:return: Returns the config if valid, otherwise throw an exception
"""
try:
FreqtradeValidator(constants.CONF_SCHEMA).validate(conf)
return conf
except ValidationError as e:
logger.critical(
f"Invalid configuration. See config.json.example. Reason: {e}"
)
raise ValidationError(
best_match(Draft4Validator(constants.CONF_SCHEMA).iter_errors(conf)).message
)
def validate_config_consistency(conf: Dict[str, Any]) -> None:
"""
Validate the configuration consistency.
Should be ran after loading both configuration and strategy,
since strategies can set certain configuration settings too.
:param conf: Config in JSON format
:return: Returns None if everything is ok, otherwise throw an OperationalException
"""
# validating trailing stoploss
_validate_trailing_stoploss(conf)
_validate_edge(conf)
def _validate_trailing_stoploss(conf: Dict[str, Any]) -> None:
if conf.get('stoploss') == 0.0:
raise OperationalException(
'The config stoploss needs to be different from 0 to avoid problems with sell orders.'
)
# Skip if trailing stoploss is not activated
if not conf.get('trailing_stop', False):
return
tsl_positive = float(conf.get('trailing_stop_positive', 0))
tsl_offset = float(conf.get('trailing_stop_positive_offset', 0))
tsl_only_offset = conf.get('trailing_only_offset_is_reached', False)
if tsl_only_offset:
if tsl_positive == 0.0:
raise OperationalException(
'The config trailing_only_offset_is_reached needs '
'trailing_stop_positive_offset to be more than 0 in your config.')
if tsl_positive > 0 and 0 < tsl_offset <= tsl_positive:
raise OperationalException(
'The config trailing_stop_positive_offset needs '
'to be greater than trailing_stop_positive in your config.')
# Fetch again without default
if 'trailing_stop_positive' in conf and float(conf['trailing_stop_positive']) == 0.0:
raise OperationalException(
'The config trailing_stop_positive needs to be different from 0 '
'to avoid problems with sell orders.'
)
def _validate_edge(conf: Dict[str, Any]) -> None:
"""
Edge and Dynamic whitelist should not both be enabled, since edge overrides dynamic whitelists.
"""
if not conf.get('edge', {}).get('enabled'):
return
if conf.get('pairlist', {}).get('method') == 'VolumePairList':
raise OperationalException(
"Edge and VolumePairList are incompatible, "
"Edge will override whatever pairs VolumePairlist selects."
)

View File

@ -1,19 +1,21 @@
"""
This module contains the configuration class
"""
import json
import logging
import sys
import warnings
from argparse import Namespace
from typing import Any, Callable, Dict, Optional
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional
from freqtrade import OperationalException, constants
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.create_datadir import create_datadir
from freqtrade.configuration.json_schema import validate_config_schema
from freqtrade.configuration.config_validation import (
validate_config_consistency, validate_config_schema)
from freqtrade.configuration.directory_operations import (create_datadir,
create_userdata_dir)
from freqtrade.configuration.load_config import load_config_file
from freqtrade.loggers import setup_logging
from freqtrade.misc import deep_merge_dicts
from freqtrade.misc import deep_merge_dicts, json_load
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@ -40,62 +42,46 @@ class Configuration(object):
return self.config
def _load_config_files(self) -> Dict[str, Any]:
@staticmethod
def from_files(files: List[str]) -> Dict[str, Any]:
"""
Iterate through the config files passed in the args,
loading all of them and merging their contents.
Iterate through the config files passed in, loading all of them
and merging their contents.
Files are loaded in sequence, parameters in later configuration files
override the same parameter from an earlier file (last definition wins).
:param files: List of file paths
:return: configuration dictionary
"""
# Keep this method as staticmethod, so it can be used from interactive environments
config: Dict[str, Any] = {}
if not files:
return constants.MINIMAL_CONFIG.copy()
# We expect here a list of config filenames
for path in self.args.config:
logger.info('Using config: %s ...', path)
for path in files:
logger.info(f'Using config: {path} ...')
# Merge config options, overwriting old values
config = deep_merge_dicts(self._load_config_file(path), config)
config = deep_merge_dicts(load_config_file(path), config)
return config
def _load_config_file(self, path: str) -> Dict[str, Any]:
"""
Loads a config file from the given path
:param path: path as str
:return: configuration as dictionary
"""
try:
# Read config from stdin if requested in the options
with open(path) if path != '-' else sys.stdin as file:
config = json.load(file)
except FileNotFoundError:
raise OperationalException(
f'Config file "{path}" not found!'
' Please create a config file or check whether it exists.')
return config
def _normalize_config(self, config: Dict[str, Any]) -> None:
"""
Make config more canonical -- i.e. for example add missing parts that we expect
to be normally in it...
"""
# Normalize config
if 'internals' not in config:
config['internals'] = {}
# validate configuration before returning
logger.info('Validating configuration ...')
validate_config_schema(config)
return config
def load_config(self) -> Dict[str, Any]:
"""
Extract information for sys.argv and load the bot configuration
:return: Configuration dictionary
"""
# Load all configs
config: Dict[str, Any] = self._load_config_files()
# Make resulting config more canonical
self._normalize_config(config)
logger.info('Validating configuration ...')
validate_config_schema(config)
self._validate_config_consistency(config)
config: Dict[str, Any] = Configuration.from_files(self.args.config)
self._process_common_options(config)
@ -105,6 +91,13 @@ class Configuration(object):
self._process_runmode(config)
# Check if the exchange set by the user is supported
check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True))
self._resolve_pairs_list(config)
validate_config_consistency(config)
return config
def _process_logging_options(self, config: Dict[str, Any]) -> None:
@ -123,7 +116,9 @@ class Configuration(object):
setup_logging(config)
def _process_strategy_options(self, config: Dict[str, Any]) -> None:
def _process_common_options(self, config: Dict[str, Any]) -> None:
self._process_logging_options(config)
# Set strategy if not specified in config and or if it's non default
if self.args.strategy != constants.DEFAULT_STRATEGY or not config.get('strategy'):
@ -132,11 +127,6 @@ class Configuration(object):
self._args_to_config(config, argname='strategy_path',
logstring='Using additional Strategy lookup path: {}')
def _process_common_options(self, config: Dict[str, Any]) -> None:
self._process_logging_options(config)
self._process_strategy_options(config)
if ('db_url' in self.args and self.args.db_url and
self.args.db_url != constants.DEFAULT_DB_PROD_URL):
config.update({'db_url': self.args.db_url})
@ -165,14 +155,21 @@ class Configuration(object):
if 'sd_notify' in self.args and self.args.sd_notify:
config['internals'].update({'sd_notify': True})
# Check if the exchange set by the user is supported
check_exchange(config)
def _process_datadir_options(self, config: Dict[str, Any]) -> None:
"""
Extract information for sys.argv and load datadir configuration:
the --datadir option
Extract information for sys.argv and load directory configurations
--user-data, --datadir
"""
if 'user_data_dir' in self.args and self.args.user_data_dir:
config.update({'user_data_dir': self.args.user_data_dir})
elif 'user_data_dir' not in config:
# Default to cwd/user_data (legacy option ...)
config.update({'user_data_dir': str(Path.cwd() / "user_data")})
# reset to user_data_dir so this contains the absolute path.
config['user_data_dir'] = create_userdata_dir(config['user_data_dir'], create_dir=False)
logger.info('Using user-data directory: %s ...', config['user_data_dir'])
if 'datadir' in self.args and self.args.datadir:
config.update({'datadir': create_datadir(config, self.args.datadir)})
else:
@ -186,10 +183,6 @@ class Configuration(object):
logstring='Parameter -i/--ticker-interval detected ... '
'Using ticker_interval: {} ...')
self._args_to_config(config, argname='live',
logstring='Parameter -l/--live detected ...',
deprecated_msg='--live will be removed soon.')
self._args_to_config(config, argname='position_stacking',
logstring='Parameter --enable-position-stacking detected ...')
@ -214,7 +207,8 @@ class Configuration(object):
self._process_datadir_options(config)
self._args_to_config(config, argname='refresh_pairs',
logstring='Parameter -r/--refresh-pairs-cached detected ...')
logstring='Parameter -r/--refresh-pairs-cached detected ...',
deprecated_msg='-r/--refresh-pairs-cached will be removed soon.')
self._args_to_config(config, argname='strategy_list',
logstring='Using strategy list of {} Strategies', logfun=len)
@ -254,6 +248,15 @@ class Configuration(object):
self._args_to_config(config, argname='print_all',
logstring='Parameter --print-all detected ...')
if 'print_colorized' in self.args and not self.args.print_colorized:
logger.info('Parameter --no-color detected ...')
config.update({'print_colorized': False})
else:
config.update({'print_colorized': True})
self._args_to_config(config, argname='print_json',
logstring='Parameter --print-json detected ...')
self._args_to_config(config, argname='hyperopt_jobs',
logstring='Parameter -j/--job-workers detected: {}')
@ -285,44 +288,28 @@ class Configuration(object):
self._args_to_config(config, argname='trade_source',
logstring='Using trades from: {}')
self._args_to_config(config, argname='erase',
logstring='Erase detected. Deleting existing data.')
self._args_to_config(config, argname='timeframes',
logstring='timeframes --timeframes: {}')
self._args_to_config(config, argname='days',
logstring='Detected --days: {}')
if "exchange" in self.args and self.args.exchange:
config['exchange']['name'] = self.args.exchange
logger.info(f"Using exchange {config['exchange']['name']}")
def _process_runmode(self, config: Dict[str, Any]) -> None:
if not self.runmode:
# Handle real mode, infer dry/live from config
self.runmode = RunMode.DRY_RUN if config.get('dry_run', True) else RunMode.LIVE
logger.info("Runmode set to {self.runmode}.")
logger.info(f"Runmode set to {self.runmode}.")
config.update({'runmode': self.runmode})
def _validate_config_consistency(self, conf: Dict[str, Any]) -> None:
"""
Validate the configuration consistency
:param conf: Config in JSON format
:return: Returns None if everything is ok, otherwise throw an OperationalException
"""
# validating trailing stoploss
self._validate_trailing_stoploss(conf)
def _validate_trailing_stoploss(self, conf: Dict[str, Any]) -> None:
# Skip if trailing stoploss is not activated
if not conf.get('trailing_stop', False):
return
tsl_positive = float(conf.get('trailing_stop_positive', 0))
tsl_offset = float(conf.get('trailing_stop_positive_offset', 0))
tsl_only_offset = conf.get('trailing_only_offset_is_reached', False)
if tsl_only_offset:
if tsl_positive == 0.0:
raise OperationalException(
f'The config trailing_only_offset_is_reached needs '
'trailing_stop_positive_offset to be more than 0 in your config.')
if tsl_positive > 0 and 0 < tsl_offset <= tsl_positive:
raise OperationalException(
f'The config trailing_stop_positive_offset needs '
'to be greater than trailing_stop_positive_offset in your config.')
def _args_to_config(self, config: Dict[str, Any], argname: str,
logstring: str, logfun: Optional[Callable] = None,
deprecated_msg: Optional[str] = None) -> None:
@ -344,3 +331,39 @@ class Configuration(object):
logger.info(logstring.format(config[argname]))
if deprecated_msg:
warnings.warn(f"DEPRECATED: {deprecated_msg}", DeprecationWarning)
def _resolve_pairs_list(self, config: Dict[str, Any]) -> None:
"""
Helper for download script.
Takes first found:
* -p (pairs argument)
* --pairs-file
* whitelist from config
"""
if "pairs" in config:
return
if "pairs_file" in self.args and self.args.pairs_file:
pairs_file = Path(self.args.pairs_file)
logger.info(f'Reading pairs file "{pairs_file}".')
# Download pairs from the pairs file if no config is specified
# or if pairs file is specified explicitely
if not pairs_file.exists():
raise OperationalException(f'No pairs file found with path "{pairs_file}".')
with pairs_file.open('r') as f:
config['pairs'] = json_load(f)
config['pairs'].sort()
return
if "config" in self.args and self.args.config:
logger.info("Using pairlist from configuration.")
config['pairs'] = config.get('exchange', {}).get('pair_whitelist')
else:
# Fall back to /dl_path/pairs.json
pairs_file = Path(config['datadir']) / config['exchange']['name'].lower() / "pairs.json"
if pairs_file.exists():
with pairs_file.open('r') as f:
config['pairs'] = json_load(f)
if 'pairs' in config:
config['pairs'].sort()

View File

@ -1,20 +0,0 @@
import logging
from typing import Any, Dict, Optional
from pathlib import Path
logger = logging.getLogger(__name__)
def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> str:
folder = Path(datadir) if datadir else Path('user_data/data')
if not datadir:
# set datadir
exchange_name = config.get('exchange', {}).get('name').lower()
folder = folder.joinpath(exchange_name)
if not folder.is_dir():
folder.mkdir(parents=True)
logger.info(f'Created data directory: {datadir}')
return str(folder)

View File

@ -0,0 +1,50 @@
import logging
from typing import Any, Dict, Optional
from pathlib import Path
from freqtrade import OperationalException
logger = logging.getLogger(__name__)
def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> str:
folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data")
if not datadir:
# set datadir
exchange_name = config.get('exchange', {}).get('name').lower()
folder = folder.joinpath(exchange_name)
if not folder.is_dir():
folder.mkdir(parents=True)
logger.info(f'Created data directory: {datadir}')
return str(folder)
def create_userdata_dir(directory: str, create_dir=False) -> Path:
"""
Create userdata directory structure.
if create_dir is True, then the parent-directory will be created if it does not exist.
Sub-directories will always be created if the parent directory exists.
Raises OperationalException if given a non-existing directory.
:param directory: Directory to check
:param create_dir: Create directory if it does not exist.
:return: Path object containing the directory
"""
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "plot", "strategies", ]
folder = Path(directory)
if not folder.is_dir():
if create_dir:
folder.mkdir(parents=True)
logger.info(f'Created user-data directory: {folder}')
else:
raise OperationalException(
f"Directory `{folder}` does not exist. "
"Please use `freqtrade create-userdir` to create a user directory")
# Create required subdirectories
for f in sub_dirs:
subfolder = folder / f
if not subfolder.is_dir():
subfolder.mkdir(parents=False)
return folder

View File

@ -1,53 +0,0 @@
import logging
from typing import Any, Dict
from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants
logger = logging.getLogger(__name__)
def _extend_validator(validator_class):
"""
Extended validator for the Freqtrade configuration JSON Schema.
Currently it only handles defaults for subschemas.
"""
validate_properties = validator_class.VALIDATORS['properties']
def set_defaults(validator, properties, instance, schema):
for prop, subschema in properties.items():
if 'default' in subschema:
instance.setdefault(prop, subschema['default'])
for error in validate_properties(
validator, properties, instance, schema,
):
yield error
return validators.extend(
validator_class, {'properties': set_defaults}
)
FreqtradeValidator = _extend_validator(Draft4Validator)
def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
"""
Validate the configuration follow the Config Schema
:param conf: Config in JSON format
:return: Returns the config if valid, otherwise throw an exception
"""
try:
FreqtradeValidator(constants.CONF_SCHEMA).validate(conf)
return conf
except ValidationError as e:
logger.critical(
f"Invalid configuration. See config.json.example. Reason: {e}"
)
raise ValidationError(
best_match(Draft4Validator(constants.CONF_SCHEMA).iter_errors(conf)).message
)

View File

@ -0,0 +1,33 @@
"""
This module contain functions to load the configuration file
"""
import rapidjson
import logging
import sys
from typing import Any, Dict
from freqtrade import OperationalException
logger = logging.getLogger(__name__)
CONFIG_PARSE_MODE = rapidjson.PM_COMMENTS | rapidjson.PM_TRAILING_COMMAS
def load_config_file(path: str) -> Dict[str, Any]:
"""
Loads a config file from the given path
:param path: path as str
:return: configuration as dictionary
"""
try:
# Read config from stdin if requested in the options
with open(path) if path != '-' else sys.stdin as file:
config = rapidjson.load(file, parse_mode=CONFIG_PARSE_MODE)
except FileNotFoundError:
raise OperationalException(
f'Config file "{path}" not found!'
' Please create a config file or check whether it exists.')
return config

View File

@ -0,0 +1,70 @@
"""
This module contains the argument manager class
"""
import re
from typing import Optional
import arrow
class TimeRange():
"""
object defining timerange inputs.
[start/stop]type defines if [start/stop]ts shall be used.
if *type is None, don't use corresponding startvalue.
"""
def __init__(self, starttype: Optional[str] = None, stoptype: Optional[str] = None,
startts: int = 0, stopts: int = 0):
self.starttype: Optional[str] = starttype
self.stoptype: Optional[str] = stoptype
self.startts: int = startts
self.stopts: int = stopts
def __eq__(self, other):
"""Override the default Equals behavior"""
return (self.starttype == other.starttype and self.stoptype == other.stoptype
and self.startts == other.startts and self.stopts == other.stopts)
@staticmethod
def parse_timerange(text: Optional[str]):
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange
:return: Start and End range period
"""
if text is None:
return TimeRange(None, None, 0, 0)
syntax = [(r'^-(\d{8})$', (None, 'date')),
(r'^(\d{8})-$', ('date', None)),
(r'^(\d{8})-(\d{8})$', ('date', 'date')),
(r'^-(\d{10})$', (None, 'date')),
(r'^(\d{10})-$', ('date', None)),
(r'^(\d{10})-(\d{10})$', ('date', 'date')),
(r'^(-\d+)$', (None, 'line')),
(r'^(\d+)-$', ('line', None)),
(r'^(\d+)-(\d+)$', ('index', 'index'))]
for rex, stype in syntax:
# Apply the regular expression to text
match = re.match(rex, text)
if match: # Regex has matched
rvals = match.groups()
index = 0
start: int = 0
stop: int = 0
if stype[0]:
starts = rvals[index]
if stype[0] == 'date' and len(starts) == 8:
start = arrow.get(starts, 'YYYYMMDD').timestamp
else:
start = int(starts)
index += 1
if stype[1]:
stops = rvals[index]
if stype[1] == 'date' and len(stops) == 8:
stop = arrow.get(stops, 'YYYYMMDD').timestamp
else:
stop = int(stops)
return TimeRange(stype[0], stype[1], start, stop)
raise Exception('Incorrect syntax for timerange "%s"' % text)

View File

@ -5,7 +5,6 @@ bot constants
"""
DEFAULT_CONFIG = 'config.json'
DEFAULT_EXCHANGE = 'bittrex'
DYNAMIC_WHITELIST = 20 # pairs
PROCESS_THROTTLE_SECS = 5 # sec
DEFAULT_TICKER_INTERVAL = 5 # min
HYPEROPT_EPOCH = 100 # epochs
@ -23,7 +22,6 @@ ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList']
DRY_RUN_WALLET = 999.9
DEFAULT_DOWNLOAD_TICKER_INTERVALS = '1m 5m'
TICKER_INTERVALS = [
'1m', '3m', '5m', '15m', '30m',
@ -39,6 +37,20 @@ SUPPORTED_FIAT = [
"BTC", "XBT", "ETH", "XRP", "LTC", "BCH", "USDT"
]
MINIMAL_CONFIG = {
'stake_currency': '',
'dry_run': True,
'exchange': {
'name': '',
'key': '',
'secret': '',
'pair_whitelist': [],
'ccxt_async_config': {
'enableRateLimit': True,
}
}
}
# Required json-schema for user specified config
CONF_SCHEMA = {
'type': 'object',

View File

@ -30,7 +30,7 @@ def load_backtest_data(filename) -> pd.DataFrame:
filename = Path(filename)
if not filename.is_file():
raise ValueError("File {filename} does not exist.")
raise ValueError(f"File {filename} does not exist.")
with filename.open() as file:
data = json_load(file)
@ -81,19 +81,30 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
"""
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "profit", "open_time", "close_time",
"open_rate", "close_rate", "duration", "sell_reason",
"max_rate", "min_rate"]
trades = pd.DataFrame([(t.pair, t.calc_profit(),
columns = ["pair", "open_time", "close_time", "profit", "profitperc",
"open_rate", "close_rate", "amount", "duration", "sell_reason",
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
"stake_amount", "max_rate", "min_rate", "id", "exchange",
"stop_loss", "initial_stop_loss", "strategy", "ticker_interval"]
trades = pd.DataFrame([(t.pair,
t.open_date.replace(tzinfo=pytz.UTC),
t.close_date.replace(tzinfo=pytz.UTC) if t.close_date else None,
t.open_rate, t.close_rate,
t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None,
t.calc_profit(), t.calc_profit_percent(),
t.open_rate, t.close_rate, t.amount,
(t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None),
t.sell_reason,
t.fee_open, t.fee_close,
t.open_rate_requested,
t.close_rate_requested,
t.stake_amount,
t.max_rate,
t.min_rate,
t.id, t.exchange,
t.stop_loss, t.initial_stop_loss,
t.strategy, t.ticker_interval
)
for t in Trade.query.all()],
columns=columns)

View File

@ -44,36 +44,49 @@ class DataProvider():
def ohlcv(self, pair: str, ticker_interval: str = None, copy: bool = True) -> DataFrame:
"""
get ohlcv data for the given pair as DataFrame
Please check `available_pairs` to verify which pairs are currently cached.
Get ohlcv data for the given pair as DataFrame
Please use the `available_pairs` method to verify which pairs are currently cached.
:param pair: pair to get the data for
:param ticker_interval: ticker_interval to get pair for
:param copy: copy dataframe before returning.
Use false only for RO operations (where the dataframe is not modified)
:param ticker_interval: ticker interval to get data for
:param copy: copy dataframe before returning if True.
Use False only for read-only operations (where the dataframe is not modified)
"""
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
if ticker_interval:
pairtick = (pair, ticker_interval)
else:
pairtick = (pair, self._config['ticker_interval'])
return self._exchange.klines(pairtick, copy=copy)
return self._exchange.klines((pair, ticker_interval or self._config['ticker_interval']),
copy=copy)
else:
return DataFrame()
def historic_ohlcv(self, pair: str, ticker_interval: str) -> DataFrame:
def historic_ohlcv(self, pair: str, ticker_interval: str = None) -> DataFrame:
"""
get stored historic ohlcv data
Get stored historic ohlcv data
:param pair: pair to get the data for
:param ticker_interval: ticker_interval to get pair for
:param ticker_interval: ticker interval to get data for
"""
return load_pair_history(pair=pair,
ticker_interval=ticker_interval,
ticker_interval=ticker_interval or self._config['ticker_interval'],
refresh_pairs=False,
datadir=Path(self._config['datadir']) if self._config.get(
'datadir') else None
)
def get_pair_dataframe(self, pair: str, ticker_interval: str = None) -> DataFrame:
"""
Return pair ohlcv data, either live or cached historical -- depending
on the runmode.
:param pair: pair to get the data for
:param ticker_interval: ticker interval to get data for
"""
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
# Get live ohlcv data.
data = self.ohlcv(pair=pair, ticker_interval=ticker_interval)
else:
# Get historic ohlcv data (cached on disk).
data = self.historic_ohlcv(pair=pair, ticker_interval=ticker_interval)
if len(data) == 0:
logger.warning(f"No data found for ({pair}, {ticker_interval}).")
return data
def ticker(self, pair: str):
"""
Return last ticker data

View File

@ -43,7 +43,7 @@ def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
start_index += 1
if timerange.stoptype == 'line':
start_index = len(tickerlist) + timerange.stopts
start_index = max(len(tickerlist) + timerange.stopts, 0)
if timerange.stoptype == 'index':
stop_index = timerange.stopts
elif timerange.stoptype == 'date':
@ -57,9 +57,7 @@ def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
return tickerlist[start_index:stop_index]
def load_tickerdata_file(
datadir: Optional[Path], pair: str,
ticker_interval: str,
def load_tickerdata_file(datadir: Optional[Path], pair: str, ticker_interval: str,
timerange: Optional[TimeRange] = None) -> Optional[list]:
"""
Load a pair from file, either .json.gz or .json
@ -68,13 +66,22 @@ def load_tickerdata_file(
filename = pair_data_filename(datadir, pair, ticker_interval)
pairdata = misc.file_load_json(filename)
if not pairdata:
return None
return []
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
return pairdata
def store_tickerdata_file(datadir: Optional[Path], pair: str,
ticker_interval: str, data: list, is_zip: bool = False):
"""
Stores tickerdata to file
"""
filename = pair_data_filename(datadir, pair, ticker_interval)
misc.file_dump_json(filename, data, is_zip=is_zip)
def load_pair_history(pair: str,
ticker_interval: str,
datadir: Optional[Path],
@ -122,7 +129,7 @@ def load_pair_history(pair: str,
else:
logger.warning(
f'No history data for pair: "{pair}", interval: {ticker_interval}. '
'Use --refresh-pairs-cached option or download_backtest_data.py '
'Use --refresh-pairs-cached option or `freqtrade download-data` '
'script to download the data'
)
return None
@ -177,11 +184,14 @@ def pair_data_filename(datadir: Optional[Path], pair: str, ticker_interval: str)
return filename
def load_cached_data_for_updating(filename: Path, ticker_interval: str,
def load_cached_data_for_updating(datadir: Optional[Path], pair: str, ticker_interval: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]:
"""
Load cached data and choose what part of the data should be updated
Load cached data to download more data.
If timerange is passed in, checks wether data from an before the stored data will be downloaded.
If that's the case than what's available should be completely overwritten.
Only used by download_pair_history().
"""
since_ms = None
@ -195,9 +205,8 @@ def load_cached_data_for_updating(filename: Path, ticker_interval: str,
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# read the cached file
if filename.is_file():
with open(filename, "rt") as file:
data = misc.json_load(file)
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = load_tickerdata_file(datadir, pair, ticker_interval)
# remove the last item, could be incomplete candle
if data:
data.pop()
@ -239,29 +248,28 @@ def download_pair_history(datadir: Optional[Path],
)
try:
filename = pair_data_filename(datadir, pair, ticker_interval)
logger.info(
f'Download history data for pair: "{pair}", interval: {ticker_interval} '
f'and store in {datadir}.'
)
data, since_ms = load_cached_data_for_updating(filename, ticker_interval, timerange)
data, since_ms = load_cached_data_for_updating(datadir, pair, ticker_interval, timerange)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_history(pair=pair, ticker_interval=ticker_interval,
new_data = exchange.get_historic_ohlcv(pair=pair, ticker_interval=ticker_interval,
since_ms=since_ms if since_ms
else
int(arrow.utcnow().shift(days=-30).float_timestamp) * 1000)
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000)
data.extend(new_data)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
misc.file_dump_json(filename, data)
store_tickerdata_file(datadir, pair, ticker_interval, data=data)
return True
except Exception as e:

View File

@ -10,7 +10,7 @@ import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade import constants, OperationalException
from freqtrade.configuration import Arguments, TimeRange
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.strategy.interface import SellType
@ -75,7 +75,7 @@ class Edge():
self._stoploss_range_step
)
self._timerange: TimeRange = Arguments.parse_timerange("%s-" % arrow.now().shift(
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
self.fee = self.exchange.get_fee()

View File

@ -1,10 +1,13 @@
from freqtrade.exchange.exchange import Exchange # noqa: F401
from freqtrade.exchange.exchange import (is_exchange_bad, # noqa: F401
from freqtrade.exchange.exchange import (get_exchange_bad_reason, # noqa: F401
is_exchange_bad,
is_exchange_available,
is_exchange_officially_supported,
available_exchanges)
from freqtrade.exchange.exchange import (timeframe_to_seconds, # noqa: F401
timeframe_to_minutes,
timeframe_to_msecs)
timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date)
from freqtrade.exchange.kraken import Kraken # noqa: F401
from freqtrade.exchange.binance import Binance # noqa: F401

View File

@ -6,7 +6,7 @@ import asyncio
import inspect
import logging
from copy import deepcopy
from datetime import datetime
from datetime import datetime, timezone
from math import ceil, floor
from random import randint
from typing import Any, Dict, List, Optional, Tuple
@ -25,6 +25,11 @@ logger = logging.getLogger(__name__)
API_RETRY_COUNT = 4
BAD_EXCHANGES = {
"bitmex": "Various reasons",
"bitstamp": "Does not provide history. "
"Details in https://github.com/freqtrade/freqtrade/issues/1983",
}
def retrier_async(f):
@ -260,7 +265,7 @@ class Exchange(object):
if not self.markets:
logger.warning('Unable to validate pairs (assuming they are correct).')
# return
return
for pair in pairs:
# Note: ccxt has BaseCurrency/QuoteCurrency format for pairs
@ -269,6 +274,12 @@ class Exchange(object):
raise OperationalException(
f'Pair {pair} is not available on {self.name}. '
f'Please remove {pair} from your whitelist.')
elif self.markets[pair].get('info', {}).get('IsRestricted', False):
# Warn users about restricted pairs in whitelist.
# We cannot determine reliably if Users are affected.
logger.warning(f"Pair {pair} is restricted for some users on this exchange."
f"Please check if you are impacted by this restriction "
f"on the exchange and eventually remove {pair} from your whitelist.")
def get_valid_pair_combination(self, curr_1, curr_2) -> str:
"""
@ -365,7 +376,7 @@ class Exchange(object):
'side': side,
'remaining': amount,
'datetime': arrow.utcnow().isoformat(),
'status': "open",
'status': "closed" if ordertype == "market" else "open",
'fee': None,
"info": {}
}
@ -397,12 +408,12 @@ class Exchange(object):
except ccxt.InsufficientFunds as e:
raise DependencyException(
f'Insufficient funds to create {ordertype} {side} order on market {pair}.'
f'Tried to {side} amount {amount} at rate {rate} (total {rate * amount}).'
f'Tried to {side} amount {amount} at rate {rate}.'
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise DependencyException(
f'Could not create {ordertype} {side} order on market {pair}.'
f'Tried to {side} amount {amount} at rate {rate} (total {rate * amount}).'
f'Tried to {side} amount {amount} at rate {rate}.'
f'Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
@ -461,7 +472,7 @@ class Exchange(object):
order = self.create_order(pair, ordertype, 'sell', amount, rate, params)
logger.info('stoploss limit order added for %s. '
'stop price: %s. limit: %s' % (pair, stop_price, rate))
'stop price: %s. limit: %s', pair, stop_price, rate)
return order
@retrier
@ -535,17 +546,22 @@ class Exchange(object):
logger.info("returning cached ticker-data for %s", pair)
return self._cached_ticker[pair]
def get_history(self, pair: str, ticker_interval: str,
def get_historic_ohlcv(self, pair: str, ticker_interval: str,
since_ms: int) -> List:
"""
Gets candle history using asyncio and returns the list of candles.
Handles all async doing.
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
:param pair: Pair to download
:param ticker_interval: Interval to get
:param since_ms: Timestamp in milliseconds to get history from
:returns List of tickers
"""
return asyncio.get_event_loop().run_until_complete(
self._async_get_history(pair=pair, ticker_interval=ticker_interval,
self._async_get_historic_ohlcv(pair=pair, ticker_interval=ticker_interval,
since_ms=since_ms))
async def _async_get_history(self, pair: str,
async def _async_get_historic_ohlcv(self, pair: str,
ticker_interval: str,
since_ms: int) -> List:
@ -573,7 +589,10 @@ class Exchange(object):
def refresh_latest_ohlcv(self, pair_list: List[Tuple[str, str]]) -> List[Tuple[str, List]]:
"""
Refresh in-memory ohlcv asyncronously and set `_klines` with the result
Refresh in-memory ohlcv asynchronously and set `_klines` with the result
Loops asynchronously over pair_list and downloads all pairs async (semi-parallel).
:param pair_list: List of 2 element tuples containing pair, interval to refresh
:return: Returns a List of ticker-dataframes.
"""
logger.debug("Refreshing ohlcv data for %d pairs", len(pair_list))
@ -621,7 +640,7 @@ class Exchange(object):
async def _async_get_candle_history(self, pair: str, ticker_interval: str,
since_ms: Optional[int] = None) -> Tuple[str, str, List]:
"""
Asyncronously gets candle histories using fetch_ohlcv
Asynchronously gets candle histories using fetch_ohlcv
returns tuple: (pair, ticker_interval, ohlcv_list)
"""
try:
@ -677,8 +696,13 @@ class Exchange(object):
@retrier
def get_order(self, order_id: str, pair: str) -> Dict:
if self._config['dry_run']:
try:
order = self._dry_run_open_orders[order_id]
return order
except KeyError as e:
# Gracefully handle errors with dry-run orders.
raise InvalidOrderException(
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
try:
return self._api.fetch_order(order_id, pair)
except ccxt.InvalidOrder as e:
@ -719,7 +743,8 @@ class Exchange(object):
return []
try:
# Allow 5s offset to catch slight time offsets (discovered in #1185)
my_trades = self._api.fetch_my_trades(pair, since.timestamp() - 5)
# since needs to be int in milliseconds
my_trades = self._api.fetch_my_trades(pair, int((since.timestamp() - 5) * 1000))
matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
return matched_trades
@ -747,16 +772,20 @@ class Exchange(object):
raise OperationalException(e) from e
def is_exchange_bad(exchange: str) -> bool:
return exchange in ['bitmex', 'bitstamp']
def is_exchange_bad(exchange_name: str) -> bool:
return exchange_name in BAD_EXCHANGES
def is_exchange_available(exchange: str, ccxt_module=None) -> bool:
return exchange in available_exchanges(ccxt_module)
def get_exchange_bad_reason(exchange_name: str) -> str:
return BAD_EXCHANGES.get(exchange_name, "")
def is_exchange_officially_supported(exchange: str) -> bool:
return exchange in ['bittrex', 'binance']
def is_exchange_available(exchange_name: str, ccxt_module=None) -> bool:
return exchange_name in available_exchanges(ccxt_module)
def is_exchange_officially_supported(exchange_name: str) -> bool:
return exchange_name in ['bittrex', 'binance']
def available_exchanges(ccxt_module=None) -> List[str]:
@ -774,13 +803,45 @@ def timeframe_to_seconds(ticker_interval: str) -> int:
def timeframe_to_minutes(ticker_interval: str) -> int:
"""
Same as above, but returns minutes.
Same as timeframe_to_seconds, but returns minutes.
"""
return ccxt.Exchange.parse_timeframe(ticker_interval) // 60
def timeframe_to_msecs(ticker_interval: str) -> int:
"""
Same as above, but returns milliseconds.
Same as timeframe_to_seconds, but returns milliseconds.
"""
return ccxt.Exchange.parse_timeframe(ticker_interval) * 1000
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine last possible candle.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to utcnow()
:returns: date of previous candle (with utc timezone)
"""
if not date:
date = datetime.now(timezone.utc)
timeframe_secs = timeframe_to_seconds(timeframe)
# Get offset based on timerame_secs
offset = date.timestamp() % timeframe_secs
# Subtract seconds passed since last offset
new_timestamp = date.timestamp() - offset
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
"""
Use Timeframe and determine next candle.
:param timeframe: timeframe in string format (e.g. "5m")
:param date: date to use. Defaults to utcnow()
:returns: date of next candle (with utc timezone)
"""
prevdate = timeframe_to_prev_date(timeframe, date)
timeframe_secs = timeframe_to_seconds(timeframe)
# Add one interval to previous candle
new_timestamp = prevdate.timestamp() + timeframe_secs
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)

View File

@ -16,11 +16,12 @@ from freqtrade import (DependencyException, OperationalException, InvalidOrderEx
from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.configuration import validate_config_consistency
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
from freqtrade.persistence import Trade
from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.resolvers import ExchangeResolver, StrategyResolver, PairListResolver
from freqtrade.state import State
from freqtrade.state import State, RunMode
from freqtrade.strategy.interface import SellType, IStrategy
from freqtrade.wallets import Wallets
@ -51,6 +52,9 @@ class FreqtradeBot(object):
self.strategy: IStrategy = StrategyResolver(self.config).strategy
# Check config consistency here since strategies can set certain options
validate_config_consistency(config)
self.rpc: RPCManager = RPCManager(self)
self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange
@ -75,6 +79,12 @@ class FreqtradeBot(object):
persistence.init(self.config.get('db_url', None),
clean_open_orders=self.config.get('dry_run', False))
# Stoploss on exchange does not make sense, therefore we need to disable that.
if (self.dataprovider.runmode == RunMode.DRY_RUN and
self.strategy.order_types.get('stoploss_on_exchange', False)):
logger.info("Disabling stoploss_on_exchange during dry-run.")
self.strategy.order_types['stoploss_on_exchange'] = False
config['order_types']['stoploss_on_exchange'] = False
# Set initial bot state from config
initial_state = self.config.get('initial_state')
self.state = State[initial_state.upper()] if initial_state else State.STOPPED
@ -99,13 +109,12 @@ class FreqtradeBot(object):
# Adjust stoploss if it was changed
Trade.stoploss_reinitialization(self.strategy.stoploss)
def process(self) -> bool:
def process(self) -> None:
"""
Queries the persistence layer for open trades and handles them,
otherwise a new trade is created.
:return: True if one or more trades has been created or closed, False otherwise
"""
state_changed = False
# Check whether markets have to be reloaded
self.exchange._reload_markets()
@ -132,19 +141,17 @@ class FreqtradeBot(object):
# First process current opened trades
for trade in trades:
state_changed |= self.process_maybe_execute_sell(trade)
self.process_maybe_execute_sell(trade)
# Then looking for buy opportunities
if len(trades) < self.config['max_open_trades']:
state_changed = self.process_maybe_execute_buy()
self.process_maybe_execute_buy()
if 'unfilledtimeout' in self.config:
# Check and handle any timed out open orders
self.check_handle_timedout()
Trade.session.flush()
return state_changed
def _extend_whitelist_with_trades(self, whitelist: List[str], trades: List[Any]):
"""
Extend whitelist with pairs from open trades
@ -253,11 +260,12 @@ class FreqtradeBot(object):
amount_reserve_percent = max(amount_reserve_percent, 0.5)
return min(min_stake_amounts) / amount_reserve_percent
def create_trade(self) -> bool:
def create_trades(self) -> bool:
"""
Checks the implemented trading indicator(s) for a randomly picked pair,
if one pair triggers the buy_signal a new trade record gets created
:return: True if a trade object has been created and persisted, False otherwise
Checks the implemented trading strategy for buy-signals, using the active pair whitelist.
If a pair triggers the buy_signal a new trade record gets created.
Checks pairs as long as the open trade count is below `max_open_trades`.
:return: True if at least one trade has been created.
"""
interval = self.strategy.ticker_interval
whitelist = copy.deepcopy(self.active_pair_whitelist)
@ -276,15 +284,19 @@ class FreqtradeBot(object):
logger.info("No currency pair in whitelist, but checking to sell open trades.")
return False
buycount = 0
# running get_signal on historical data fetched
for _pair in whitelist:
if self.strategy.is_pair_locked(_pair):
logger.info(f"Pair {_pair} is currently locked.")
continue
(buy, sell) = self.strategy.get_signal(
_pair, interval, self.dataprovider.ohlcv(_pair, self.strategy.ticker_interval))
if buy and not sell:
if buy and not sell and len(Trade.get_open_trades()) < self.config['max_open_trades']:
stake_amount = self._get_trade_stake_amount(_pair)
if not stake_amount:
return False
continue
logger.info(f"Buy signal found: about create a new trade with stake_amount: "
f"{stake_amount} ...")
@ -294,12 +306,13 @@ class FreqtradeBot(object):
if (bidstrat_check_depth_of_market.get('enabled', False)) and\
(bidstrat_check_depth_of_market.get('bids_to_ask_delta', 0) > 0):
if self._check_depth_of_market_buy(_pair, bidstrat_check_depth_of_market):
return self.execute_buy(_pair, stake_amount)
buycount += self.execute_buy(_pair, stake_amount)
else:
return False
return self.execute_buy(_pair, stake_amount)
continue
return False
buycount += self.execute_buy(_pair, stake_amount)
return buycount > 0
def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool:
"""
@ -423,21 +436,17 @@ class FreqtradeBot(object):
return True
def process_maybe_execute_buy(self) -> bool:
def process_maybe_execute_buy(self) -> None:
"""
Tries to execute a buy trade in a safe way
:return: True if executed
"""
try:
# Create entity and execute trade
if self.create_trade():
return True
logger.info('Found no buy signals for whitelisted currencies. Trying again..')
return False
if not self.create_trades():
logger.info('Found no buy signals for whitelisted currencies. Trying again...')
except DependencyException as exception:
logger.warning('Unable to create trade: %s', exception)
return False
def process_maybe_execute_sell(self, trade: Trade) -> bool:
"""
@ -653,6 +662,7 @@ class FreqtradeBot(object):
return False
except DependencyException as exception:
trade.stoploss_order_id = None
logger.warning('Unable to place a stoploss order on exchange: %s', exception)
# If stoploss order is canceled for some reason we add it
@ -665,6 +675,7 @@ class FreqtradeBot(object):
trade.stoploss_order_id = str(stoploss_order_id)
return False
except DependencyException as exception:
trade.stoploss_order_id = None
logger.warning('Stoploss order was cancelled, '
'but unable to recreate one: %s', exception)
@ -672,6 +683,9 @@ class FreqtradeBot(object):
if stoploss_order and stoploss_order['status'] == 'closed':
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
trade.update(stoploss_order)
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair,
timeframe_to_next_date(self.config['ticker_interval']))
self._notify_sell(trade)
return True
@ -714,7 +728,8 @@ class FreqtradeBot(object):
)['id']
trade.stoploss_order_id = str(stoploss_order_id)
except DependencyException:
logger.exception(f"Could create trailing stoploss order "
trade.stoploss_order_id = None
logger.exception(f"Could not create trailing stoploss order "
f"for pair {trade.pair}.")
def _check_and_execute_sell(self, trade: Trade, sell_rate: float,
@ -869,16 +884,23 @@ class FreqtradeBot(object):
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
# Execute sell and update trade record
order_id = self.exchange.sell(pair=str(trade.pair),
order = self.exchange.sell(pair=str(trade.pair),
ordertype=self.strategy.order_types[sell_type],
amount=trade.amount, rate=limit,
time_in_force=self.strategy.order_time_in_force['sell']
)['id']
)
trade.open_order_id = order_id
trade.open_order_id = order['id']
trade.close_rate_requested = limit
trade.sell_reason = sell_reason.value
# In case of market sell orders the order can be closed immediately
if order.get('status', 'unknown') == 'closed':
trade.update(order)
Trade.session.flush()
# Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['ticker_interval']))
self._notify_sell(trade)
def _notify_sell(self, trade: Trade):

View File

@ -5,11 +5,12 @@ import gzip
import logging
import re
from datetime import datetime
from pathlib import Path
from typing.io import IO
import numpy as np
import rapidjson
logger = logging.getLogger(__name__)
@ -39,7 +40,7 @@ def datesarray_to_datetimearray(dates: np.ndarray) -> np.ndarray:
return dates.dt.to_pydatetime()
def file_dump_json(filename, data, is_zip=False) -> None:
def file_dump_json(filename: Path, data, is_zip=False) -> None:
"""
Dump JSON data into a file
:param filename: file to create
@ -49,8 +50,8 @@ def file_dump_json(filename, data, is_zip=False) -> None:
logger.info(f'dumping json to "{filename}"')
if is_zip:
if not filename.endswith('.gz'):
filename = filename + '.gz'
if filename.suffix != '.gz':
filename = filename.with_suffix('.gz')
with gzip.open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
else:
@ -60,7 +61,7 @@ def file_dump_json(filename, data, is_zip=False) -> None:
logger.debug(f'done json to "{filename}"')
def json_load(datafile):
def json_load(datafile: IO):
"""
load data with rapidjson
Use this to have a consistent experience,

View File

@ -64,14 +64,14 @@ def start_hyperopt(args: Namespace) -> None:
:return: None
"""
# Import here to avoid loading hyperopt module when it's not used
from freqtrade.optimize.hyperopt import Hyperopt, HYPEROPT_LOCKFILE
from freqtrade.optimize.hyperopt import Hyperopt
# Initialize configuration
config = setup_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
lock = FileLock(HYPEROPT_LOCKFILE)
lock = FileLock(Hyperopt.get_lock_filename(config))
try:
with lock.acquire(timeout=1):

View File

@ -10,9 +10,9 @@ from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional
from pandas import DataFrame
from tabulate import tabulate
from freqtrade.configuration import Arguments
from freqtrade import OperationalException
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exchange import timeframe_to_minutes
@ -21,6 +21,7 @@ from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import IStrategy, SellType
from tabulate import tabulate
logger = logging.getLogger(__name__)
@ -88,6 +89,9 @@ class Backtesting(object):
Load strategy into backtesting
"""
self.strategy = strategy
if "ticker_interval" not in self.config:
raise OperationalException("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`")
self.ticker_interval = self.config.get('ticker_interval')
self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval)
@ -186,7 +190,7 @@ class Backtesting(object):
return tabulate(tabular_data, headers=headers, # type: ignore
floatfmt=floatfmt, tablefmt="pipe")
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
def _store_backtest_result(self, recordfilename: Path, results: DataFrame,
strategyname: Optional[str] = None) -> None:
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
@ -197,10 +201,10 @@ class Backtesting(object):
if records:
if strategyname:
# Inject strategyname to filename
recname = Path(recordfilename)
recordfilename = str(Path.joinpath(
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
logger.info('Dumping backtest results to %s', recordfilename)
recordfilename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{strategyname}').with_suffix(recordfilename.suffix)
logger.info(f'Dumping backtest results to {recordfilename}')
file_dump_json(recordfilename, records)
def _get_ticker_list(self, processed) -> Dict[str, DataFrame]:
@ -373,7 +377,9 @@ class Backtesting(object):
continue
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]:],
# since indexes has been incremented before, we need to go one step back to
# also check the buying candle for sell conditions.
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]-1:],
trade_count_lock, stake_amount,
max_open_trades)
@ -398,7 +404,7 @@ class Backtesting(object):
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
timerange = Arguments.parse_timerange(None if self.config.get(
timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = history.load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
@ -407,7 +413,6 @@ class Backtesting(object):
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange,
live=self.config.get('live', False)
)
if not data:
@ -452,7 +457,7 @@ class Backtesting(object):
for strategy, results in all_results.items():
if self.config.get('export', False):
self._store_backtest_result(self.config['exportfilename'], results,
self._store_backtest_result(Path(self.config['exportfilename']), results,
strategy if len(self.strategylist) > 1 else None)
print(f"Result for strategy {strategy}")

View File

@ -5,7 +5,7 @@ from typing import Any, Callable, Dict, List
import talib.abstract as ta
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real
from skopt.space import Categorical, Dimension, Integer
import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt
@ -13,38 +13,49 @@ from freqtrade.optimize.hyperopt_interface import IHyperOpt
class DefaultHyperOpts(IHyperOpt):
"""
Default hyperopt provided by freqtrade bot.
You can override it with your own hyperopt
Default hyperopt provided by the Freqtrade bot.
You can override it with your own Hyperopt
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Add several indicators needed for buy and sell strategies defined below.
"""
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
# Minus-DI
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
# SAR
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
@ -80,7 +91,7 @@ class DefaultHyperOpts(IHyperOpt):
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
@ -97,14 +108,14 @@ class DefaultHyperOpts(IHyperOpt):
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
Sell strategy Hyperopt will build and use.
"""
# print(params)
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
@ -140,7 +151,7 @@ class DefaultHyperOpts(IHyperOpt):
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
@ -156,47 +167,11 @@ class DefaultHyperOpts(IHyperOpt):
'sell-sar_reversal'], name='sell-trigger')
]
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
"""
return [
Real(-0.5, -0.02, name='stoploss'),
]
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include buy
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include buy space.
"""
dataframe.loc[
(
@ -211,9 +186,9 @@ class DefaultHyperOpts(IHyperOpt):
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include sell
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include sell space.
"""
dataframe.loc[
(
@ -223,4 +198,5 @@ class DefaultHyperOpts(IHyperOpt):
(dataframe['fastd'] > 54)
),
'sell'] = 1
return dataframe

View File

@ -9,7 +9,7 @@ from tabulate import tabulate
from freqtrade import constants
from freqtrade.edge import Edge
from freqtrade.configuration import Arguments
from freqtrade.configuration import TimeRange
from freqtrade.exchange import Exchange
from freqtrade.resolvers import StrategyResolver
@ -41,7 +41,7 @@ class EdgeCli(object):
self.edge = Edge(config, self.exchange, self.strategy)
self.edge._refresh_pairs = self.config.get('refresh_pairs', False)
self.timerange = Arguments.parse_timerange(None if self.config.get(
self.timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
self.edge._timerange = self.timerange

View File

@ -5,20 +5,24 @@ This module contains the hyperopt logic
"""
import logging
import os
import sys
from collections import OrderedDict
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import rapidjson
from colorama import init as colorama_init
from colorama import Fore, Style
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count
from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade.configuration import Arguments
from freqtrade.configuration import TimeRange
from freqtrade.data.history import load_data, get_timeframe
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOptLoss to allow users import from this file
@ -31,12 +35,9 @@ logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
TRIALSDATA_PICKLE = os.path.join('user_data', 'hyperopt_results.pickle')
HYPEROPT_LOCKFILE = os.path.join('user_data', 'hyperopt.lock')
class Hyperopt(Backtesting):
class Hyperopt:
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
@ -45,13 +46,20 @@ class Hyperopt(Backtesting):
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
self.config = config
self.backtesting = Backtesting(self.config)
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
self.custom_hyperoptloss = HyperOptLossResolver(self.config).hyperoptloss
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.total_tries = config.get('epochs', 0)
self.trials_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
self.tickerdata_pickle = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.total_epochs = config.get('epochs', 0)
self.current_best_loss = 100
if not self.config.get('hyperopt_continue'):
@ -60,15 +68,14 @@ class Hyperopt(Backtesting):
logger.info("Continuing on previous hyperopt results.")
# Previous evaluations
self.trials_file = TRIALSDATA_PICKLE
self.trials: List = []
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
self.backtesting.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore
self.backtesting.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
@ -78,11 +85,22 @@ class Hyperopt(Backtesting):
self.max_open_trades = 0
self.position_stacking = self.config.get('position_stacking', False),
if self.has_space('sell'):
# Make sure experimental is enabled
if 'experimental' not in self.config:
self.config['experimental'] = {}
self.config['experimental']['use_sell_signal'] = True
@staticmethod
def get_lock_filename(config) -> str:
return str(config['user_data_dir'] / 'hyperopt.lock')
def clean_hyperopt(self):
"""
Remove hyperopt pickle files to restart hyperopt.
"""
for f in [TICKERDATA_PICKLE, TRIALSDATA_PICKLE]:
for f in [self.tickerdata_pickle, self.trials_file]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
@ -115,7 +133,7 @@ class Hyperopt(Backtesting):
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = load(self.trials_file)
os.remove(self.trials_file)
self.trials_file.unlink()
return trials
def log_trials_result(self) -> None:
@ -124,61 +142,105 @@ class Hyperopt(Backtesting):
"""
results = sorted(self.trials, key=itemgetter('loss'))
best_result = results[0]
logger.info(
'Best result:\n%s\nwith values:\n',
best_result['result']
params = best_result['params']
log_str = self.format_results_logstring(best_result)
print(f"\nBest result:\n\n{log_str}\n")
if self.config.get('print_json'):
result_dict: Dict = {}
if self.has_space('buy') or self.has_space('sell'):
result_dict['params'] = {}
if self.has_space('buy'):
result_dict['params'].update({p.name: params.get(p.name)
for p in self.hyperopt_space('buy')})
if self.has_space('sell'):
result_dict['params'].update({p.name: params.get(p.name)
for p in self.hyperopt_space('sell')})
if self.has_space('roi'):
# Convert keys in min_roi dict to strings because
# rapidjson cannot dump dicts with integer keys...
# OrderedDict is used to keep the numeric order of the items
# in the dict.
result_dict['minimal_roi'] = OrderedDict(
(str(k), v) for k, v in self.custom_hyperopt.generate_roi_table(params).items()
)
pprint(best_result['params'], indent=4)
if 'roi_t1' in best_result['params']:
logger.info('ROI table:')
pprint(self.custom_hyperopt.generate_roi_table(best_result['params']), indent=4)
if self.has_space('stoploss'):
result_dict['stoploss'] = params.get('stoploss')
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
else:
if self.has_space('buy'):
print('Buy hyperspace params:')
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('buy')},
indent=4)
if self.has_space('sell'):
print('Sell hyperspace params:')
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('sell')},
indent=4)
if self.has_space('roi'):
print("ROI table:")
pprint(self.custom_hyperopt.generate_roi_table(params), indent=4)
if self.has_space('stoploss'):
print(f"Stoploss: {params.get('stoploss')}")
def log_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
print_all = self.config.get('print_all', False)
if print_all or results['loss'] < self.current_best_loss:
# Output human-friendly index here (starting from 1)
current = results['current_tries'] + 1
total = results['total_tries']
res = results['result']
loss = results['loss']
is_best_loss = results['loss'] < self.current_best_loss
if print_all or is_best_loss:
if is_best_loss:
self.current_best_loss = results['loss']
log_msg = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
log_msg = f'*{log_msg}' if results['initial_point'] else f' {log_msg}'
log_str = self.format_results_logstring(results)
# Colorize output
if self.config.get('print_colorized', False):
if results['total_profit'] > 0:
log_str = Fore.GREEN + log_str
if print_all and is_best_loss:
log_str = Style.BRIGHT + log_str
if print_all:
print(log_msg)
print(log_str)
else:
print('\n' + log_msg)
print('\n' + log_str)
else:
print('.', end='')
sys.stdout.flush()
def format_results_logstring(self, results) -> str:
# Output human-friendly index here (starting from 1)
current = results['current_epoch'] + 1
total = self.total_epochs
res = results['results_explanation']
loss = results['loss']
log_str = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
log_str = f'*{log_str}' if results['is_initial_point'] else f' {log_str}'
return log_str
def has_space(self, space: str) -> bool:
"""
Tell if a space value is contained in the configuration
"""
if space in self.config['spaces'] or 'all' in self.config['spaces']:
return True
return False
return any(s in self.config['spaces'] for s in [space, 'all'])
def hyperopt_space(self) -> List[Dimension]:
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
"""
Return the space to use during Hyperopt
Return the dimensions in the hyperoptimization space.
:param space: Defines hyperspace to return dimensions for.
If None, then the self.has_space() will be used to return dimensions
for all hyperspaces used.
"""
spaces: List[Dimension] = []
if self.has_space('buy'):
if space == 'buy' or (space is None and self.has_space('buy')):
logger.debug("Hyperopt has 'buy' space")
spaces += self.custom_hyperopt.indicator_space()
if self.has_space('sell'):
if space == 'sell' or (space is None and self.has_space('sell')):
logger.debug("Hyperopt has 'sell' space")
spaces += self.custom_hyperopt.sell_indicator_space()
# Make sure experimental is enabled
if 'experimental' not in self.config:
self.config['experimental'] = {}
self.config['experimental']['use_sell_signal'] = True
if self.has_space('roi'):
if space == 'roi' or (space is None and self.has_space('roi')):
logger.debug("Hyperopt has 'roi' space")
spaces += self.custom_hyperopt.roi_space()
if self.has_space('stoploss'):
if space == 'stoploss' or (space is None and self.has_space('stoploss')):
logger.debug("Hyperopt has 'stoploss' space")
spaces += self.custom_hyperopt.stoploss_space()
return spaces
@ -189,22 +251,22 @@ class Hyperopt(Backtesting):
"""
params = self.get_args(_params)
if self.has_space('roi'):
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
self.backtesting.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('buy'):
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
self.backtesting.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
if self.has_space('sell'):
self.advise_sell = self.custom_hyperopt.sell_strategy_generator(params)
self.backtesting.advise_sell = self.custom_hyperopt.sell_strategy_generator(params)
if self.has_space('stoploss'):
self.strategy.stoploss = params['stoploss']
self.backtesting.strategy.stoploss = params['stoploss']
processed = load(TICKERDATA_PICKLE)
processed = load(self.tickerdata_pickle)
min_date, max_date = get_timeframe(processed)
results = self.backtest(
results = self.backtesting.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': processed,
@ -214,9 +276,10 @@ class Hyperopt(Backtesting):
'end_date': max_date,
}
)
result_explanation = self.format_results(results)
results_explanation = self.format_results(results)
trade_count = len(results.index)
total_profit = results.profit_abs.sum()
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
@ -226,7 +289,8 @@ class Hyperopt(Backtesting):
return {
'loss': MAX_LOSS,
'params': params,
'result': result_explanation,
'results_explanation': results_explanation,
'total_profit': total_profit,
}
loss = self.calculate_loss(results=results, trade_count=trade_count,
@ -235,12 +299,13 @@ class Hyperopt(Backtesting):
return {
'loss': loss,
'params': params,
'result': result_explanation,
'results_explanation': results_explanation,
'total_profit': total_profit,
}
def format_results(self, results: DataFrame) -> str:
"""
Return the format result in a string
Return the formatted results explanation in a string
"""
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
@ -269,7 +334,7 @@ class Hyperopt(Backtesting):
def load_previous_results(self):
""" read trials file if we have one """
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
if self.trials_file.is_file() and self.trials_file.stat().st_size > 0:
self.trials = self.read_trials()
logger.info(
'Loaded %d previous evaluations from disk.',
@ -277,14 +342,14 @@ class Hyperopt(Backtesting):
)
def start(self) -> None:
timerange = Arguments.parse_timerange(None if self.config.get(
timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
ticker_interval=self.backtesting.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
exchange=self.backtesting.exchange,
timerange=timerange
)
@ -301,15 +366,15 @@ class Hyperopt(Backtesting):
(max_date - min_date).days
)
self.strategy.advise_indicators = \
self.backtesting.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
preprocessed = self.strategy.tickerdata_to_dataframe(data)
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
dump(preprocessed, TICKERDATA_PICKLE)
dump(preprocessed, self.tickerdata_pickle)
# We don't need exchange instance anymore while running hyperopt
self.exchange = None # type: ignore
self.backtesting.exchange = None # type: ignore
self.load_previous_results()
@ -319,29 +384,27 @@ class Hyperopt(Backtesting):
logger.info(f'Number of parallel jobs set as: {config_jobs}')
opt = self.get_optimizer(config_jobs)
if self.config.get('print_colorized', False):
colorama_init(autoreset=True)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = max(self.total_tries // jobs, 1)
EVALS = max(self.total_epochs // jobs, 1)
for i in range(EVALS):
asked = opt.ask(n_points=jobs)
f_val = self.run_optimizer_parallel(parallel, asked)
opt.tell(asked, [i['loss'] for i in f_val])
self.trials += f_val
opt.tell(asked, [v['loss'] for v in f_val])
for j in range(jobs):
current = i * jobs + j
self.log_results({
'loss': f_val[j]['loss'],
'current_tries': current,
'initial_point': current < INITIAL_POINTS,
'total_tries': self.total_tries,
'result': f_val[j]['result'],
})
logger.debug(f"Optimizer params: {f_val[j]['params']}")
for j in range(jobs):
logger.debug(f"Optimizer state: Xi: {opt.Xi[-j-1]}, yi: {opt.yi[-j-1]}")
val = f_val[j]
val['current_epoch'] = current
val['is_initial_point'] = current < INITIAL_POINTS
self.log_results(val)
self.trials.append(val)
logger.debug(f"Optimizer epoch evaluated: {val}")
except KeyboardInterrupt:
print('User interrupted..')

View File

@ -7,7 +7,7 @@ from abc import ABC, abstractmethod
from typing import Dict, Any, Callable, List
from pandas import DataFrame
from skopt.space import Dimension
from skopt.space import Dimension, Integer, Real
class IHyperOpt(ABC):
@ -26,56 +26,80 @@ class IHyperOpt(ABC):
@abstractmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies
Populate indicators that will be used in the Buy and Sell strategy.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe().
:return: A Dataframe with all mandatory indicators for the strategies.
"""
@staticmethod
@abstractmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Create a buy strategy generator
Create a buy strategy generator.
"""
@staticmethod
@abstractmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Create a sell strategy generator
Create a sell strategy generator.
"""
@staticmethod
@abstractmethod
def indicator_space() -> List[Dimension]:
"""
Create an indicator space
Create an indicator space.
"""
@staticmethod
@abstractmethod
def sell_indicator_space() -> List[Dimension]:
"""
Create a sell indicator space
Create a sell indicator space.
"""
@staticmethod
@abstractmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Create an roi table
Create a ROI table.
Generates the ROI table that will be used by Hyperopt.
You may override it in your custom Hyperopt class.
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
@abstractmethod
def stoploss_space() -> List[Dimension]:
"""
Create a stoploss space
Create a stoploss space.
Defines range of stoploss values to search.
You may override it in your custom Hyperopt class.
"""
return [
Real(-0.5, -0.02, name='stoploss'),
]
@staticmethod
@abstractmethod
def roi_space() -> List[Dimension]:
"""
Create a roi space
Create a ROI space.
Defines values to search for each ROI steps.
You may override it in your custom Hyperopt class.
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]

View File

@ -39,7 +39,7 @@ class SharpeHyperOptLoss(IHyperOptLoss):
sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = 20.
sharp_ratio = -20.
# print(expected_yearly_return, np.std(total_profit), sharp_ratio)
return -sharp_ratio

View File

@ -55,7 +55,6 @@ class VolumePairList(IPairList):
# Generate dynamic whitelist
self._whitelist = self._gen_pair_whitelist(
self._config['stake_currency'], self._sort_key)[:self._number_pairs]
logger.info(f"Searching pairs: {self._whitelist}")
@cached(TTLCache(maxsize=1, ttl=1800))
def _gen_pair_whitelist(self, base_currency: str, key: str) -> List[str]:
@ -92,4 +91,6 @@ class VolumePairList(IPairList):
valid_tickers.remove(t)
pairs = [s['symbol'] for s in valid_tickers]
logger.info(f"Searching pairs: {self._whitelist}")
return pairs

View File

@ -4,7 +4,7 @@ from typing import Dict, List, Optional
import pandas as pd
from freqtrade.configuration import Arguments
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
create_cum_profit, load_trades)
@ -31,18 +31,18 @@ def init_plotscript(config):
exchange: Optional[Exchange] = None
# Exchange is only needed when downloading data!
if config.get("live", False) or config.get("refresh_pairs", False):
if config.get("refresh_pairs", False):
exchange = ExchangeResolver(config.get('exchange', {}).get('name'),
config).exchange
strategy = StrategyResolver(config).strategy
if "pairs" in config:
pairs = config["pairs"].split(',')
pairs = config["pairs"]
else:
pairs = config["exchange"]["pair_whitelist"]
# Set timerange to use
timerange = Arguments.parse_timerange(config.get("timerange"))
timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = history.load_data(
datadir=Path(str(config.get("datadir"))),
@ -51,7 +51,6 @@ def init_plotscript(config):
refresh_pairs=config.get('refresh_pairs', False),
timerange=timerange,
exchange=exchange,
live=config.get("live", False),
)
trades = load_trades(config)
@ -308,7 +307,7 @@ def generate_plot_filename(pair, ticker_interval) -> str:
return file_name
def store_plot_file(fig, filename: str, auto_open: bool = False) -> None:
def store_plot_file(fig, filename: str, directory: Path, auto_open: bool = False) -> None:
"""
Generate a plot html file from pre populated fig plotly object
:param fig: Plotly Figure to plot
@ -316,8 +315,9 @@ def store_plot_file(fig, filename: str, auto_open: bool = False) -> None:
:param ticker_interval: Used as part of the filename
:return: None
"""
directory.mkdir(parents=True, exist_ok=True)
Path("user_data/plots").mkdir(parents=True, exist_ok=True)
plot(fig, filename=str(Path('user_data/plots').joinpath(filename)),
_filename = directory.joinpath(filename)
plot(fig, filename=str(_filename),
auto_open=auto_open)
logger.info(f"Stored plot as {_filename}")

View File

@ -31,7 +31,8 @@ class HyperOptResolver(IResolver):
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt
hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT
self.hyperopt = self._load_hyperopt(hyperopt_name, extra_dir=config.get('hyperopt_path'))
self.hyperopt = self._load_hyperopt(hyperopt_name, config,
extra_dir=config.get('hyperopt_path'))
# Assign ticker_interval to be used in hyperopt
self.hyperopt.__class__.ticker_interval = str(config['ticker_interval'])
@ -44,17 +45,18 @@ class HyperOptResolver(IResolver):
"Using populate_sell_trend from DefaultStrategy.")
def _load_hyperopt(
self, hyperopt_name: str, extra_dir: Optional[str] = None) -> IHyperOpt:
self, hyperopt_name: str, config: Dict, extra_dir: Optional[str] = None) -> IHyperOpt:
"""
Search and loads the specified hyperopt.
:param hyperopt_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given hyperopt
:return: HyperOpt instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = [
Path.cwd().joinpath('user_data/hyperopts'),
config['user_data_dir'].joinpath('hyperopts'),
current_path,
]
@ -79,7 +81,7 @@ class HyperOptLossResolver(IResolver):
__slots__ = ['hyperoptloss']
def __init__(self, config: Optional[Dict] = None) -> None:
def __init__(self, config: Dict = None) -> None:
"""
Load the custom class from config parameter
:param config: configuration dictionary or None
@ -89,7 +91,7 @@ class HyperOptLossResolver(IResolver):
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt
hyperopt_name = config.get('hyperopt_loss') or DEFAULT_HYPEROPT_LOSS
self.hyperoptloss = self._load_hyperoptloss(
hyperopt_name, extra_dir=config.get('hyperopt_path'))
hyperopt_name, config, extra_dir=config.get('hyperopt_path'))
# Assign ticker_interval to be used in hyperopt
self.hyperoptloss.__class__.ticker_interval = str(config['ticker_interval'])
@ -99,17 +101,19 @@ class HyperOptLossResolver(IResolver):
f"Found hyperopt {hyperopt_name} does not implement `hyperopt_loss_function`.")
def _load_hyperoptloss(
self, hyper_loss_name: str, extra_dir: Optional[str] = None) -> IHyperOptLoss:
self, hyper_loss_name: str, config: Dict,
extra_dir: Optional[str] = None) -> IHyperOptLoss:
"""
Search and loads the specified hyperopt loss class.
:param hyper_loss_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given hyperopt
:return: HyperOptLoss instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = [
Path.cwd().joinpath('user_data/hyperopts'),
config['user_data_dir'].joinpath('hyperopts'),
current_path,
]

View File

@ -29,7 +29,8 @@ class IResolver(object):
"""
# Generate spec based on absolute path
spec = importlib.util.spec_from_file_location('unknown', str(module_path))
# Pass object_name as first argument to have logging print a reasonable name.
spec = importlib.util.spec_from_file_location(object_name, str(module_path))
module = importlib.util.module_from_spec(spec)
try:
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
@ -57,7 +58,7 @@ class IResolver(object):
if not str(entry).endswith('.py'):
logger.debug('Ignoring %s', entry)
continue
module_path = Path.resolve(directory.joinpath(entry))
module_path = entry.resolve()
obj = IResolver._get_valid_object(
object_type, module_path, object_name
)

View File

@ -25,21 +25,22 @@ class PairListResolver(IResolver):
Load the custom class from config parameter
:param config: configuration dictionary or None
"""
self.pairlist = self._load_pairlist(pairlist_name, kwargs={'freqtrade': freqtrade,
self.pairlist = self._load_pairlist(pairlist_name, config, kwargs={'freqtrade': freqtrade,
'config': config})
def _load_pairlist(
self, pairlist_name: str, kwargs: dict) -> IPairList:
self, pairlist_name: str, config: dict, kwargs: dict) -> IPairList:
"""
Search and loads the specified pairlist.
:param pairlist_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given pairlist
:return: PairList instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('pairlist').resolve()
abs_paths = [
Path.cwd().joinpath('user_data/pairlist'),
config['user_data_dir'].joinpath('pairlist'),
current_path,
]

View File

@ -123,7 +123,7 @@ class StrategyResolver(IResolver):
current_path = Path(__file__).parent.parent.joinpath('strategy').resolve()
abs_paths = [
Path.cwd().joinpath('user_data/strategies'),
config['user_data_dir'].joinpath('strategies'),
current_path,
]

View File

@ -10,7 +10,7 @@ from typing import Dict, Any, List, Optional
import arrow
import sqlalchemy as sql
from numpy import mean, nan_to_num, NAN
from numpy import mean, NAN
from pandas import DataFrame
from freqtrade import TemporaryError, DependencyException
@ -195,9 +195,9 @@ class RPC(object):
trades = Trade.query.order_by(Trade.id).all()
profit_all_coin = []
profit_all_percent = []
profit_all_perc = []
profit_closed_coin = []
profit_closed_percent = []
profit_closed_perc = []
durations = []
for trade in trades:
@ -211,7 +211,7 @@ class RPC(object):
if not trade.is_open:
profit_percent = trade.calc_profit_percent()
profit_closed_coin.append(trade.calc_profit())
profit_closed_percent.append(profit_percent)
profit_closed_perc.append(profit_percent)
else:
# Get current rate
try:
@ -223,7 +223,7 @@ class RPC(object):
profit_all_coin.append(
trade.calc_profit(rate=Decimal(trade.close_rate or current_rate))
)
profit_all_percent.append(profit_percent)
profit_all_perc.append(profit_percent)
best_pair = Trade.session.query(
Trade.pair, sql.func.sum(Trade.close_profit).label('profit_sum')
@ -238,7 +238,8 @@ class RPC(object):
# Prepare data to display
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
profit_closed_percent = round(nan_to_num(mean(profit_closed_percent)) * 100, 2)
profit_closed_percent = (round(mean(profit_closed_perc) * 100, 2) if profit_closed_perc
else 0.0)
profit_closed_fiat = self._fiat_converter.convert_amount(
profit_closed_coin_sum,
stake_currency,
@ -246,7 +247,7 @@ class RPC(object):
) if self._fiat_converter else 0
profit_all_coin_sum = round(sum(profit_all_coin), 8)
profit_all_percent = round(nan_to_num(mean(profit_all_percent)) * 100, 2)
profit_all_percent = round(mean(profit_all_perc) * 100, 2) if profit_all_perc else 0.0
profit_all_fiat = self._fiat_converter.convert_amount(
profit_all_coin_sum,
stake_currency,

View File

@ -4,7 +4,7 @@ This module defines the interface to apply for strategies
"""
import logging
from abc import ABC, abstractmethod
from datetime import datetime
from datetime import datetime, timezone
from enum import Enum
from typing import Dict, List, NamedTuple, Optional, Tuple
import warnings
@ -107,6 +107,7 @@ class IStrategy(ABC):
self.config = config
# Dict to determine if analysis is necessary
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
self._pair_locked_until: Dict[str, datetime] = {}
@abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
@ -154,10 +155,45 @@ class IStrategy(ABC):
"""
return self.__class__.__name__
def lock_pair(self, pair: str, until: datetime) -> None:
"""
Locks pair until a given timestamp happens.
Locked pairs are not analyzed, and are prevented from opening new trades.
:param pair: Pair to lock
:param until: datetime in UTC until the pair should be blocked from opening new trades.
Needs to be timezone aware `datetime.now(timezone.utc)`
"""
self._pair_locked_until[pair] = until
def is_pair_locked(self, pair: str) -> bool:
"""
Checks if a pair is currently locked
"""
if pair not in self._pair_locked_until:
return False
return self._pair_locked_until[pair] >= datetime.now(timezone.utc)
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:param dataframe: Dataframe containing ticker data
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
:return: DataFrame with ticker data and indicator data
"""
logger.debug("TA Analysis Launched")
dataframe = self.advise_indicators(dataframe, metadata)
dataframe = self.advise_buy(dataframe, metadata)
dataframe = self.advise_sell(dataframe, metadata)
return dataframe
def _analyze_ticker_internal(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
WARNING: Used internally only, may skip analysis if `process_only_new_candles` is set.
:param dataframe: Dataframe containing ticker data
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
:return: DataFrame with ticker data and indicator data
"""
@ -168,10 +204,7 @@ class IStrategy(ABC):
if (not self.process_only_new_candles or
self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']):
# Defs that only make change on new candle data.
logger.debug("TA Analysis Launched")
dataframe = self.advise_indicators(dataframe, metadata)
dataframe = self.advise_buy(dataframe, metadata)
dataframe = self.advise_sell(dataframe, metadata)
dataframe = self.analyze_ticker(dataframe, metadata)
self._last_candle_seen_per_pair[pair] = dataframe.iloc[-1]['date']
else:
logger.debug("Skipping TA Analysis for already analyzed candle")
@ -198,7 +231,7 @@ class IStrategy(ABC):
return False, False
try:
dataframe = self.analyze_ticker(dataframe, {'pair': pair})
dataframe = self._analyze_ticker_internal(dataframe, {'pair': pair})
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
@ -246,8 +279,8 @@ class IStrategy(ABC):
sell: bool, low: float = None, high: float = None,
force_stoploss: float = 0) -> SellCheckTuple:
"""
This function evaluate if on the condition required to trigger a sell has been reached
if the threshold is reached and updates the trade record.
This function evaluates if one of the conditions required to trigger a sell
has been reached, which can either be a stop-loss, ROI or sell-signal.
:param low: Only used during backtesting to simulate stoploss
:param high: Only used during backtesting, to simulate ROI
:param force_stoploss: Externally provided stoploss

View File

@ -0,0 +1,133 @@
{
/* Single-line C-style comment */
"max_open_trades": 3,
/*
* Multi-line C-style comment
*/
"stake_currency": "BTC",
"stake_amount": 0.05,
"fiat_display_currency": "USD", // C++-style comment
"amount_reserve_percent" : 0.05, // And more, tabs before this comment
"dry_run": false,
"ticker_interval": "5m",
"trailing_stop": false,
"trailing_stop_positive": 0.005,
"trailing_stop_positive_offset": 0.0051,
"trailing_only_offset_is_reached": false,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.10,
"unfilledtimeout": {
"buy": 10,
"sell": 30, // Trailing comma should also be accepted now
},
"bid_strategy": {
"use_order_book": false,
"ask_last_balance": 0.0,
"order_book_top": 1,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"ask_strategy":{
"use_order_book": false,
"order_book_min": 1,
"order_book_max": 9
},
"order_types": {
"buy": "limit",
"sell": "limit",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
},
"order_time_in_force": {
"buy": "gtc",
"sell": "gtc"
},
"pairlist": {
"method": "VolumePairList",
"config": {
"number_assets": 20,
"sort_key": "quoteVolume",
"precision_filter": false
}
},
"exchange": {
"name": "bittrex",
"sandbox": false,
"key": "your_exchange_key",
"secret": "your_exchange_secret",
"password": "",
"ccxt_config": {"enableRateLimit": true},
"ccxt_async_config": {
"enableRateLimit": false,
"rateLimit": 500,
"aiohttp_trust_env": false
},
"pair_whitelist": [
"ETH/BTC",
"LTC/BTC",
"ETC/BTC",
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"NXT/BTC",
"POWR/BTC",
"ADA/BTC",
"XMR/BTC"
],
"pair_blacklist": [
"DOGE/BTC"
],
"outdated_offset": 5,
"markets_refresh_interval": 60
},
"edge": {
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"minimum_winrate": 0.60,
"minimum_expectancy": 0.20,
"min_trade_number": 10,
"max_trade_duration_minute": 1440,
"remove_pumps": false
},
"experimental": {
"use_sell_signal": false,
"sell_profit_only": false,
"ignore_roi_if_buy_signal": false
},
"telegram": {
// We can now comment out some settings
// "enabled": true,
"enabled": false,
"token": "your_telegram_token",
"chat_id": "your_telegram_chat_id"
},
"api_server": {
"enabled": false,
"listen_ip_address": "127.0.0.1",
"listen_port": 8080,
"username": "freqtrader",
"password": "SuperSecurePassword"
},
"db_url": "sqlite:///tradesv3.sqlite",
"initial_state": "running",
"forcebuy_enable": false,
"internals": {
"process_throttle_secs": 5
},
"strategy": "DefaultStrategy",
"strategy_path": "user_data/strategies/"
}

View File

@ -10,6 +10,7 @@ from unittest.mock import MagicMock, PropertyMock
import arrow
import pytest
import numpy as np
from telegram import Chat, Message, Update
from freqtrade import constants, persistence
@ -25,17 +26,21 @@ from freqtrade.worker import Worker
logging.getLogger('').setLevel(logging.INFO)
# Do not mask numpy errors as warnings that no one read, raise the exсeption
np.seterr(all='raise')
def log_has(line, logs):
# caplog mocker returns log as a tuple: ('freqtrade.something', logging.WARNING, 'foobar')
# and we want to match line against foobar in the tuple
return reduce(lambda a, b: a or b,
filter(lambda x: x[2] == line, logs),
filter(lambda x: x[2] == line, logs.record_tuples),
False)
def log_has_re(line, logs):
return reduce(lambda a, b: a or b,
filter(lambda x: re.match(line, x[2]), logs),
filter(lambda x: re.match(line, x[2]), logs.record_tuples),
False)
@ -45,7 +50,7 @@ def get_args(args):
def patched_configuration_load_config_file(mocker, config) -> None:
mocker.patch(
'freqtrade.configuration.configuration.Configuration._load_config_file',
'freqtrade.configuration.configuration.load_config_file',
lambda *args, **kwargs: config
)
@ -234,6 +239,7 @@ def default_conf():
},
"initial_state": "running",
"db_url": "sqlite://",
"user_data_dir": Path("user_data"),
"verbosity": 3,
}
return configuration
@ -304,7 +310,7 @@ def markets():
'max': 500000,
},
},
'info': '',
'info': {},
},
'TKN/BTC': {
'id': 'tknbtc',
@ -329,7 +335,7 @@ def markets():
'max': 500000,
},
},
'info': '',
'info': {},
},
'BLK/BTC': {
'id': 'blkbtc',
@ -354,7 +360,7 @@ def markets():
'max': 500000,
},
},
'info': '',
'info': {},
},
'LTC/BTC': {
'id': 'ltcbtc',
@ -379,7 +385,7 @@ def markets():
'max': 500000,
},
},
'info': '',
'info': {},
},
'XRP/BTC': {
'id': 'xrpbtc',
@ -404,7 +410,7 @@ def markets():
'max': 500000,
},
},
'info': '',
'info': {},
},
'NEO/BTC': {
'id': 'neobtc',
@ -429,7 +435,7 @@ def markets():
'max': 500000,
},
},
'info': '',
'info': {},
},
'BTT/BTC': {
'id': 'BTTBTC',
@ -457,7 +463,7 @@ def markets():
'max': None
}
},
'info': "",
'info': {},
},
'ETH/USDT': {
'id': 'USDT-ETH',
@ -479,7 +485,7 @@ def markets():
}
},
'active': True,
'info': ""
'info': {},
},
'LTC/USDT': {
'id': 'USDT-LTC',
@ -501,7 +507,7 @@ def markets():
'max': None
}
},
'info': ""
'info': {},
}
}

View File

@ -4,7 +4,7 @@ import pytest
from arrow import Arrow
from pandas import DataFrame, to_datetime
from freqtrade.configuration import Arguments, TimeRange
from freqtrade.configuration import TimeRange
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
combine_tickers_with_mean,
create_cum_profit,
@ -45,6 +45,11 @@ def test_load_trades_db(default_conf, fee, mocker):
assert isinstance(trades, DataFrame)
assert "pair" in trades.columns
assert "open_time" in trades.columns
assert "profitperc" in trades.columns
for col in BT_DATA_COLUMNS:
if col not in ['index', 'open_at_end']:
assert col in trades.columns
def test_extract_trades_of_period():
@ -116,7 +121,7 @@ def test_combine_tickers_with_mean():
def test_create_cum_profit():
filename = make_testdata_path(None) / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
timerange = Arguments.parse_timerange("20180110-20180112")
timerange = TimeRange.parse_timerange("20180110-20180112")
df = load_pair_history(pair="POWR/BTC", ticker_interval='5m',
datadir=None, timerange=timerange)

View File

@ -18,7 +18,7 @@ def test_parse_ticker_dataframe(ticker_history_list, caplog):
dataframe = parse_ticker_dataframe(ticker_history_list, '5m',
pair="UNITTEST/BTC", fill_missing=True)
assert dataframe.columns.tolist() == columns
assert log_has('Parsing tickerlist to dataframe', caplog.record_tuples)
assert log_has('Parsing tickerlist to dataframe', caplog)
def test_ohlcv_fill_up_missing_data(caplog):
@ -34,8 +34,7 @@ def test_ohlcv_fill_up_missing_data(caplog):
assert (data.columns == data2.columns).all()
assert log_has(f"Missing data fillup for UNITTEST/BTC: before: "
f"{len(data)} - after: {len(data2)}",
caplog.record_tuples)
f"{len(data)} - after: {len(data2)}", caplog)
# Test fillup actually fixes invalid backtest data
min_date, max_date = get_timeframe({'UNITTEST/BTC': data})
@ -97,8 +96,7 @@ def test_ohlcv_fill_up_missing_data2(caplog):
assert (data.columns == data2.columns).all()
assert log_has(f"Missing data fillup for UNITTEST/BTC: before: "
f"{len(data)} - after: {len(data2)}",
caplog.record_tuples)
f"{len(data)} - after: {len(data2)}", caplog)
def test_ohlcv_drop_incomplete(caplog):
@ -140,11 +138,11 @@ def test_ohlcv_drop_incomplete(caplog):
data = parse_ticker_dataframe(ticks, ticker_interval, pair="UNITTEST/BTC",
fill_missing=False, drop_incomplete=False)
assert len(data) == 4
assert not log_has("Dropping last candle", caplog.record_tuples)
assert not log_has("Dropping last candle", caplog)
# Drop last candle
data = parse_ticker_dataframe(ticks, ticker_interval, pair="UNITTEST/BTC",
fill_missing=False, drop_incomplete=True)
assert len(data) == 3
assert log_has("Dropping last candle", caplog.record_tuples)
assert log_has("Dropping last candle", caplog)

View File

@ -13,6 +13,7 @@ def test_ohlcv(mocker, default_conf, ticker_history):
exchange = get_patched_exchange(mocker, default_conf)
exchange._klines[("XRP/BTC", ticker_interval)] = ticker_history
exchange._klines[("UNITTEST/BTC", ticker_interval)] = ticker_history
dp = DataProvider(default_conf, exchange)
assert dp.runmode == RunMode.DRY_RUN
assert ticker_history.equals(dp.ohlcv("UNITTEST/BTC", ticker_interval))
@ -37,11 +38,9 @@ def test_ohlcv(mocker, default_conf, ticker_history):
def test_historic_ohlcv(mocker, default_conf, ticker_history):
historymock = MagicMock(return_value=ticker_history)
mocker.patch("freqtrade.data.dataprovider.load_pair_history", historymock)
# exchange = get_patched_exchange(mocker, default_conf)
dp = DataProvider(default_conf, None)
data = dp.historic_ohlcv("UNITTEST/BTC", "5m")
assert isinstance(data, DataFrame)
@ -51,14 +50,47 @@ def test_historic_ohlcv(mocker, default_conf, ticker_history):
assert historymock.call_args_list[0][1]["ticker_interval"] == "5m"
def test_get_pair_dataframe(mocker, default_conf, ticker_history):
default_conf["runmode"] = RunMode.DRY_RUN
ticker_interval = default_conf["ticker_interval"]
exchange = get_patched_exchange(mocker, default_conf)
exchange._klines[("XRP/BTC", ticker_interval)] = ticker_history
exchange._klines[("UNITTEST/BTC", ticker_interval)] = ticker_history
dp = DataProvider(default_conf, exchange)
assert dp.runmode == RunMode.DRY_RUN
assert ticker_history.equals(dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval))
assert isinstance(dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval), DataFrame)
assert dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval) is not ticker_history
assert not dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval).empty
assert dp.get_pair_dataframe("NONESENSE/AAA", ticker_interval).empty
# Test with and without parameter
assert dp.get_pair_dataframe("UNITTEST/BTC",
ticker_interval).equals(dp.get_pair_dataframe("UNITTEST/BTC"))
default_conf["runmode"] = RunMode.LIVE
dp = DataProvider(default_conf, exchange)
assert dp.runmode == RunMode.LIVE
assert isinstance(dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval), DataFrame)
assert dp.get_pair_dataframe("NONESENSE/AAA", ticker_interval).empty
historymock = MagicMock(return_value=ticker_history)
mocker.patch("freqtrade.data.dataprovider.load_pair_history", historymock)
default_conf["runmode"] = RunMode.BACKTEST
dp = DataProvider(default_conf, exchange)
assert dp.runmode == RunMode.BACKTEST
assert isinstance(dp.get_pair_dataframe("UNITTEST/BTC", ticker_interval), DataFrame)
# assert dp.get_pair_dataframe("NONESENSE/AAA", ticker_interval).empty
def test_available_pairs(mocker, default_conf, ticker_history):
exchange = get_patched_exchange(mocker, default_conf)
ticker_interval = default_conf["ticker_interval"]
exchange._klines[("XRP/BTC", ticker_interval)] = ticker_history
exchange._klines[("UNITTEST/BTC", ticker_interval)] = ticker_history
dp = DataProvider(default_conf, exchange)
dp = DataProvider(default_conf, exchange)
assert len(dp.available_pairs) == 2
assert dp.available_pairs == [
("XRP/BTC", ticker_interval),

View File

@ -64,8 +64,7 @@ def test_load_data_30min_ticker(mocker, caplog, default_conf) -> None:
assert isinstance(ld, DataFrame)
assert not log_has(
'Download history data for pair: "UNITTEST/BTC", interval: 30m '
'and store in None.',
caplog.record_tuples
'and store in None.', caplog
)
@ -75,22 +74,20 @@ def test_load_data_7min_ticker(mocker, caplog, default_conf) -> None:
assert ld is None
assert log_has(
'No history data for pair: "UNITTEST/BTC", interval: 7m. '
'Use --refresh-pairs-cached option or download_backtest_data.py '
'script to download the data',
caplog.record_tuples
'Use --refresh-pairs-cached option or `freqtrade download-data` '
'script to download the data', caplog
)
def test_load_data_1min_ticker(ticker_history, mocker, caplog) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_history', return_value=ticker_history)
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=ticker_history)
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'UNITTEST_BTC-1m.json')
_backup_file(file, copy_file=True)
history.load_data(datadir=None, ticker_interval='1m', pairs=['UNITTEST/BTC'])
assert os.path.isfile(file) is True
assert not log_has(
'Download history data for pair: "UNITTEST/BTC", interval: 1m '
'and store in None.',
caplog.record_tuples
'and store in None.', caplog
)
_clean_test_file(file)
@ -99,7 +96,7 @@ def test_load_data_with_new_pair_1min(ticker_history_list, mocker, caplog, defau
"""
Test load_pair_history() with 1 min ticker
"""
mocker.patch('freqtrade.exchange.Exchange.get_history', return_value=ticker_history_list)
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=ticker_history_list)
exchange = get_patched_exchange(mocker, default_conf)
file = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
@ -112,9 +109,8 @@ def test_load_data_with_new_pair_1min(ticker_history_list, mocker, caplog, defau
assert os.path.isfile(file) is False
assert log_has(
'No history data for pair: "MEME/BTC", interval: 1m. '
'Use --refresh-pairs-cached option or download_backtest_data.py '
'script to download the data',
caplog.record_tuples
'Use --refresh-pairs-cached option or `freqtrade download-data` '
'script to download the data', caplog
)
# download a new pair if refresh_pairs is set
@ -126,8 +122,7 @@ def test_load_data_with_new_pair_1min(ticker_history_list, mocker, caplog, defau
assert os.path.isfile(file) is True
assert log_has(
'Download history data for pair: "MEME/BTC", interval: 1m '
'and store in None.',
caplog.record_tuples
'and store in None.', caplog
)
with pytest.raises(OperationalException, match=r'Exchange needs to be initialized when.*'):
history.load_pair_history(datadir=None,
@ -149,7 +144,7 @@ def test_load_data_live(default_conf, mocker, caplog) -> None:
exchange=exchange)
assert refresh_mock.call_count == 1
assert len(refresh_mock.call_args_list[0][0][0]) == 2
assert log_has('Live: Downloading data for all defined pairs ...', caplog.record_tuples)
assert log_has('Live: Downloading data for all defined pairs ...', caplog)
def test_load_data_live_noexchange(default_conf, mocker, caplog) -> None:
@ -183,16 +178,13 @@ def test_load_cached_data_for_updating(mocker) -> None:
# timeframe starts earlier than the cached data
# should fully update data
timerange = TimeRange('date', None, test_data[0][0] / 1000 - 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == []
assert start_ts == test_data[0][0] - 1000
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 120
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m',
TimeRange(None, 'line', 0, -num_lines))
assert data == []
assert start_ts < test_data[0][0] - 1
@ -200,36 +192,29 @@ def test_load_cached_data_for_updating(mocker) -> None:
# timeframe starts in the center of the cached data
# should return the chached data w/o the last item
timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# same with 'line' timeframe
num_lines = (test_data[-1][0] - test_data[1][0]) / 1000 / 60 + 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# timeframe starts after the chached data
# should return the chached data w/o the last item
timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 1, 0)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# same with 'line' timeframe
# Try loading last 30 lines.
# Not supported by load_cached_data_for_updating, we always need to get the full data.
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
@ -237,41 +222,33 @@ def test_load_cached_data_for_updating(mocker) -> None:
# should return the chached data w/o the last item
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename,
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'UNITTEST/BTC', '1m', timerange)
assert data == test_data[:-1]
assert test_data[-2][0] < start_ts < test_data[-1][0]
# no datafile exist
# should return timestamp start time
timerange = TimeRange('date', None, now_ts - 10000, 0)
data, start_ts = load_cached_data_for_updating(test_filename.with_name('unexist'),
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'NONEXIST/BTC', '1m', timerange)
assert data == []
assert start_ts == (now_ts - 10000) * 1000
# same with 'line' timeframe
num_lines = 30
timerange = TimeRange(None, 'line', 0, -num_lines)
data, start_ts = load_cached_data_for_updating(test_filename.with_name('unexist'),
'1m',
timerange)
data, start_ts = load_cached_data_for_updating(datadir, 'NONEXIST/BTC', '1m', timerange)
assert data == []
assert start_ts == (now_ts - num_lines * 60) * 1000
# no datafile exist, no timeframe is set
# should return an empty array and None
data, start_ts = load_cached_data_for_updating(test_filename.with_name('unexist'),
'1m',
None)
data, start_ts = load_cached_data_for_updating(datadir, 'NONEXIST/BTC', '1m', None)
assert data == []
assert start_ts is None
def test_download_pair_history(ticker_history_list, mocker, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_history', return_value=ticker_history_list)
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=ticker_history_list)
exchange = get_patched_exchange(mocker, default_conf)
file1_1 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-1m.json')
file1_5 = os.path.join(os.path.dirname(__file__), '..', 'testdata', 'MEME_BTC-5m.json')
@ -324,7 +301,7 @@ def test_download_pair_history2(mocker, default_conf) -> None:
[1509836580000, 0.00161, 0.00161, 0.00161, 0.00161, 82.390199]
]
json_dump_mock = mocker.patch('freqtrade.misc.file_dump_json', return_value=None)
mocker.patch('freqtrade.exchange.Exchange.get_history', return_value=tick)
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=tick)
exchange = get_patched_exchange(mocker, default_conf)
download_pair_history(None, exchange, pair="UNITTEST/BTC", ticker_interval='1m')
download_pair_history(None, exchange, pair="UNITTEST/BTC", ticker_interval='3m')
@ -332,7 +309,7 @@ def test_download_pair_history2(mocker, default_conf) -> None:
def test_download_backtesting_data_exception(ticker_history, mocker, caplog, default_conf) -> None:
mocker.patch('freqtrade.exchange.Exchange.get_history',
mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv',
side_effect=Exception('File Error'))
exchange = get_patched_exchange(mocker, default_conf)
@ -350,8 +327,7 @@ def test_download_backtesting_data_exception(ticker_history, mocker, caplog, def
_clean_test_file(file1_5)
assert log_has(
'Failed to download history data for pair: "MEME/BTC", interval: 1m. '
'Error: File Error',
caplog.record_tuples
'Error: File Error', caplog
)
@ -380,7 +356,7 @@ def test_load_partial_missing(caplog) -> None:
start_real = tickerdata['UNITTEST/BTC'].iloc[0, 0]
assert log_has(f'Missing data at start for pair '
f'UNITTEST/BTC, data starts at {start_real.strftime("%Y-%m-%d %H:%M:%S")}',
caplog.record_tuples)
caplog)
# Make sure we start fresh - test missing data at end
caplog.clear()
start = arrow.get('2018-01-10T00:00:00')
@ -396,7 +372,7 @@ def test_load_partial_missing(caplog) -> None:
end_real = arrow.get(tickerdata['UNITTEST/BTC'].iloc[-1, 0]).shift(minutes=5)
assert log_has(f'Missing data at end for pair '
f'UNITTEST/BTC, data ends at {end_real.strftime("%Y-%m-%d %H:%M:%S")}',
caplog.record_tuples)
caplog)
def test_init(default_conf, mocker) -> None:
@ -560,7 +536,7 @@ def test_validate_backtest_data_warn(default_conf, mocker, caplog) -> None:
assert len(caplog.record_tuples) == 1
assert log_has(
"UNITTEST/BTC has missing frames: expected 14396, got 13680, that's 716 missing values",
caplog.record_tuples)
caplog)
def test_validate_backtest_data(default_conf, mocker, caplog) -> None:

View File

@ -311,7 +311,7 @@ def test_edge_process_no_data(mocker, edge_conf, caplog):
assert not edge.calculate()
assert len(edge._cached_pairs) == 0
assert log_has("No data found. Edge is stopped ...", caplog.record_tuples)
assert log_has("No data found. Edge is stopped ...", caplog)
assert edge._last_updated == 0
@ -326,7 +326,7 @@ def test_edge_process_no_trades(mocker, edge_conf, caplog):
assert not edge.calculate()
assert len(edge._cached_pairs) == 0
assert log_has("No trades found.", caplog.record_tuples)
assert log_has("No trades found.", caplog)
def test_edge_init_error(mocker, edge_conf,):

View File

@ -2,7 +2,7 @@
# pragma pylint: disable=protected-access
import copy
import logging
from datetime import datetime
from datetime import datetime, timezone
from random import randint
from unittest.mock import MagicMock, Mock, PropertyMock
@ -11,10 +11,14 @@ import ccxt
import pytest
from pandas import DataFrame
from freqtrade import (DependencyException, OperationalException,
TemporaryError, InvalidOrderException)
from freqtrade import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Binance, Exchange, Kraken
from freqtrade.exchange.exchange import API_RETRY_COUNT
from freqtrade.exchange.exchange import (API_RETRY_COUNT, timeframe_to_minutes,
timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date,
timeframe_to_seconds)
from freqtrade.resolvers.exchange_resolver import ExchangeResolver
from freqtrade.tests.conftest import get_patched_exchange, log_has, log_has_re
@ -62,7 +66,7 @@ async def async_ccxt_exception(mocker, default_conf, api_mock, fun, mock_ccxt_fu
def test_init(default_conf, mocker, caplog):
caplog.set_level(logging.INFO)
get_patched_exchange(mocker, default_conf)
assert log_has('Instance is running with dry_run enabled', caplog.record_tuples)
assert log_has('Instance is running with dry_run enabled', caplog)
def test_init_ccxt_kwargs(default_conf, mocker, caplog):
@ -71,8 +75,7 @@ def test_init_ccxt_kwargs(default_conf, mocker, caplog):
conf = copy.deepcopy(default_conf)
conf['exchange']['ccxt_async_config'] = {'aiohttp_trust_env': True}
ex = Exchange(conf)
assert log_has("Applying additional ccxt config: {'aiohttp_trust_env': True}",
caplog.record_tuples)
assert log_has("Applying additional ccxt config: {'aiohttp_trust_env': True}", caplog)
assert ex._api_async.aiohttp_trust_env
assert not ex._api.aiohttp_trust_env
@ -81,20 +84,18 @@ def test_init_ccxt_kwargs(default_conf, mocker, caplog):
conf = copy.deepcopy(default_conf)
conf['exchange']['ccxt_config'] = {'TestKWARG': 11}
ex = Exchange(conf)
assert not log_has("Applying additional ccxt config: {'aiohttp_trust_env': True}",
caplog.record_tuples)
assert not log_has("Applying additional ccxt config: {'aiohttp_trust_env': True}", caplog)
assert not ex._api_async.aiohttp_trust_env
assert hasattr(ex._api, 'TestKWARG')
assert ex._api.TestKWARG == 11
assert not hasattr(ex._api_async, 'TestKWARG')
assert log_has("Applying additional ccxt config: {'TestKWARG': 11}",
caplog.record_tuples)
assert log_has("Applying additional ccxt config: {'TestKWARG': 11}", caplog)
def test_destroy(default_conf, mocker, caplog):
caplog.set_level(logging.DEBUG)
get_patched_exchange(mocker, default_conf)
assert log_has('Exchange object destroyed, closing async loop', caplog.record_tuples)
assert log_has('Exchange object destroyed, closing async loop', caplog)
def test_init_exception(default_conf, mocker):
@ -120,8 +121,7 @@ def test_exchange_resolver(default_conf, mocker, caplog):
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
exchange = ExchangeResolver('Bittrex', default_conf).exchange
assert isinstance(exchange, Exchange)
assert log_has_re(r"No .* specific subclass found. Using the generic class instead.",
caplog.record_tuples)
assert log_has_re(r"No .* specific subclass found. Using the generic class instead.", caplog)
caplog.clear()
exchange = ExchangeResolver('kraken', default_conf).exchange
@ -129,7 +129,7 @@ def test_exchange_resolver(default_conf, mocker, caplog):
assert isinstance(exchange, Kraken)
assert not isinstance(exchange, Binance)
assert not log_has_re(r"No .* specific subclass found. Using the generic class instead.",
caplog.record_tuples)
caplog)
exchange = ExchangeResolver('binance', default_conf).exchange
assert isinstance(exchange, Exchange)
@ -137,7 +137,7 @@ def test_exchange_resolver(default_conf, mocker, caplog):
assert not isinstance(exchange, Kraken)
assert not log_has_re(r"No .* specific subclass found. Using the generic class instead.",
caplog.record_tuples)
caplog)
def test_validate_order_time_in_force(default_conf, mocker, caplog):
@ -249,8 +249,7 @@ def test__load_async_markets(default_conf, mocker, caplog):
exchange._api_async.load_markets = Mock(side_effect=ccxt.BaseError("deadbeef"))
exchange._load_async_markets()
assert log_has('Could not load async markets. Reason: deadbeef',
caplog.record_tuples)
assert log_has('Could not load async markets. Reason: deadbeef', caplog)
def test__load_markets(default_conf, mocker, caplog):
@ -262,7 +261,7 @@ def test__load_markets(default_conf, mocker, caplog):
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
mocker.patch('freqtrade.exchange.Exchange._load_async_markets', MagicMock())
Exchange(default_conf)
assert log_has('Unable to initialize markets. Reason: SomeError', caplog.record_tuples)
assert log_has('Unable to initialize markets. Reason: SomeError', caplog)
expected_return = {'ETH/BTC': 'available'}
api_mock = MagicMock()
@ -298,7 +297,7 @@ def test__reload_markets(default_conf, mocker, caplog):
exchange._last_markets_refresh = arrow.utcnow().timestamp - 15 * 60
exchange._reload_markets()
assert exchange.markets == updated_markets
assert log_has('Performing scheduled market reload..', caplog.record_tuples)
assert log_has('Performing scheduled market reload..', caplog)
def test__reload_markets_exception(default_conf, mocker, caplog):
@ -312,13 +311,13 @@ def test__reload_markets_exception(default_conf, mocker, caplog):
# less than 10 minutes have passed, no reload
exchange._reload_markets()
assert exchange._last_markets_refresh == 0
assert log_has_re(r"Could not reload markets.*", caplog.record_tuples)
assert log_has_re(r"Could not reload markets.*", caplog)
def test_validate_pairs(default_conf, mocker): # test exchange.validate_pairs directly
api_mock = MagicMock()
type(api_mock).markets = PropertyMock(return_value={
'ETH/BTC': '', 'LTC/BTC': '', 'XRP/BTC': '', 'NEO/BTC': ''
'ETH/BTC': {}, 'LTC/BTC': {}, 'XRP/BTC': {}, 'NEO/BTC': {}
})
id_mock = PropertyMock(return_value='test_exchange')
type(api_mock).id = id_mock
@ -332,7 +331,7 @@ def test_validate_pairs(default_conf, mocker): # test exchange.validate_pairs d
def test_validate_pairs_not_available(default_conf, mocker):
api_mock = MagicMock()
type(api_mock).markets = PropertyMock(return_value={
'XRP/BTC': 'inactive'
'XRP/BTC': {'inactive': True}
})
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
@ -357,8 +356,23 @@ def test_validate_pairs_exception(default_conf, mocker, caplog):
mocker.patch('freqtrade.exchange.Exchange.markets', PropertyMock(return_value={}))
Exchange(default_conf)
assert log_has('Unable to validate pairs (assuming they are correct).',
caplog.record_tuples)
assert log_has('Unable to validate pairs (assuming they are correct).', caplog)
def test_validate_pairs_restricted(default_conf, mocker, caplog):
api_mock = MagicMock()
type(api_mock).markets = PropertyMock(return_value={
'ETH/BTC': {}, 'LTC/BTC': {}, 'NEO/BTC': {},
'XRP/BTC': {'info': {'IsRestricted': True}}
})
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
mocker.patch('freqtrade.exchange.Exchange._load_async_markets', MagicMock())
Exchange(default_conf)
assert log_has(f"Pair XRP/BTC is restricted for some users on this exchange."
f"Please check if you are impacted by this restriction "
f"on the exchange and eventually remove XRP/BTC from your whitelist.", caplog)
def test_validate_timeframes(default_conf, mocker):
@ -642,7 +656,13 @@ def test_buy_prod(default_conf, mocker, exchange_name):
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype=order_type,
exchange.buy(pair='ETH/BTC', ordertype='limit',
amount=1, rate=200, time_in_force=time_in_force)
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.buy(pair='ETH/BTC', ordertype='market',
amount=1, rate=200, time_in_force=time_in_force)
with pytest.raises(TemporaryError):
@ -765,7 +785,13 @@ def test_sell_prod(default_conf, mocker, exchange_name):
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
exchange.sell(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
# Market orders don't require price, so the behaviour is slightly different
with pytest.raises(DependencyException):
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder("Order not found"))
exchange = get_patched_exchange(mocker, default_conf, api_mock, id=exchange_name)
exchange.sell(pair='ETH/BTC', ordertype='market', amount=1, rate=200)
with pytest.raises(TemporaryError):
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError("No Connection"))
@ -986,7 +1012,7 @@ def test_get_ticker(default_conf, mocker, exchange_name):
@pytest.mark.parametrize("exchange_name", EXCHANGES)
def test_get_history(default_conf, mocker, caplog, exchange_name):
def test_get_historic_ohlcv(default_conf, mocker, caplog, exchange_name):
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
tick = [
[
@ -1007,7 +1033,7 @@ def test_get_history(default_conf, mocker, caplog, exchange_name):
# one_call calculation * 1.8 should do 2 calls
since = 5 * 60 * 500 * 1.8
print(f"since = {since}")
ret = exchange.get_history(pair, "5m", int((arrow.utcnow().timestamp - since) * 1000))
ret = exchange.get_historic_ohlcv(pair, "5m", int((arrow.utcnow().timestamp - since) * 1000))
assert exchange._async_get_candle_history.call_count == 2
# Returns twice the above tick
@ -1043,7 +1069,7 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None:
assert not exchange._klines
exchange.refresh_latest_ohlcv(pairs)
assert log_has(f'Refreshing ohlcv data for {len(pairs)} pairs', caplog.record_tuples)
assert log_has(f'Refreshing ohlcv data for {len(pairs)} pairs', caplog)
assert exchange._klines
assert exchange._api_async.fetch_ohlcv.call_count == 2
for pair in pairs:
@ -1062,7 +1088,7 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None:
assert exchange._api_async.fetch_ohlcv.call_count == 2
assert log_has(f"Using cached ohlcv data for pair {pairs[0][0]}, interval {pairs[0][1]} ...",
caplog.record_tuples)
caplog)
@pytest.mark.asyncio
@ -1092,7 +1118,7 @@ async def test__async_get_candle_history(default_conf, mocker, caplog, exchange_
assert res[1] == "5m"
assert res[2] == tick
assert exchange._api_async.fetch_ohlcv.call_count == 1
assert not log_has(f"Using cached ohlcv data for {pair} ...", caplog.record_tuples)
assert not log_has(f"Using cached ohlcv data for {pair} ...", caplog)
# exchange = Exchange(default_conf)
await async_ccxt_exception(mocker, default_conf, MagicMock(),
@ -1151,8 +1177,8 @@ def test_refresh_latest_ohlcv_inv_result(default_conf, mocker, caplog):
# Test that each is in list at least once as order is not guaranteed
assert type(res[0]) is tuple or type(res[1]) is tuple
assert type(res[0]) is TypeError or type(res[1]) is TypeError
assert log_has("Error loading ETH/BTC. Result was [[]].", caplog.record_tuples)
assert log_has("Async code raised an exception: TypeError", caplog.record_tuples)
assert log_has("Error loading ETH/BTC. Result was [[]].", caplog)
assert log_has("Async code raised an exception: TypeError", caplog)
@pytest.mark.parametrize("exchange_name", EXCHANGES)
@ -1314,6 +1340,9 @@ def test_get_order(default_conf, mocker, exchange_name):
print(exchange.get_order('X', 'TKN/BTC'))
assert exchange.get_order('X', 'TKN/BTC').myid == 123
with pytest.raises(InvalidOrderException, match=r'Tried to get an invalid dry-run-order.*'):
exchange.get_order('Y', 'TKN/BTC')
default_conf['dry_run'] = False
api_mock = MagicMock()
api_mock.fetch_order = MagicMock(return_value=456)
@ -1344,7 +1373,7 @@ def test_name(default_conf, mocker, exchange_name):
@pytest.mark.parametrize("exchange_name", EXCHANGES)
def test_get_trades_for_order(default_conf, mocker, exchange_name):
order_id = 'ABCD-ABCD'
since = datetime(2018, 5, 5)
since = datetime(2018, 5, 5, tzinfo=timezone.utc)
default_conf["dry_run"] = False
mocker.patch('freqtrade.exchange.Exchange.exchange_has', return_value=True)
api_mock = MagicMock()
@ -1374,6 +1403,13 @@ def test_get_trades_for_order(default_conf, mocker, exchange_name):
orders = exchange.get_trades_for_order(order_id, 'LTC/BTC', since)
assert len(orders) == 1
assert orders[0]['price'] == 165
assert api_mock.fetch_my_trades.call_count == 1
# since argument should be
assert isinstance(api_mock.fetch_my_trades.call_args[0][1], int)
assert api_mock.fetch_my_trades.call_args[0][0] == 'LTC/BTC'
# Same test twice, hardcoded number and doing the same calculation
assert api_mock.fetch_my_trades.call_args[0][1] == 1525478395000
assert api_mock.fetch_my_trades.call_args[0][1] == int(since.timestamp() - 5) * 1000
ccxt_exceptionhandlers(mocker, default_conf, api_mock, exchange_name,
'get_trades_for_order', 'fetch_my_trades',
@ -1523,3 +1559,74 @@ def test_get_valid_pair_combination(default_conf, mocker, markets):
assert ex.get_valid_pair_combination("BTC", "ETH") == "ETH/BTC"
with pytest.raises(DependencyException, match=r"Could not combine.* to get a valid pair."):
ex.get_valid_pair_combination("NOPAIR", "ETH")
def test_timeframe_to_minutes():
assert timeframe_to_minutes("5m") == 5
assert timeframe_to_minutes("10m") == 10
assert timeframe_to_minutes("1h") == 60
assert timeframe_to_minutes("1d") == 1440
def test_timeframe_to_seconds():
assert timeframe_to_seconds("5m") == 300
assert timeframe_to_seconds("10m") == 600
assert timeframe_to_seconds("1h") == 3600
assert timeframe_to_seconds("1d") == 86400
def test_timeframe_to_msecs():
assert timeframe_to_msecs("5m") == 300000
assert timeframe_to_msecs("10m") == 600000
assert timeframe_to_msecs("1h") == 3600000
assert timeframe_to_msecs("1d") == 86400000
def test_timeframe_to_prev_date():
# 2019-08-12 13:22:08
date = datetime.fromtimestamp(1565616128, tz=timezone.utc)
tf_list = [
# 5m -> 2019-08-12 13:20:00
("5m", datetime(2019, 8, 12, 13, 20, 0, tzinfo=timezone.utc)),
# 10m -> 2019-08-12 13:20:00
("10m", datetime(2019, 8, 12, 13, 20, 0, tzinfo=timezone.utc)),
# 1h -> 2019-08-12 13:00:00
("1h", datetime(2019, 8, 12, 13, 00, 0, tzinfo=timezone.utc)),
# 2h -> 2019-08-12 12:00:00
("2h", datetime(2019, 8, 12, 12, 00, 0, tzinfo=timezone.utc)),
# 4h -> 2019-08-12 12:00:00
("4h", datetime(2019, 8, 12, 12, 00, 0, tzinfo=timezone.utc)),
# 1d -> 2019-08-12 00:00:00
("1d", datetime(2019, 8, 12, 00, 00, 0, tzinfo=timezone.utc)),
]
for interval, result in tf_list:
assert timeframe_to_prev_date(interval, date) == result
date = datetime.now(tz=timezone.utc)
assert timeframe_to_prev_date("5m", date) < date
def test_timeframe_to_next_date():
# 2019-08-12 13:22:08
date = datetime.fromtimestamp(1565616128, tz=timezone.utc)
tf_list = [
# 5m -> 2019-08-12 13:25:00
("5m", datetime(2019, 8, 12, 13, 25, 0, tzinfo=timezone.utc)),
# 10m -> 2019-08-12 13:30:00
("10m", datetime(2019, 8, 12, 13, 30, 0, tzinfo=timezone.utc)),
# 1h -> 2019-08-12 14:00:00
("1h", datetime(2019, 8, 12, 14, 00, 0, tzinfo=timezone.utc)),
# 2h -> 2019-08-12 14:00:00
("2h", datetime(2019, 8, 12, 14, 00, 0, tzinfo=timezone.utc)),
# 4h -> 2019-08-12 14:00:00
("4h", datetime(2019, 8, 12, 16, 00, 0, tzinfo=timezone.utc)),
# 1d -> 2019-08-13 00:00:00
("1d", datetime(2019, 8, 13, 0, 0, 0, tzinfo=timezone.utc)),
]
for interval, result in tf_list:
assert timeframe_to_next_date(interval, date) == result
date = datetime.now(tz=timezone.utc)
assert timeframe_to_next_date("5m", date) > date

View File

@ -14,9 +14,8 @@ from freqtrade.tests.optimize import (BTContainer, BTrade,
_get_frame_time_from_offset,
tests_ticker_interval)
# Test 0 Sell signal sell
# Test 0: Sell with signal sell in candle 3
# Test with Stop-loss at 1%
# TC0: Sell signal in candle 3
tc0 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
@ -29,9 +28,8 @@ tc0 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=4)]
)
# Test 1 Minus 8% Close
# Test 1: Stop-Loss Triggered 1% loss
# Test with Stop-loss at 1%
# TC1: Stop-Loss Triggered 1% loss
tc1 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
@ -45,9 +43,8 @@ tc1 = BTContainer(data=[
)
# Test 2 Minus 4% Low, minus 1% close
# Test 2: Minus 4% Low, minus 1% close
# Test with Stop-Loss at 3%
# TC2: Stop-Loss Triggered 3% Loss
tc2 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
@ -61,11 +58,11 @@ tc2 = BTContainer(data=[
)
# Test 3 Candle drops 4%, Recovers 1%.
# Test 3: Multiple trades.
# Candle drops 4%, Recovers 1%.
# Entry Criteria Met
# Candle drops 20%
# Test with Stop-Loss at 2%
# TC3: Trade-A: Stop-Loss Triggered 2% Loss
# Trade-A: Stop-Loss Triggered 2% Loss
# Trade-B: Stop-Loss Triggered 2% Loss
tc3 = BTContainer(data=[
# D O H L C V B S
@ -81,10 +78,10 @@ tc3 = BTContainer(data=[
BTrade(sell_reason=SellType.STOP_LOSS, open_tick=4, close_tick=5)]
)
# Test 4 Minus 3% / recovery +15%
# Test 4: Minus 3% / recovery +15%
# Candle Data for test 3 Candle drops 3% Closed 15% up
# Test with Stop-loss at 2% ROI 6%
# TC4: Stop-Loss Triggered 2% Loss
# Stop-Loss Triggered 2% Loss
tc4 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
@ -97,9 +94,8 @@ tc4 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 5 / Drops 0.5% Closes +20%
# Set stop-loss at 1% ROI 3%
# TC5: ROI triggers 3% Gain
# Test 5: Drops 0.5% Closes +20%, ROI triggers 3% Gain
# stop-loss: 1%, ROI: 3%
tc5 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4980, 4987, 6172, 1, 0],
@ -112,9 +108,8 @@ tc5 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
# Set stop-loss at 2% ROI at 5%
# TC6: Stop-Loss triggers 2% Loss
# Test 6: Drops 3% / Recovers 6% Positive / Closes 1% positve, Stop-Loss triggers 2% Loss
# stop-loss: 2% ROI: 5%
tc6 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
@ -127,9 +122,8 @@ tc6 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
# Set stop-loss at 2% ROI at 3%
# TC7: ROI Triggers 3% Gain
# Test 7: 6% Positive / 1% Negative / Close 1% Positve, ROI Triggers 3% Gain
# stop-loss: 2% ROI: 3%
tc7 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
@ -143,9 +137,8 @@ tc7 = BTContainer(data=[
)
# Test 8 - trailing_stop should raise so candle 3 causes a stoploss.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC8: Trailing stoploss - stoploss should be adjusted candle 2
# Test 8: trailing_stop should raise so candle 3 causes a stoploss.
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted in candle 2
tc8 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
@ -158,10 +151,8 @@ tc8 = BTContainer(data=[
)
# Test 9 - trailing_stop should raise - high and low in same candle.
# Candle Data for test 9
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC9: Trailing stoploss - stoploss should be adjusted candle 3
# Test 9: trailing_stop should raise - high and low in same candle.
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted in candle 3
tc9 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
@ -173,10 +164,9 @@ tc9 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 10 - trailing_stop should raise so candle 3 causes a stoploss
# Test 10: trailing_stop should raise so candle 3 causes a stoploss
# without applying trailing_stop_positive since stoploss_offset is at 10%.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC10: Trailing stoploss - stoploss should be adjusted candle 2
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2
tc10 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
@ -190,10 +180,9 @@ tc10 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=4)]
)
# Test 11 - trailing_stop should raise so candle 3 causes a stoploss
# Test 11: trailing_stop should raise so candle 3 causes a stoploss
# applying a positive trailing stop of 3% since stop_positive_offset is reached.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC11: Trailing stoploss - stoploss should be adjusted candle 2,
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2
tc11 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
@ -207,10 +196,9 @@ tc11 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 12 - trailing_stop should raise in candle 2 and cause a stoploss in the same candle
# Test 12: trailing_stop should raise in candle 2 and cause a stoploss in the same candle
# applying a positive trailing stop of 3% since stop_positive_offset is reached.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC12: Trailing stoploss - stoploss should be adjusted candle 2,
# stop-loss: 10%, ROI: 10% (should not apply), stoploss adjusted candle 2
tc12 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
@ -224,6 +212,47 @@ tc12 = BTContainer(data=[
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 13: Buy and sell ROI on same candle
# stop-loss: 10% (should not apply), ROI: 1%
tc13 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5100, 4950, 5100, 6172, 0, 0],
[2, 5100, 5251, 4850, 5100, 6172, 0, 0],
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
[4, 4750, 4950, 4850, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi=0.01, profit_perc=0.01,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1)]
)
# Test 14 - Buy and Stoploss on same candle
# stop-loss: 5%, ROI: 10% (should not apply)
tc14 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5100, 4600, 5100, 6172, 0, 0],
[2, 5100, 5251, 4850, 5100, 6172, 0, 0],
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.05, roi=0.10, profit_perc=-0.05,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
)
# Test 15 - Buy and ROI on same candle, followed by buy and Stoploss on next candle
# stop-loss: 5%, ROI: 10% (should not apply)
tc15 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5100, 4900, 5100, 6172, 1, 0],
[2, 5100, 5251, 4650, 5100, 6172, 0, 0],
[3, 4850, 5050, 4850, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.05, roi=0.01, profit_perc=-0.04,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=1),
BTrade(sell_reason=SellType.STOP_LOSS, open_tick=2, close_tick=2)]
)
TESTS = [
tc0,
tc1,
@ -238,6 +267,9 @@ TESTS = [
tc10,
tc11,
tc12,
tc13,
tc14,
tc15,
]

View File

@ -2,6 +2,7 @@
import math
import random
from pathlib import Path
from unittest.mock import MagicMock
import numpy as np
@ -9,7 +10,7 @@ import pandas as pd
import pytest
from arrow import Arrow
from freqtrade import DependencyException, constants
from freqtrade import DependencyException, OperationalException, constants
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import evaluate_result_multi
@ -21,7 +22,8 @@ from freqtrade.optimize.backtesting import Backtesting
from freqtrade.state import RunMode
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
patch_exchange,
patched_configuration_load_config_file)
@ -180,21 +182,15 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' not in config
assert 'export' not in config
@ -202,6 +198,7 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert config['runmode'] == RunMode.BACKTEST
@pytest.mark.filterwarnings("ignore:DEPRECATED")
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
@ -215,7 +212,6 @@ def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) ->
'--datadir', '/foo/bar',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--enable-position-stacking',
'--disable-max-market-positions',
'--refresh-pairs-cached',
@ -233,43 +229,28 @@ def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) ->
assert 'datadir' in config
assert config['runmode'] == RunMode.BACKTEST
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
assert 'exportfilename' in config
assert log_has(
'Storing backtest results to {} ...'.format(config['exportfilename']),
caplog.record_tuples
)
assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog)
def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
@ -301,10 +282,7 @@ def test_start(mocker, fee, default_conf, caplog) -> None:
]
args = get_args(args)
start_backtesting(args)
assert log_has(
'Starting freqtrade in Backtesting mode',
caplog.record_tuples
)
assert log_has('Starting freqtrade in Backtesting mode', caplog)
assert start_mock.call_count == 1
@ -344,6 +322,23 @@ def test_backtesting_init(mocker, default_conf, order_types) -> None:
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
def test_backtesting_init_no_ticker_interval(mocker, default_conf, caplog) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
patch_exchange(mocker)
del default_conf['ticker_interval']
default_conf['strategy_list'] = ['DefaultStrategy',
'TestStrategy']
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
with pytest.raises(OperationalException):
Backtesting(default_conf)
log_has("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`", caplog)
def test_tickerdata_to_dataframe_bt(default_conf, mocker) -> None:
patch_exchange(mocker)
timerange = TimeRange(None, 'line', 0, -100)
@ -477,7 +472,6 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = '1m'
default_conf['live'] = False
default_conf['datadir'] = None
default_conf['export'] = None
default_conf['timerange'] = '-100'
@ -492,7 +486,7 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog.record_tuples)
assert log_has(line, caplog)
def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
@ -511,7 +505,6 @@ def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = "1m"
default_conf['live'] = False
default_conf['datadir'] = None
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
@ -520,7 +513,7 @@ def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
backtesting.start()
# check the logs, that will contain the backtest result
assert log_has('No data found. Terminating.', caplog.record_tuples)
assert log_has('No data found. Terminating.', caplog)
def test_backtest(default_conf, fee, mocker) -> None:
@ -617,8 +610,9 @@ def test_processed(default_conf, mocker) -> None:
def test_backtest_pricecontours(default_conf, fee, mocker) -> None:
# TODO: Evaluate usefullness of this, the patterns and buy-signls are unrealistic
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
tests = [['raise', 19], ['lower', 0], ['sine', 18]]
tests = [['raise', 19], ['lower', 0], ['sine', 35]]
# We need to enable sell-signal - otherwise it sells on ROI!!
default_conf['experimental'] = {"use_sell_signal": True}
@ -783,10 +777,10 @@ def test_backtest_record(default_conf, fee, mocker):
# reset test to test with strategy name
names = []
records = []
backtesting._store_backtest_result("backtest-result.json", results, "DefStrat")
backtesting._store_backtest_result(Path("backtest-result.json"), results, "DefStrat")
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result-DefStrat.json']
assert names == [Path('backtest-result-DefStrat.json')]
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
@ -812,7 +806,7 @@ def test_backtest_record(default_conf, fee, mocker):
assert dur > 0
def test_backtest_start_live(default_conf, mocker, caplog):
def test_backtest_start_timerange(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
@ -832,7 +826,6 @@ def test_backtest_start_live(default_conf, mocker, caplog):
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100',
'--enable-position-stacking',
'--disable-max-market-positions'
@ -842,20 +835,18 @@ def test_backtest_start_live(default_conf, mocker, caplog):
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data directory: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Live: Downloading data for all defined pairs ...',
'Backtesting with data from 2017-11-14T19:31:00+00:00 '
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
assert log_has(line, caplog.record_tuples)
assert log_has(line, caplog)
def test_backtest_start_multi_strat(default_conf, mocker, caplog):
@ -881,7 +872,6 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog):
'--datadir', 'freqtrade/tests/testdata',
'backtesting',
'--ticker-interval', '1m',
'--live',
'--timerange', '-100',
'--enable-position-stacking',
'--disable-max-market-positions',
@ -899,14 +889,12 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog):
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Parameter -l/--live detected ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: -100 ...',
'Using data directory: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Live: Downloading data for all defined pairs ...',
'Backtesting with data from 2017-11-14T19:31:00+00:00 '
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
@ -914,4 +902,4 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog):
]
for line in exists:
assert log_has(line, caplog.record_tuples)
assert log_has(line, caplog)

View File

@ -3,11 +3,14 @@
from unittest.mock import MagicMock
import pytest
from freqtrade.edge import PairInfo
from freqtrade.optimize import setup_configuration, start_edge
from freqtrade.optimize.edge_cli import EdgeCli
from freqtrade.state import RunMode
from freqtrade.tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
patch_exchange,
patched_configuration_load_config_file)
@ -29,20 +32,18 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog.record_tuples)
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' not in config
assert 'stoploss_range' not in config
@pytest.mark.filterwarnings("ignore:DEPRECATED")
def test_setup_edge_configuration_with_arguments(mocker, edge_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, edge_conf)
mocker.patch(
@ -69,21 +70,15 @@ def test_setup_edge_configuration_with_arguments(mocker, edge_conf, caplog) -> N
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.EDGE
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
caplog)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
def test_start(mocker, fee, edge_conf, caplog) -> None:
@ -100,10 +95,7 @@ def test_start(mocker, fee, edge_conf, caplog) -> None:
]
args = get_args(args)
start_edge(args)
assert log_has(
'Starting freqtrade in Edge mode',
caplog.record_tuples
)
assert log_has('Starting freqtrade in Edge mode', caplog)
assert start_mock.call_count == 1

View File

@ -1,12 +1,13 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
import os
from datetime import datetime
from unittest.mock import MagicMock
from unittest.mock import MagicMock, PropertyMock
import pandas as pd
import pytest
from arrow import Arrow
from filelock import Timeout
from pathlib import Path
from freqtrade import DependencyException, OperationalException
from freqtrade.data.converter import parse_ticker_dataframe
@ -14,8 +15,7 @@ from freqtrade.data.history import load_tickerdata_file
from freqtrade.optimize import setup_configuration, start_hyperopt
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts
from freqtrade.optimize.default_hyperopt_loss import DefaultHyperOptLoss
from freqtrade.optimize.hyperopt import (HYPEROPT_LOCKFILE, TICKERDATA_PICKLE,
Hyperopt)
from freqtrade.optimize.hyperopt import Hyperopt
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver, HyperOptLossResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import SellType
@ -26,6 +26,7 @@ from freqtrade.tests.conftest import (get_args, log_has, log_has_re,
@pytest.fixture(scope='function')
def hyperopt(default_conf, mocker):
default_conf.update({'spaces': ['all']})
patch_exchange(mocker)
return Hyperopt(default_conf)
@ -53,11 +54,14 @@ def create_trials(mocker, hyperopt) -> None:
- we might have a pickle'd file so make sure that we return
false when looking for it
"""
hyperopt.trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
hyperopt.trials_file = Path('freqtrade/tests/optimize/ut_trials.pickle')
mocker.patch('freqtrade.optimize.hyperopt.os.path.exists', return_value=False)
mocker.patch('freqtrade.optimize.hyperopt.os.path.getsize', return_value=1)
mocker.patch('freqtrade.optimize.hyperopt.os.remove', return_value=True)
mocker.patch.object(Path, "is_file", MagicMock(return_value=False))
stat_mock = MagicMock()
stat_mock.st_size = PropertyMock(return_value=1)
mocker.patch.object(Path, "stat", MagicMock(return_value=False))
mocker.patch.object(Path, "unlink", MagicMock(return_value=True))
mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
return [{'loss': 1, 'result': 'foo', 'params': {}}]
@ -78,27 +82,22 @@ def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, ca
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' not in config
assert 'runmode' in config
assert config['runmode'] == RunMode.HYPEROPT
@pytest.mark.filterwarnings("ignore:DEPRECATED")
def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
@ -129,41 +128,32 @@ def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplo
assert 'datadir' in config
assert config['runmode'] == RunMode.HYPEROPT
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'refresh_pairs' in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'epochs' in config
assert log_has('Parameter --epochs detected ... Will run Hyperopt with for 1000 epochs ...',
caplog.record_tuples)
caplog)
assert 'spaces' in config
assert log_has(
'Parameter -s/--spaces detected: {}'.format(config['spaces']),
caplog.record_tuples
)
assert log_has('Parameter -s/--spaces detected: {}'.format(config['spaces']), caplog)
assert 'print_all' in config
assert log_has('Parameter --print-all detected ...', caplog.record_tuples)
assert log_has('Parameter --print-all detected ...', caplog)
def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
@ -180,9 +170,9 @@ def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
assert not hasattr(x, 'populate_buy_trend')
assert not hasattr(x, 'populate_sell_trend')
assert log_has("Custom Hyperopt does not provide populate_sell_trend. "
"Using populate_sell_trend from DefaultStrategy.", caplog.record_tuples)
"Using populate_sell_trend from DefaultStrategy.", caplog)
assert log_has("Custom Hyperopt does not provide populate_buy_trend. "
"Using populate_buy_trend from DefaultStrategy.", caplog.record_tuples)
"Using populate_buy_trend from DefaultStrategy.", caplog)
assert hasattr(x, "ticker_interval")
@ -228,10 +218,7 @@ def test_start(mocker, default_conf, caplog) -> None:
import pprint
pprint.pprint(caplog.record_tuples)
assert log_has(
'Starting freqtrade in Hyperopt mode',
caplog.record_tuples
)
assert log_has('Starting freqtrade in Hyperopt mode', caplog)
assert start_mock.call_count == 1
@ -256,7 +243,7 @@ def test_start_no_data(mocker, default_conf, caplog) -> None:
import pprint
pprint.pprint(caplog.record_tuples)
assert log_has('No data found. Terminating.', caplog.record_tuples)
assert log_has('No data found. Terminating.', caplog)
def test_start_failure(mocker, default_conf, caplog) -> None:
@ -274,14 +261,11 @@ def test_start_failure(mocker, default_conf, caplog) -> None:
args = get_args(args)
with pytest.raises(DependencyException):
start_hyperopt(args)
assert log_has(
"Please don't use --strategy for hyperopt.",
caplog.record_tuples
)
assert log_has("Please don't use --strategy for hyperopt.", caplog)
def test_start_filelock(mocker, default_conf, caplog) -> None:
start_mock = MagicMock(side_effect=Timeout(HYPEROPT_LOCKFILE))
start_mock = MagicMock(side_effect=Timeout(Hyperopt.get_lock_filename(default_conf)))
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
patch_exchange(mocker)
@ -293,10 +277,7 @@ def test_start_filelock(mocker, default_conf, caplog) -> None:
]
args = get_args(args)
start_hyperopt(args)
assert log_has(
"Another running instance of freqtrade Hyperopt detected.",
caplog.record_tuples
)
assert log_has("Another running instance of freqtrade Hyperopt detected.", caplog)
def test_loss_calculation_prefer_correct_trade_count(default_conf, hyperopt_results) -> None:
@ -370,13 +351,13 @@ def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results)
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
hyperopt.current_best_loss = 2
hyperopt.total_epochs = 2
hyperopt.log_results(
{
'loss': 1,
'current_tries': 1,
'total_tries': 2,
'result': 'foo.',
'initial_point': False
'current_epoch': 1,
'results_explanation': 'foo.',
'is_initial_point': False
}
)
out, err = capsys.readouterr()
@ -400,10 +381,7 @@ def test_save_trials_saves_trials(mocker, hyperopt, caplog) -> None:
hyperopt.save_trials()
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
assert log_has(
'Saving 1 evaluations to \'{}\''.format(trials_file),
caplog.record_tuples
)
assert log_has('Saving 1 evaluations to \'{}\''.format(trials_file), caplog)
mock_dump.assert_called_once()
@ -412,10 +390,7 @@ def test_read_trials_returns_trials_file(mocker, hyperopt, caplog) -> None:
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=trials)
hyperopt_trial = hyperopt.read_trials()
trials_file = os.path.join('freqtrade', 'tests', 'optimize', 'ut_trials.pickle')
assert log_has(
'Reading Trials from \'{}\''.format(trials_file),
caplog.record_tuples
)
assert log_has('Reading Trials from \'{}\''.format(trials_file), caplog)
assert hyperopt_trial == trials
mock_load.assert_called_once()
@ -433,7 +408,7 @@ def test_roi_table_generation(hyperopt) -> None:
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
def test_start_calls_optimizer(mocker, default_conf, caplog, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch(
@ -443,7 +418,7 @@ def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{'loss': 1, 'result': 'foo result', 'params': {}}])
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
)
patch_exchange(mocker)
@ -454,16 +429,20 @@ def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
'hyperopt_jobs': 1, })
hyperopt = Hyperopt(default_conf)
hyperopt.strategy.tickerdata_to_dataframe = MagicMock()
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
assert log_has('Best result:\nfoo result\nwith values:\n', caplog.record_tuples)
out, err = capsys.readouterr()
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
assert dumper.called
# Should be called twice, once for tickerdata, once to save evaluations
assert dumper.call_count == 2
assert hasattr(hyperopt, "advise_sell")
assert hasattr(hyperopt, "advise_buy")
assert hasattr(hyperopt.backtesting, "advise_sell")
assert hasattr(hyperopt.backtesting, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == default_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
@ -509,7 +488,7 @@ def test_populate_indicators(hyperopt) -> None:
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
dataframes = hyperopt.backtesting.strategy.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -523,7 +502,7 @@ def test_buy_strategy_generator(hyperopt) -> None:
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
dataframes = hyperopt.backtesting.strategy.tickerdata_to_dataframe(tickerlist)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
@ -559,7 +538,7 @@ def test_generate_optimizer(mocker, default_conf) -> None:
backtest_result = pd.DataFrame.from_records(trades, columns=labels)
mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.backtest',
'freqtrade.optimize.hyperopt.Backtesting.backtest',
MagicMock(return_value=backtest_result)
)
mocker.patch(
@ -598,9 +577,10 @@ def test_generate_optimizer(mocker, default_conf) -> None:
}
response_expected = {
'loss': 1.9840569076926293,
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'results_explanation': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
'( 2.31Σ%). Avg duration 100.0 mins.',
'params': optimizer_param
'params': optimizer_param,
'total_profit': 0.00023300
}
hyperopt = Hyperopt(default_conf)
@ -618,10 +598,10 @@ def test_clean_hyperopt(mocker, default_conf, caplog):
})
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
Hyperopt(default_conf)
h = Hyperopt(default_conf)
assert unlinkmock.call_count == 2
assert log_has(f"Removing `{TICKERDATA_PICKLE}`.", caplog.record_tuples)
assert log_has(f"Removing `{h.tickerdata_pickle}`.", caplog)
def test_continue_hyperopt(mocker, default_conf, caplog):
@ -638,4 +618,78 @@ def test_continue_hyperopt(mocker, default_conf, caplog):
Hyperopt(default_conf)
assert unlinkmock.call_count == 0
assert log_has(f"Continuing on previous hyperopt results.", caplog.record_tuples)
assert log_has(f"Continuing on previous hyperopt results.", caplog)
def test_print_json_spaces_all(mocker, default_conf, caplog, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch(
'freqtrade.optimize.hyperopt.get_timeframe',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'epochs': 1,
'timerange': None,
'spaces': 'all',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt = Hyperopt(default_conf)
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert '{"params":{"mfi-value":null,"fastd-value":null,"adx-value":null,"rsi-value":null,"mfi-enabled":null,"fastd-enabled":null,"adx-enabled":null,"rsi-enabled":null,"trigger":null,"sell-mfi-value":null,"sell-fastd-value":null,"sell-adx-value":null,"sell-rsi-value":null,"sell-mfi-enabled":null,"sell-fastd-enabled":null,"sell-adx-enabled":null,"sell-rsi-enabled":null,"sell-trigger":null},"minimal_roi":{},"stoploss":null}' in out # noqa: E501
assert dumper.called
# Should be called twice, once for tickerdata, once to save evaluations
assert dumper.call_count == 2
def test_print_json_spaces_roi_stoploss(mocker, default_conf, caplog, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.load_data', MagicMock())
mocker.patch(
'freqtrade.optimize.hyperopt.get_timeframe',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{'loss': 1, 'results_explanation': 'foo result', 'params': {}}])
)
patch_exchange(mocker)
default_conf.update({'config': 'config.json.example',
'epochs': 1,
'timerange': None,
'spaces': 'roi stoploss',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt = Hyperopt(default_conf)
hyperopt.backtesting.strategy.tickerdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert '{"minimal_roi":{},"stoploss":null}' in out
assert dumper.called
# Should be called twice, once for tickerdata, once to save evaluations
assert dumper.call_count == 2

View File

@ -91,7 +91,7 @@ def test_fiat_convert_unsupported_crypto(mocker, caplog):
mocker.patch('freqtrade.rpc.fiat_convert.CryptoToFiatConverter._cryptomap', return_value=[])
fiat_convert = CryptoToFiatConverter()
assert fiat_convert._find_price(crypto_symbol='CRYPTO_123', fiat_symbol='EUR') == 0.0
assert log_has('unsupported crypto-symbol CRYPTO_123 - returning 0.0', caplog.record_tuples)
assert log_has('unsupported crypto-symbol CRYPTO_123 - returning 0.0', caplog)
def test_fiat_convert_get_price(mocker):
@ -190,7 +190,7 @@ def test_fiat_invalid_response(mocker, caplog):
length_cryptomap = len(fiat_convert._cryptomap)
assert length_cryptomap == 0
assert log_has('Could not load FIAT Cryptocurrency map for the following problem: TypeError',
caplog.record_tuples)
caplog)
def test_convert_amount(mocker):

View File

@ -44,7 +44,7 @@ def test_rpc_trade_status(default_conf, ticker, fee, markets, mocker) -> None:
with pytest.raises(RPCException, match=r'.*no active trade*'):
rpc._rpc_trade_status()
freqtradebot.create_trade()
freqtradebot.create_trades()
results = rpc._rpc_trade_status()
assert {
'trade_id': 1,
@ -116,7 +116,7 @@ def test_rpc_status_table(default_conf, ticker, fee, markets, mocker) -> None:
with pytest.raises(RPCException, match=r'.*no active order*'):
rpc._rpc_status_table()
freqtradebot.create_trade()
freqtradebot.create_trades()
result = rpc._rpc_status_table()
assert 'instantly' in result['Since'].all()
assert 'ETH/BTC' in result['Pair'].all()
@ -151,7 +151,7 @@ def test_rpc_daily_profit(default_conf, update, ticker, fee,
rpc = RPC(freqtradebot)
rpc._fiat_converter = CryptoToFiatConverter()
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
assert trade
@ -208,7 +208,7 @@ def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
rpc._rpc_trade_statistics(stake_currency, fiat_display_currency)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
@ -222,7 +222,7 @@ def test_rpc_trade_statistics(default_conf, ticker, ticker_sell_up, fee,
trade.close_date = datetime.utcnow()
trade.is_open = False
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
@ -292,7 +292,7 @@ def test_rpc_trade_statistics_closed(mocker, default_conf, ticker, fee, markets,
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
trade.update(limit_buy_order)
@ -536,7 +536,7 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
msg = rpc._rpc_forcesell('all')
assert msg == {'result': 'Created sell orders for all open trades.'}
freqtradebot.create_trade()
freqtradebot.create_trades()
msg = rpc._rpc_forcesell('all')
assert msg == {'result': 'Created sell orders for all open trades.'}
@ -570,7 +570,7 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
assert cancel_order_mock.call_count == 1
assert trade.amount == filled_amount
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.filter(Trade.id == '2').first()
amount = trade.amount
# make an limit-buy open trade, if there is no 'filled', don't sell it
@ -589,7 +589,7 @@ def test_rpc_forcesell(default_conf, ticker, fee, mocker, markets) -> None:
assert cancel_order_mock.call_count == 2
assert trade.amount == amount
freqtradebot.create_trade()
freqtradebot.create_trades()
# make an limit-sell open trade
mocker.patch(
'freqtrade.exchange.Exchange.get_order',
@ -622,7 +622,7 @@ def test_performance_handle(default_conf, ticker, limit_buy_order, fee,
rpc = RPC(freqtradebot)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
assert trade
@ -660,7 +660,7 @@ def test_rpc_count(mocker, default_conf, ticker, fee, markets) -> None:
assert counts["current"] == 0
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
counts = rpc._rpc_count()
assert counts["current"] == 1

View File

@ -148,8 +148,8 @@ def test_api_run(default_conf, mocker, caplog):
assert isinstance(server_mock.call_args_list[0][0][2], Flask)
assert hasattr(apiserver, "srv")
assert log_has("Starting HTTP Server at 127.0.0.1:8080", caplog.record_tuples)
assert log_has("Starting Local Rest Server.", caplog.record_tuples)
assert log_has("Starting HTTP Server at 127.0.0.1:8080", caplog)
assert log_has("Starting Local Rest Server.", caplog)
# Test binding to public
caplog.clear()
@ -165,22 +165,20 @@ def test_api_run(default_conf, mocker, caplog):
assert server_mock.call_args_list[0][0][0] == "0.0.0.0"
assert server_mock.call_args_list[0][0][1] == "8089"
assert isinstance(server_mock.call_args_list[0][0][2], Flask)
assert log_has("Starting HTTP Server at 0.0.0.0:8089", caplog.record_tuples)
assert log_has("Starting Local Rest Server.", caplog.record_tuples)
assert log_has("Starting HTTP Server at 0.0.0.0:8089", caplog)
assert log_has("Starting Local Rest Server.", caplog)
assert log_has("SECURITY WARNING - Local Rest Server listening to external connections",
caplog.record_tuples)
caplog)
assert log_has("SECURITY WARNING - This is insecure please set to your loopback,"
"e.g 127.0.0.1 in config.json",
caplog.record_tuples)
"e.g 127.0.0.1 in config.json", caplog)
assert log_has("SECURITY WARNING - No password for local REST Server defined. "
"Please make sure that this is intentional!",
caplog.record_tuples)
"Please make sure that this is intentional!", caplog)
# Test crashing flask
caplog.clear()
mocker.patch('freqtrade.rpc.api_server.make_server', MagicMock(side_effect=Exception))
apiserver.run()
assert log_has("Api server failed to start.", caplog.record_tuples)
assert log_has("Api server failed to start.", caplog)
def test_api_cleanup(default_conf, mocker, caplog):
@ -199,7 +197,7 @@ def test_api_cleanup(default_conf, mocker, caplog):
apiserver.cleanup()
assert stop_mock.shutdown.call_count == 1
assert log_has("Stopping API Server", caplog.record_tuples)
assert log_has("Stopping API Server", caplog)
def test_api_reloadconf(botclient):
@ -277,7 +275,7 @@ def test_api_count(botclient, mocker, ticker, fee, markets):
assert rc.json["max"] == 1.0
# Create some test data
ftbot.create_trade()
ftbot.create_trades()
rc = client_get(client, f"{BASE_URI}/count")
assert_response(rc)
assert rc.json["current"] == 1.0
@ -331,7 +329,7 @@ def test_api_profit(botclient, mocker, ticker, fee, markets, limit_buy_order, li
assert len(rc.json) == 1
assert rc.json == {"error": "Error querying _profit: no closed trade"}
ftbot.create_trade()
ftbot.create_trades()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
@ -420,7 +418,7 @@ def test_api_status(botclient, mocker, ticker, fee, markets):
assert_response(rc, 502)
assert rc.json == {'error': 'Error querying _status: no active trade'}
ftbot.create_trade()
ftbot.create_trades()
rc = client_get(client, f"{BASE_URI}/status")
assert_response(rc)
assert len(rc.json) == 1
@ -550,7 +548,7 @@ def test_api_forcesell(botclient, mocker, ticker, fee, markets):
assert_response(rc, 502)
assert rc.json == {"error": "Error querying _forcesell: invalid argument"}
ftbot.create_trade()
ftbot.create_trades()
rc = client_post(client, f"{BASE_URI}/forcesell",
data='{"tradeid": "1"}')

View File

@ -19,7 +19,7 @@ def test_init_telegram_disabled(mocker, default_conf, caplog) -> None:
default_conf['telegram']['enabled'] = False
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert not log_has('Enabling rpc.telegram ...', caplog.record_tuples)
assert not log_has('Enabling rpc.telegram ...', caplog)
assert rpc_manager.registered_modules == []
@ -28,7 +28,7 @@ def test_init_telegram_enabled(mocker, default_conf, caplog) -> None:
mocker.patch('freqtrade.rpc.telegram.Telegram._init', MagicMock())
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert log_has('Enabling rpc.telegram ...', caplog.record_tuples)
assert log_has('Enabling rpc.telegram ...', caplog)
len_modules = len(rpc_manager.registered_modules)
assert len_modules == 1
assert 'telegram' in [mod.name for mod in rpc_manager.registered_modules]
@ -43,7 +43,7 @@ def test_cleanup_telegram_disabled(mocker, default_conf, caplog) -> None:
rpc_manager = RPCManager(freqtradebot)
rpc_manager.cleanup()
assert not log_has('Cleaning up rpc.telegram ...', caplog.record_tuples)
assert not log_has('Cleaning up rpc.telegram ...', caplog)
assert telegram_mock.call_count == 0
@ -59,7 +59,7 @@ def test_cleanup_telegram_enabled(mocker, default_conf, caplog) -> None:
assert 'telegram' in [mod.name for mod in rpc_manager.registered_modules]
rpc_manager.cleanup()
assert log_has('Cleaning up rpc.telegram ...', caplog.record_tuples)
assert log_has('Cleaning up rpc.telegram ...', caplog)
assert 'telegram' not in [mod.name for mod in rpc_manager.registered_modules]
assert telegram_mock.call_count == 1
@ -75,7 +75,7 @@ def test_send_msg_telegram_disabled(mocker, default_conf, caplog) -> None:
'status': 'test'
})
assert log_has("Sending rpc message: {'type': status, 'status': 'test'}", caplog.record_tuples)
assert log_has("Sending rpc message: {'type': status, 'status': 'test'}", caplog)
assert telegram_mock.call_count == 0
@ -90,7 +90,7 @@ def test_send_msg_telegram_enabled(mocker, default_conf, caplog) -> None:
'status': 'test'
})
assert log_has("Sending rpc message: {'type': status, 'status': 'test'}", caplog.record_tuples)
assert log_has("Sending rpc message: {'type': status, 'status': 'test'}", caplog)
assert telegram_mock.call_count == 1
@ -100,7 +100,7 @@ def test_init_webhook_disabled(mocker, default_conf, caplog) -> None:
default_conf['webhook'] = {'enabled': False}
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert not log_has('Enabling rpc.webhook ...', caplog.record_tuples)
assert not log_has('Enabling rpc.webhook ...', caplog)
assert rpc_manager.registered_modules == []
@ -110,7 +110,7 @@ def test_init_webhook_enabled(mocker, default_conf, caplog) -> None:
default_conf['webhook'] = {'enabled': True, 'url': "https://DEADBEEF.com"}
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert log_has('Enabling rpc.webhook ...', caplog.record_tuples)
assert log_has('Enabling rpc.webhook ...', caplog)
assert len(rpc_manager.registered_modules) == 1
assert 'webhook' in [mod.name for mod in rpc_manager.registered_modules]
@ -144,7 +144,7 @@ def test_init_apiserver_disabled(mocker, default_conf, caplog) -> None:
default_conf['telegram']['enabled'] = False
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert not log_has('Enabling rpc.api_server', caplog.record_tuples)
assert not log_has('Enabling rpc.api_server', caplog)
assert rpc_manager.registered_modules == []
assert run_mock.call_count == 0
@ -160,7 +160,7 @@ def test_init_apiserver_enabled(mocker, default_conf, caplog) -> None:
"listen_port": "8080"}
rpc_manager = RPCManager(get_patched_freqtradebot(mocker, default_conf))
assert log_has('Enabling rpc.api_server', caplog.record_tuples)
assert log_has('Enabling rpc.api_server', caplog)
assert len(rpc_manager.registered_modules) == 1
assert 'apiserver' in [mod.name for mod in rpc_manager.registered_modules]
assert run_mock.call_count == 1

View File

@ -76,7 +76,7 @@ def test_init(default_conf, mocker, caplog) -> None:
"['performance'], ['daily'], ['count'], ['reload_conf'], " \
"['stopbuy'], ['whitelist'], ['blacklist'], ['edge'], ['help'], ['version']]"
assert log_has(message_str, caplog.record_tuples)
assert log_has(message_str, caplog)
def test_cleanup(default_conf, mocker) -> None:
@ -102,18 +102,9 @@ def test_authorized_only(default_conf, mocker, caplog) -> None:
dummy = DummyCls(bot)
dummy.dummy_handler(bot=MagicMock(), update=update)
assert dummy.state['called'] is True
assert log_has(
'Executing handler: dummy_handler for chat_id: 0',
caplog.record_tuples
)
assert not log_has(
'Rejected unauthorized message from: 0',
caplog.record_tuples
)
assert not log_has(
'Exception occurred within Telegram module',
caplog.record_tuples
)
assert log_has('Executing handler: dummy_handler for chat_id: 0', caplog)
assert not log_has('Rejected unauthorized message from: 0', caplog)
assert not log_has('Exception occurred within Telegram module', caplog)
def test_authorized_only_unauthorized(default_conf, mocker, caplog) -> None:
@ -128,18 +119,9 @@ def test_authorized_only_unauthorized(default_conf, mocker, caplog) -> None:
dummy = DummyCls(bot)
dummy.dummy_handler(bot=MagicMock(), update=update)
assert dummy.state['called'] is False
assert not log_has(
'Executing handler: dummy_handler for chat_id: 3735928559',
caplog.record_tuples
)
assert log_has(
'Rejected unauthorized message from: 3735928559',
caplog.record_tuples
)
assert not log_has(
'Exception occurred within Telegram module',
caplog.record_tuples
)
assert not log_has('Executing handler: dummy_handler for chat_id: 3735928559', caplog)
assert log_has('Rejected unauthorized message from: 3735928559', caplog)
assert not log_has('Exception occurred within Telegram module', caplog)
def test_authorized_only_exception(default_conf, mocker, caplog) -> None:
@ -156,18 +138,9 @@ def test_authorized_only_exception(default_conf, mocker, caplog) -> None:
dummy.dummy_exception(bot=MagicMock(), update=update)
assert dummy.state['called'] is False
assert not log_has(
'Executing handler: dummy_handler for chat_id: 0',
caplog.record_tuples
)
assert not log_has(
'Rejected unauthorized message from: 0',
caplog.record_tuples
)
assert log_has(
'Exception occurred within Telegram module',
caplog.record_tuples
)
assert not log_has('Executing handler: dummy_handler for chat_id: 0', caplog)
assert not log_has('Rejected unauthorized message from: 0', caplog)
assert log_has('Exception occurred within Telegram module', caplog)
def test_status(default_conf, update, mocker, fee, ticker, markets) -> None:
@ -219,7 +192,7 @@ def test_status(default_conf, update, mocker, fee, ticker, markets) -> None:
# Create some test data
for _ in range(3):
freqtradebot.create_trade()
freqtradebot.create_trades()
telegram._status(bot=MagicMock(), update=update)
assert msg_mock.call_count == 1
@ -267,7 +240,7 @@ def test_status_handle(default_conf, update, ticker, fee, markets, mocker) -> No
msg_mock.reset_mock()
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
# Trigger status while we have a fulfilled order for the open trade
telegram._status(bot=MagicMock(), update=update)
@ -319,7 +292,7 @@ def test_status_table_handle(default_conf, update, ticker, fee, markets, mocker)
msg_mock.reset_mock()
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
telegram._status_table(bot=MagicMock(), update=update)
@ -335,6 +308,7 @@ def test_status_table_handle(default_conf, update, ticker, fee, markets, mocker)
def test_daily_handle(default_conf, update, ticker, limit_buy_order, fee,
limit_sell_order, markets, mocker) -> None:
patch_exchange(mocker)
default_conf['max_open_trades'] = 1
mocker.patch(
'freqtrade.rpc.rpc.CryptoToFiatConverter._find_price',
return_value=15000.0
@ -358,7 +332,7 @@ def test_daily_handle(default_conf, update, ticker, limit_buy_order, fee,
telegram = Telegram(freqtradebot)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
assert trade
@ -384,9 +358,9 @@ def test_daily_handle(default_conf, update, ticker, limit_buy_order, fee,
# Reset msg_mock
msg_mock.reset_mock()
freqtradebot.config['max_open_trades'] = 2
# Add two other trades
freqtradebot.create_trade()
freqtradebot.create_trade()
freqtradebot.create_trades()
trades = Trade.query.all()
for trade in trades:
@ -465,7 +439,7 @@ def test_profit_handle(default_conf, update, ticker, ticker_sell_up, fee,
msg_mock.reset_mock()
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
# Simulate fulfilled LIMIT_BUY order for trade
@ -760,7 +734,7 @@ def test_forcesell_handle(default_conf, update, ticker, fee,
telegram = Telegram(freqtradebot)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
assert trade
@ -811,7 +785,7 @@ def test_forcesell_down_handle(default_conf, update, ticker, fee,
telegram = Telegram(freqtradebot)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
# Decrease the price and sell it
mocker.patch.multiple(
@ -859,14 +833,13 @@ def test_forcesell_all_handle(default_conf, update, ticker, fee, markets, mocker
markets=PropertyMock(return_value=markets),
validate_pairs=MagicMock(return_value={})
)
default_conf['max_open_trades'] = 4
freqtradebot = FreqtradeBot(default_conf)
patch_get_signal(freqtradebot, (True, False))
telegram = Telegram(freqtradebot)
# Create some test data
for _ in range(4):
freqtradebot.create_trade()
freqtradebot.create_trades()
rpc_mock.reset_mock()
update.message.text = '/forcesell all'
@ -1010,7 +983,7 @@ def test_performance_handle(default_conf, update, ticker, fee,
telegram = Telegram(freqtradebot)
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
trade = Trade.query.first()
assert trade
@ -1055,7 +1028,7 @@ def test_count_handle(default_conf, update, ticker, fee, markets, mocker) -> Non
freqtradebot.state = State.RUNNING
# Create some test data
freqtradebot.create_trade()
freqtradebot.create_trades()
msg_mock.reset_mock()
telegram._count(bot=MagicMock(), update=update)
@ -1440,7 +1413,4 @@ def test__send_msg_network_error(default_conf, mocker, caplog) -> None:
# Bot should've tried to send it twice
assert len(bot.method_calls) == 2
assert log_has(
'Telegram NetworkError: Oh snap! Trying one more time.',
caplog.record_tuples
)
assert log_has('Telegram NetworkError: Oh snap! Trying one more time.', caplog)

View File

@ -115,7 +115,7 @@ def test_exception_send_msg(default_conf, mocker, caplog):
webhook = Webhook(get_patched_freqtradebot(mocker, default_conf))
webhook.send_msg({'type': RPCMessageType.BUY_NOTIFICATION})
assert log_has(f"Message type {RPCMessageType.BUY_NOTIFICATION} not configured for webhooks",
caplog.record_tuples)
caplog)
default_conf["webhook"] = get_webhook_dict()
default_conf["webhook"]["webhookbuy"]["value1"] = "{DEADBEEF:8f}"
@ -135,7 +135,7 @@ def test_exception_send_msg(default_conf, mocker, caplog):
}
webhook.send_msg(msg)
assert log_has("Problem calling Webhook. Please check your webhook configuration. "
"Exception: 'DEADBEEF'", caplog.record_tuples)
"Exception: 'DEADBEEF'", caplog)
msg_mock = MagicMock()
mocker.patch("freqtrade.rpc.webhook.Webhook._send_msg", msg_mock)
@ -164,4 +164,4 @@ def test__send_msg(default_conf, mocker, caplog):
post = MagicMock(side_effect=RequestException)
mocker.patch("freqtrade.rpc.webhook.post", post)
webhook._send_msg(msg)
assert log_has('Could not call webhook url. Exception: ', caplog.record_tuples)
assert log_has('Could not call webhook url. Exception: ', caplog)

View File

@ -19,13 +19,13 @@ _STRATEGY = DefaultStrategy(config={})
def test_returns_latest_buy_signal(mocker, default_conf, ticker_history):
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'buy': 1, 'sell': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (True, False)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'buy': 0, 'sell': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (False, True)
@ -33,14 +33,14 @@ def test_returns_latest_buy_signal(mocker, default_conf, ticker_history):
def test_returns_latest_sell_signal(mocker, default_conf, ticker_history):
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'sell': 1, 'buy': 0, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (False, True)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([{'sell': 0, 'buy': 1, 'date': arrow.utcnow()}])
)
assert _STRATEGY.get_signal('ETH/BTC', '5m', ticker_history) == (True, False)
@ -49,34 +49,34 @@ def test_returns_latest_sell_signal(mocker, default_conf, ticker_history):
def test_get_signal_empty(default_conf, mocker, caplog):
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'],
DataFrame())
assert log_has('Empty ticker history for pair foo', caplog.record_tuples)
assert log_has('Empty ticker history for pair foo', caplog)
caplog.clear()
assert (False, False) == _STRATEGY.get_signal('bar', default_conf['ticker_interval'],
[])
assert log_has('Empty ticker history for pair bar', caplog.record_tuples)
assert log_has('Empty ticker history for pair bar', caplog)
def test_get_signal_exception_valueerror(default_conf, mocker, caplog, ticker_history):
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
side_effect=ValueError('xyz')
)
assert (False, False) == _STRATEGY.get_signal('foo', default_conf['ticker_interval'],
ticker_history)
assert log_has('Unable to analyze ticker for pair foo: xyz', caplog.record_tuples)
assert log_has('Unable to analyze ticker for pair foo: xyz', caplog)
def test_get_signal_empty_dataframe(default_conf, mocker, caplog, ticker_history):
caplog.set_level(logging.INFO)
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame([])
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ticker_history)
assert log_has('Empty dataframe for pair xyz', caplog.record_tuples)
assert log_has('Empty dataframe for pair xyz', caplog)
def test_get_signal_old_dataframe(default_conf, mocker, caplog, ticker_history):
@ -86,15 +86,12 @@ def test_get_signal_old_dataframe(default_conf, mocker, caplog, ticker_history):
oldtime = arrow.utcnow().shift(minutes=-16)
ticks = DataFrame([{'buy': 1, 'date': oldtime}])
mocker.patch.object(
_STRATEGY, 'analyze_ticker',
_STRATEGY, '_analyze_ticker_internal',
return_value=DataFrame(ticks)
)
assert (False, False) == _STRATEGY.get_signal('xyz', default_conf['ticker_interval'],
ticker_history)
assert log_has(
'Outdated history for pair xyz. Last tick is 16 minutes old',
caplog.record_tuples
)
assert log_has('Outdated history for pair xyz. Last tick is 16 minutes old', caplog)
def test_get_signal_handles_exceptions(mocker, default_conf):
@ -237,9 +234,8 @@ def test_analyze_ticker_default(ticker_history, mocker, caplog) -> None:
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
assert log_has('TA Analysis Launched', caplog.record_tuples)
assert not log_has('Skipping TA Analysis for already analyzed candle',
caplog.record_tuples)
assert log_has('TA Analysis Launched', caplog)
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
caplog.clear()
strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
@ -247,12 +243,11 @@ def test_analyze_ticker_default(ticker_history, mocker, caplog) -> None:
assert ind_mock.call_count == 2
assert buy_mock.call_count == 2
assert buy_mock.call_count == 2
assert log_has('TA Analysis Launched', caplog.record_tuples)
assert not log_has('Skipping TA Analysis for already analyzed candle',
caplog.record_tuples)
assert log_has('TA Analysis Launched', caplog)
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
def test_analyze_ticker_skip_analyze(ticker_history, mocker, caplog) -> None:
def test__analyze_ticker_internal_skip_analyze(ticker_history, mocker, caplog) -> None:
caplog.set_level(logging.DEBUG)
ind_mock = MagicMock(side_effect=lambda x, meta: x)
buy_mock = MagicMock(side_effect=lambda x, meta: x)
@ -267,7 +262,7 @@ def test_analyze_ticker_skip_analyze(ticker_history, mocker, caplog) -> None:
strategy = DefaultStrategy({})
strategy.process_only_new_candles = True
ret = strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
ret = strategy._analyze_ticker_internal(ticker_history, {'pair': 'ETH/BTC'})
assert 'high' in ret.columns
assert 'low' in ret.columns
assert 'close' in ret.columns
@ -275,12 +270,11 @@ def test_analyze_ticker_skip_analyze(ticker_history, mocker, caplog) -> None:
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
assert log_has('TA Analysis Launched', caplog.record_tuples)
assert not log_has('Skipping TA Analysis for already analyzed candle',
caplog.record_tuples)
assert log_has('TA Analysis Launched', caplog)
assert not log_has('Skipping TA Analysis for already analyzed candle', caplog)
caplog.clear()
ret = strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
ret = strategy._analyze_ticker_internal(ticker_history, {'pair': 'ETH/BTC'})
# No analysis happens as process_only_new_candles is true
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
@ -290,6 +284,21 @@ def test_analyze_ticker_skip_analyze(ticker_history, mocker, caplog) -> None:
assert 'sell' in ret.columns
assert ret['buy'].sum() == 0
assert ret['sell'].sum() == 0
assert not log_has('TA Analysis Launched', caplog.record_tuples)
assert log_has('Skipping TA Analysis for already analyzed candle',
caplog.record_tuples)
assert not log_has('TA Analysis Launched', caplog)
assert log_has('Skipping TA Analysis for already analyzed candle', caplog)
def test_is_pair_locked(default_conf):
strategy = DefaultStrategy(default_conf)
# dict should be empty
assert not strategy._pair_locked_until
pair = 'ETH/BTC'
assert not strategy.is_pair_locked(pair)
strategy.lock_pair(pair, arrow.utcnow().shift(minutes=4).datetime)
# ETH/BTC locked for 4 minutes
assert strategy.is_pair_locked(pair)
# XRP/BTC should not be locked now
pair = 'XRP/BTC'
assert not strategy.is_pair_locked(pair)

View File

@ -15,7 +15,7 @@ from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy import import_strategy
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.strategy.interface import IStrategy
from freqtrade.tests.conftest import log_has_re
from freqtrade.tests.conftest import log_has, log_has_re
def test_import_strategy(caplog):
@ -35,12 +35,8 @@ def test_import_strategy(caplog):
assert imported_strategy.__module__ == 'freqtrade.strategy'
assert imported_strategy.some_method() == 42
assert (
'freqtrade.strategy',
logging.DEBUG,
'Imported strategy freqtrade.strategy.default_strategy.DefaultStrategy '
'as freqtrade.strategy.DefaultStrategy',
) in caplog.record_tuples
assert log_has('Imported strategy freqtrade.strategy.default_strategy.DefaultStrategy '
'as freqtrade.strategy.DefaultStrategy', caplog)
def test_search_strategy():
@ -64,63 +60,65 @@ def test_search_strategy():
assert s is None
def test_load_strategy(result):
resolver = StrategyResolver({'strategy': 'TestStrategy'})
def test_load_strategy(default_conf, result):
default_conf.update({'strategy': 'TestStrategy'})
resolver = StrategyResolver(default_conf)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_strategy_base64(result, caplog):
def test_load_strategy_base64(result, caplog, default_conf):
with open("user_data/strategies/test_strategy.py", "rb") as file:
encoded_string = urlsafe_b64encode(file.read()).decode("utf-8")
resolver = StrategyResolver({'strategy': 'TestStrategy:{}'.format(encoded_string)})
default_conf.update({'strategy': 'TestStrategy:{}'.format(encoded_string)})
resolver = StrategyResolver(default_conf)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
# Make sure strategy was loaded from base64 (using temp directory)!!
assert log_has_re(r"Using resolved strategy TestStrategy from '"
+ tempfile.gettempdir() + r"/.*/TestStrategy\.py'\.\.\.",
caplog.record_tuples)
+ tempfile.gettempdir() + r"/.*/TestStrategy\.py'\.\.\.", caplog)
def test_load_strategy_invalid_directory(result, caplog):
resolver = StrategyResolver()
def test_load_strategy_invalid_directory(result, caplog, default_conf):
resolver = StrategyResolver(default_conf)
extra_dir = Path.cwd() / 'some/path'
resolver._load_strategy('TestStrategy', config={}, extra_dir=extra_dir)
resolver._load_strategy('TestStrategy', config=default_conf, extra_dir=extra_dir)
assert log_has_re(r'Path .*' + r'some.*path.*' + r'.* does not exist', caplog.record_tuples)
assert log_has_re(r'Path .*' + r'some.*path.*' + r'.* does not exist', caplog)
assert 'adx' in resolver.strategy.advise_indicators(result, {'pair': 'ETH/BTC'})
def test_load_not_found_strategy():
strategy = StrategyResolver()
def test_load_not_found_strategy(default_conf):
strategy = StrategyResolver(default_conf)
with pytest.raises(OperationalException,
match=r"Impossible to load Strategy 'NotFoundStrategy'. "
r"This class does not exist or contains Python code errors."):
strategy._load_strategy(strategy_name='NotFoundStrategy', config={})
strategy._load_strategy(strategy_name='NotFoundStrategy', config=default_conf)
def test_load_staticmethod_importerror(mocker, caplog):
def test_load_staticmethod_importerror(mocker, caplog, default_conf):
mocker.patch("freqtrade.resolvers.strategy_resolver.import_strategy", Mock(
side_effect=TypeError("can't pickle staticmethod objects")))
with pytest.raises(OperationalException,
match=r"Impossible to load Strategy 'DefaultStrategy'. "
r"This class does not exist or contains Python code errors."):
StrategyResolver()
assert log_has_re(r".*Error: can't pickle staticmethod objects", caplog.record_tuples)
StrategyResolver(default_conf)
assert log_has_re(r".*Error: can't pickle staticmethod objects", caplog)
def test_strategy(result):
config = {'strategy': 'DefaultStrategy'}
def test_strategy(result, default_conf):
default_conf.update({'strategy': 'DefaultStrategy'})
resolver = StrategyResolver(config)
resolver = StrategyResolver(default_conf)
metadata = {'pair': 'ETH/BTC'}
assert resolver.strategy.minimal_roi[0] == 0.04
assert config["minimal_roi"]['0'] == 0.04
assert default_conf["minimal_roi"]['0'] == 0.04
assert resolver.strategy.stoploss == -0.10
assert config['stoploss'] == -0.10
assert default_conf['stoploss'] == -0.10
assert resolver.strategy.ticker_interval == '5m'
assert config['ticker_interval'] == '5m'
assert default_conf['ticker_interval'] == '5m'
df_indicators = resolver.strategy.advise_indicators(result, metadata=metadata)
assert 'adx' in df_indicators
@ -132,112 +130,95 @@ def test_strategy(result):
assert 'sell' in dataframe.columns
def test_strategy_override_minimal_roi(caplog):
def test_strategy_override_minimal_roi(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'minimal_roi': {
"0": 0.5
}
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.minimal_roi[0] == 0.5
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'minimal_roi' with value in config file: {'0': 0.5}."
) in caplog.record_tuples
assert log_has("Override strategy 'minimal_roi' with value in config file: {'0': 0.5}.", caplog)
def test_strategy_override_stoploss(caplog):
def test_strategy_override_stoploss(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'stoploss': -0.5
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.stoploss == -0.5
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'stoploss' with value in config file: -0.5."
) in caplog.record_tuples
assert log_has("Override strategy 'stoploss' with value in config file: -0.5.", caplog)
def test_strategy_override_trailing_stop(caplog):
def test_strategy_override_trailing_stop(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'trailing_stop': True
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.trailing_stop
assert isinstance(resolver.strategy.trailing_stop, bool)
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'trailing_stop' with value in config file: True."
) in caplog.record_tuples
assert log_has("Override strategy 'trailing_stop' with value in config file: True.", caplog)
def test_strategy_override_trailing_stop_positive(caplog):
def test_strategy_override_trailing_stop_positive(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'trailing_stop_positive': -0.1,
'trailing_stop_positive_offset': -0.2
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.trailing_stop_positive == -0.1
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'trailing_stop_positive' with value in config file: -0.1."
) in caplog.record_tuples
assert log_has("Override strategy 'trailing_stop_positive' with value in config file: -0.1.",
caplog)
assert resolver.strategy.trailing_stop_positive_offset == -0.2
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'trailing_stop_positive' with value in config file: -0.1."
) in caplog.record_tuples
assert log_has("Override strategy 'trailing_stop_positive' with value in config file: -0.1.",
caplog)
def test_strategy_override_ticker_interval(caplog):
def test_strategy_override_ticker_interval(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'ticker_interval': 60,
'stake_currency': 'ETH'
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.ticker_interval == 60
assert resolver.strategy.stake_currency == 'ETH'
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'ticker_interval' with value in config file: 60."
) in caplog.record_tuples
assert log_has("Override strategy 'ticker_interval' with value in config file: 60.",
caplog)
def test_strategy_override_process_only_new_candles(caplog):
def test_strategy_override_process_only_new_candles(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'process_only_new_candles': True
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.process_only_new_candles
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'process_only_new_candles' with value in config file: True."
) in caplog.record_tuples
assert log_has("Override strategy 'process_only_new_candles' with value in config file: True.",
caplog)
def test_strategy_override_order_types(caplog):
def test_strategy_override_order_types(caplog, default_conf):
caplog.set_level(logging.INFO)
order_types = {
@ -246,36 +227,32 @@ def test_strategy_override_order_types(caplog):
'stoploss': 'limit',
'stoploss_on_exchange': True,
}
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'order_types': order_types
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.order_types
for method in ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']:
assert resolver.strategy.order_types[method] == order_types[method]
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'order_types' with value in config file:"
assert log_has("Override strategy 'order_types' with value in config file:"
" {'buy': 'market', 'sell': 'limit', 'stoploss': 'limit',"
" 'stoploss_on_exchange': True}."
) in caplog.record_tuples
" 'stoploss_on_exchange': True}.", caplog)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'order_types': {'buy': 'market'}
}
})
# Raise error for invalid configuration
with pytest.raises(ImportError,
match=r"Impossible to load Strategy 'DefaultStrategy'. "
r"Order-types mapping is incomplete."):
StrategyResolver(config)
StrategyResolver(default_conf)
def test_strategy_override_order_tif(caplog):
def test_strategy_override_order_tif(caplog, default_conf):
caplog.set_level(logging.INFO)
order_time_in_force = {
@ -283,94 +260,86 @@ def test_strategy_override_order_tif(caplog):
'sell': 'gtc',
}
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'order_time_in_force': order_time_in_force
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.order_time_in_force
for method in ['buy', 'sell']:
assert resolver.strategy.order_time_in_force[method] == order_time_in_force[method]
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'order_time_in_force' with value in config file:"
" {'buy': 'fok', 'sell': 'gtc'}."
) in caplog.record_tuples
assert log_has("Override strategy 'order_time_in_force' with value in config file:"
" {'buy': 'fok', 'sell': 'gtc'}.", caplog)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'order_time_in_force': {'buy': 'fok'}
}
})
# Raise error for invalid configuration
with pytest.raises(ImportError,
match=r"Impossible to load Strategy 'DefaultStrategy'. "
r"Order-time-in-force mapping is incomplete."):
StrategyResolver(config)
StrategyResolver(default_conf)
def test_strategy_override_use_sell_signal(caplog):
def test_strategy_override_use_sell_signal(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert not resolver.strategy.use_sell_signal
assert isinstance(resolver.strategy.use_sell_signal, bool)
# must be inserted to configuration
assert 'use_sell_signal' in config['experimental']
assert not config['experimental']['use_sell_signal']
assert 'use_sell_signal' in default_conf['experimental']
assert not default_conf['experimental']['use_sell_signal']
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'experimental': {
'use_sell_signal': True,
},
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.use_sell_signal
assert isinstance(resolver.strategy.use_sell_signal, bool)
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'use_sell_signal' with value in config file: True."
) in caplog.record_tuples
assert log_has("Override strategy 'use_sell_signal' with value in config file: True.", caplog)
def test_strategy_override_use_sell_profit_only(caplog):
def test_strategy_override_use_sell_profit_only(caplog, default_conf):
caplog.set_level(logging.INFO)
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert not resolver.strategy.sell_profit_only
assert isinstance(resolver.strategy.sell_profit_only, bool)
# must be inserted to configuration
assert 'sell_profit_only' in config['experimental']
assert not config['experimental']['sell_profit_only']
assert 'sell_profit_only' in default_conf['experimental']
assert not default_conf['experimental']['sell_profit_only']
config = {
default_conf.update({
'strategy': 'DefaultStrategy',
'experimental': {
'sell_profit_only': True,
},
}
resolver = StrategyResolver(config)
})
resolver = StrategyResolver(default_conf)
assert resolver.strategy.sell_profit_only
assert isinstance(resolver.strategy.sell_profit_only, bool)
assert ('freqtrade.resolvers.strategy_resolver',
logging.INFO,
"Override strategy 'sell_profit_only' with value in config file: True."
) in caplog.record_tuples
assert log_has("Override strategy 'sell_profit_only' with value in config file: True.", caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_deprecate_populate_indicators(result):
def test_deprecate_populate_indicators(result, default_conf):
default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
default_conf.update({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
resolver = StrategyResolver(default_conf)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
@ -400,10 +369,11 @@ def test_deprecate_populate_indicators(result):
@pytest.mark.filterwarnings("ignore:deprecated")
def test_call_deprecated_function(result, monkeypatch):
def test_call_deprecated_function(result, monkeypatch, default_conf):
default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
default_conf.update({'strategy': 'TestStrategyLegacy',
'strategy_path': default_location})
resolver = StrategyResolver(default_conf)
metadata = {'pair': 'ETH/BTC'}
# Make sure we are using a legacy function

View File

@ -3,8 +3,8 @@ import argparse
import pytest
from freqtrade.configuration import Arguments, TimeRange
from freqtrade.configuration.arguments import ARGS_DOWNLOADER, ARGS_PLOT_DATAFRAME
from freqtrade.configuration import Arguments
from freqtrade.configuration.arguments import ARGS_PLOT_DATAFRAME
from freqtrade.configuration.cli_options import check_int_positive
@ -50,10 +50,10 @@ def test_parse_args_verbose() -> None:
def test_common_scripts_options() -> None:
arguments = Arguments(['-p', 'ETH/BTC'], '')
arguments._build_args(ARGS_DOWNLOADER)
args = arguments._parse_args()
assert args.pairs == 'ETH/BTC'
args = Arguments(['download-data', '-p', 'ETH/BTC', 'XRP/BTC'], '').get_parsed_arg()
assert args.pairs == ['ETH/BTC', 'XRP/BTC']
assert hasattr(args, "func")
def test_parse_args_version() -> None:
@ -86,30 +86,6 @@ def test_parse_args_strategy_path_invalid() -> None:
Arguments(['--strategy-path'], '').get_parsed_arg()
def test_parse_timerange_incorrect() -> None:
assert TimeRange(None, 'line', 0, -200) == Arguments.parse_timerange('-200')
assert TimeRange('line', None, 200, 0) == Arguments.parse_timerange('200-')
assert TimeRange('index', 'index', 200, 500) == Arguments.parse_timerange('200-500')
assert TimeRange('date', None, 1274486400, 0) == Arguments.parse_timerange('20100522-')
assert TimeRange(None, 'date', 0, 1274486400) == Arguments.parse_timerange('-20100522')
timerange = Arguments.parse_timerange('20100522-20150730')
assert timerange == TimeRange('date', 'date', 1274486400, 1438214400)
# Added test for unix timestamp - BTC genesis date
assert TimeRange('date', None, 1231006505, 0) == Arguments.parse_timerange('1231006505-')
assert TimeRange(None, 'date', 0, 1233360000) == Arguments.parse_timerange('-1233360000')
timerange = Arguments.parse_timerange('1231006505-1233360000')
assert TimeRange('date', 'date', 1231006505, 1233360000) == timerange
# TODO: Find solution for the following case (passing timestamp in ms)
timerange = Arguments.parse_timerange('1231006505000-1233360000000')
assert TimeRange('date', 'date', 1231006505, 1233360000) != timerange
with pytest.raises(Exception, match=r'Incorrect syntax.*'):
Arguments.parse_timerange('-')
def test_parse_args_backtesting_invalid() -> None:
with pytest.raises(SystemExit, match=r'2'):
Arguments(['backtesting --ticker-interval'], '').get_parsed_arg()
@ -122,7 +98,6 @@ def test_parse_args_backtesting_custom() -> None:
args = [
'-c', 'test_conf.json',
'backtesting',
'--live',
'--ticker-interval', '1m',
'--refresh-pairs-cached',
'--strategy-list',
@ -131,7 +106,6 @@ def test_parse_args_backtesting_custom() -> None:
]
call_args = Arguments(args, '').get_parsed_arg()
assert call_args.config == ['test_conf.json']
assert call_args.live is True
assert call_args.verbosity == 0
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
@ -159,14 +133,14 @@ def test_parse_args_hyperopt_custom() -> None:
def test_download_data_options() -> None:
args = [
'--pairs-file', 'file_with_pairs',
'--datadir', 'datadir/directory',
'download-data',
'--pairs-file', 'file_with_pairs',
'--days', '30',
'--exchange', 'binance'
]
arguments = Arguments(args, '')
arguments._build_args(ARGS_DOWNLOADER)
args = arguments._parse_args()
args = Arguments(args, '').get_parsed_arg()
assert args.pairs_file == 'file_with_pairs'
assert args.datadir == 'datadir/directory'
assert args.days == 30
@ -186,7 +160,7 @@ def test_plot_dataframe_options() -> None:
assert pargs.indicators1 == "sma10,sma100"
assert pargs.indicators2 == "macd,fastd,fastk"
assert pargs.plot_limit == 30
assert pargs.pairs == "UNITTEST/BTC"
assert pargs.pairs == ["UNITTEST/BTC"]
def test_check_int_positive() -> None:

View File

@ -2,7 +2,6 @@
import json
import logging
import warnings
from argparse import Namespace
from copy import deepcopy
from pathlib import Path
from unittest.mock import MagicMock
@ -11,10 +10,12 @@ import pytest
from jsonschema import Draft4Validator, ValidationError, validate
from freqtrade import OperationalException, constants
from freqtrade.configuration import Arguments, Configuration
from freqtrade.configuration import Arguments, Configuration, validate_config_consistency
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.create_datadir import create_datadir
from freqtrade.configuration.json_schema import validate_config_schema
from freqtrade.configuration.config_validation import validate_config_schema
from freqtrade.configuration.directory_operations import (create_datadir,
create_userdata_dir)
from freqtrade.configuration.load_config import load_config_file
from freqtrade.constants import DEFAULT_DB_DRYRUN_URL, DEFAULT_DB_PROD_URL
from freqtrade.loggers import _set_loggers
from freqtrade.state import RunMode
@ -26,8 +27,7 @@ from freqtrade.tests.conftest import (log_has, log_has_re,
def all_conf():
config_file = Path(__file__).parents[2] / "config_full.json.example"
print(config_file)
configuration = Configuration(Namespace())
conf = configuration._load_config_file(str(config_file))
conf = load_config_file(str(config_file))
return conf
@ -53,12 +53,12 @@ def test_load_config_incorrect_stake_amount(default_conf) -> None:
def test_load_config_file(default_conf, mocker, caplog) -> None:
file_mock = mocker.patch('freqtrade.configuration.configuration.open', mocker.mock_open(
del default_conf['user_data_dir']
file_mock = mocker.patch('freqtrade.configuration.load_config.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
configuration = Configuration(Namespace())
validated_conf = configuration._load_config_file('somefile')
validated_conf = load_config_file('somefile')
assert file_mock.call_count == 1
assert validated_conf.items() >= default_conf.items()
@ -73,7 +73,7 @@ def test__args_to_config(caplog):
# No warnings ...
configuration._args_to_config(config, argname="strategy_path", logstring="DeadBeef")
assert len(w) == 0
assert log_has("DeadBeef", caplog.record_tuples)
assert log_has("DeadBeef", caplog)
assert config['strategy_path'] == "TestTest"
configuration = Configuration(args)
@ -85,7 +85,7 @@ def test__args_to_config(caplog):
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "DEPRECATED: Going away soon!" in str(w[-1].message)
assert log_has("DeadBeef", caplog.record_tuples)
assert log_has("DeadBeef", caplog)
assert config['strategy_path'] == "TestTest"
@ -99,7 +99,7 @@ def test_load_config_max_open_trades_zero(default_conf, mocker, caplog) -> None:
assert validated_conf['max_open_trades'] == 0
assert 'internals' in validated_conf
assert log_has('Validating configuration ...', caplog.record_tuples)
assert log_has('Validating configuration ...', caplog)
def test_load_config_combine_dicts(default_conf, mocker, caplog) -> None:
@ -114,7 +114,7 @@ def test_load_config_combine_dicts(default_conf, mocker, caplog) -> None:
configsmock = MagicMock(side_effect=config_files)
mocker.patch(
'freqtrade.configuration.configuration.Configuration._load_config_file',
'freqtrade.configuration.configuration.load_config_file',
configsmock
)
@ -131,7 +131,36 @@ def test_load_config_combine_dicts(default_conf, mocker, caplog) -> None:
assert validated_conf['exchange']['pair_whitelist'] == conf2['exchange']['pair_whitelist']
assert 'internals' in validated_conf
assert log_has('Validating configuration ...', caplog.record_tuples)
assert log_has('Validating configuration ...', caplog)
def test_from_config(default_conf, mocker, caplog) -> None:
conf1 = deepcopy(default_conf)
conf2 = deepcopy(default_conf)
del conf1['exchange']['key']
del conf1['exchange']['secret']
del conf2['exchange']['name']
conf2['exchange']['pair_whitelist'] += ['NANO/BTC']
conf2['fiat_display_currency'] = "EUR"
config_files = [conf1, conf2]
configsmock = MagicMock(side_effect=config_files)
mocker.patch(
'freqtrade.configuration.configuration.load_config_file',
configsmock
)
validated_conf = Configuration.from_files(['test_conf.json', 'test2_conf.json'])
exchange_conf = default_conf['exchange']
assert validated_conf['exchange']['name'] == exchange_conf['name']
assert validated_conf['exchange']['key'] == exchange_conf['key']
assert validated_conf['exchange']['secret'] == exchange_conf['secret']
assert validated_conf['exchange']['pair_whitelist'] != conf1['exchange']['pair_whitelist']
assert validated_conf['exchange']['pair_whitelist'] == conf2['exchange']['pair_whitelist']
assert validated_conf['fiat_display_currency'] == "EUR"
assert 'internals' in validated_conf
assert log_has('Validating configuration ...', caplog)
def test_load_config_max_open_trades_minus_one(default_conf, mocker, caplog) -> None:
@ -144,7 +173,7 @@ def test_load_config_max_open_trades_minus_one(default_conf, mocker, caplog) ->
assert validated_conf['max_open_trades'] > 999999999
assert validated_conf['max_open_trades'] == float('inf')
assert log_has('Validating configuration ...', caplog.record_tuples)
assert log_has('Validating configuration ...', caplog)
assert "runmode" in validated_conf
assert validated_conf['runmode'] == RunMode.DRY_RUN
@ -154,10 +183,9 @@ def test_load_config_file_exception(mocker) -> None:
'freqtrade.configuration.configuration.open',
MagicMock(side_effect=FileNotFoundError('File not found'))
)
configuration = Configuration(Namespace())
with pytest.raises(OperationalException, match=r'.*Config file "somefile" not found!*'):
configuration._load_config_file('somefile')
load_config_file('somefile')
def test_load_config(default_conf, mocker) -> None:
@ -282,8 +310,8 @@ def test_show_info(default_conf, mocker, caplog) -> None:
configuration = Configuration(args)
configuration.get_config()
assert log_has('Using DB: "sqlite:///tmp/testdb"', caplog.record_tuples)
assert log_has('Dry run is enabled', caplog.record_tuples)
assert log_has('Using DB: "sqlite:///tmp/testdb"', caplog)
assert log_has('Dry run is enabled', caplog)
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
@ -305,40 +333,39 @@ def test_setup_configuration_without_arguments(mocker, default_conf, caplog) ->
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert 'user_data_dir' in config
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
assert 'live' not in config
assert not log_has('Parameter -l/--live detected ...', caplog.record_tuples)
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'refresh_pairs' not in config
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' not in config
assert 'export' not in config
@pytest.mark.filterwarnings("ignore:DEPRECATED")
def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
'freqtrade.configuration.configuration.create_datadir',
lambda c, x: x
)
mocker.patch(
'freqtrade.configuration.configuration.create_userdata_dir',
lambda x, *args, **kwargs: Path(x)
)
arglist = [
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'--userdir', "/tmp/freqtrade",
'backtesting',
'--ticker-interval', '1m',
'--live',
'--enable-position-stacking',
'--disable-max-market-positions',
'--refresh-pairs-cached',
@ -356,37 +383,28 @@ def test_setup_configuration_with_arguments(mocker, default_conf, caplog) -> Non
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format("/foo/bar"), caplog)
assert log_has('Using user-data directory: {} ...'.format("/tmp/freqtrade"), caplog)
assert 'user_data_dir' in config
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
assert 'live' in config
assert log_has('Parameter -l/--live detected ...', caplog.record_tuples)
caplog)
assert 'position_stacking'in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog.record_tuples)
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog.record_tuples)
assert log_has('max_open_trades set to unlimited ...', caplog.record_tuples)
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'refresh_pairs'in config
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog)
assert 'timerange' in config
assert log_has(
'Parameter --timerange detected: {} ...'.format(config['timerange']),
caplog.record_tuples
)
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> None:
@ -416,16 +434,13 @@ def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> Non
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has(
'Using data directory: {} ...'.format(config['datadir']),
caplog.record_tuples
)
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog.record_tuples)
caplog)
assert 'strategy_list' in config
assert log_has('Using strategy list of 2 Strategies', caplog.record_tuples)
assert log_has('Using strategy list of 2 Strategies', caplog)
assert 'position_stacking' not in config
@ -434,10 +449,7 @@ def test_setup_configuration_with_stratlist(mocker, default_conf, caplog) -> Non
assert 'timerange' not in config
assert 'export' in config
assert log_has(
'Parameter --export detected: {} ...'.format(config['export']),
caplog.record_tuples
)
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
@ -456,11 +468,11 @@ def test_hyperopt_with_arguments(mocker, default_conf, caplog) -> None:
assert 'epochs' in config
assert int(config['epochs']) == 10
assert log_has('Parameter --epochs detected ... Will run Hyperopt with for 10 epochs ...',
caplog.record_tuples)
caplog)
assert 'spaces' in config
assert config['spaces'] == ['all']
assert log_has('Parameter -s/--spaces detected: [\'all\']', caplog.record_tuples)
assert log_has('Parameter -s/--spaces detected: [\'all\']', caplog)
assert "runmode" in config
assert config['runmode'] == RunMode.HYPEROPT
@ -470,38 +482,35 @@ def test_check_exchange(default_conf, caplog) -> None:
default_conf.get('exchange').update({'name': 'BITTREX'})
assert check_exchange(default_conf)
assert log_has_re(r"Exchange .* is officially supported by the Freqtrade development team\.",
caplog.record_tuples)
caplog)
caplog.clear()
# Test an officially supported by Freqtrade team exchange
default_conf.get('exchange').update({'name': 'binance'})
assert check_exchange(default_conf)
assert log_has_re(r"Exchange .* is officially supported by the Freqtrade development team\.",
caplog.record_tuples)
caplog)
caplog.clear()
# Test an available exchange, supported by ccxt
default_conf.get('exchange').update({'name': 'kraken'})
assert check_exchange(default_conf)
assert log_has_re(r"Exchange .* is supported by ccxt and .* not officially supported "
r"by the Freqtrade development team\. .*",
caplog.record_tuples)
r"by the Freqtrade development team\. .*", caplog)
caplog.clear()
# Test a 'bad' exchange, which known to have serious problems
default_conf.get('exchange').update({'name': 'bitmex'})
assert not check_exchange(default_conf)
assert log_has_re(r"Exchange .* is known to not work with the bot yet\. "
r"Use it only for development and testing purposes\.",
caplog.record_tuples)
with pytest.raises(OperationalException,
match=r"Exchange .* is known to not work with the bot yet.*"):
check_exchange(default_conf)
caplog.clear()
# Test a 'bad' exchange with check_for_bad=False
default_conf.get('exchange').update({'name': 'bitmex'})
assert check_exchange(default_conf, False)
assert log_has_re(r"Exchange .* is supported by ccxt and .* not officially supported "
r"by the Freqtrade development team\. .*",
caplog.record_tuples)
r"by the Freqtrade development team\. .*", caplog)
caplog.clear()
# Test an invalid exchange
@ -527,7 +536,7 @@ def test_cli_verbose_with_params(default_conf, mocker, caplog) -> None:
validated_conf = configuration.load_config()
assert validated_conf.get('verbosity') == 3
assert log_has('Verbosity set to 3', caplog.record_tuples)
assert log_has('Verbosity set to 3', caplog)
def test_set_loggers() -> None:
@ -593,7 +602,7 @@ def test_load_config_warn_forcebuy(default_conf, mocker, caplog) -> None:
validated_conf = configuration.load_config()
assert validated_conf.get('forcebuy_enable')
assert log_has('`forcebuy` RPC message enabled.', caplog.record_tuples)
assert log_has('`forcebuy` RPC message enabled.', caplog)
def test_validate_default_conf(default_conf) -> None:
@ -606,10 +615,45 @@ def test_create_datadir(mocker, default_conf, caplog) -> None:
create_datadir(default_conf, '/foo/bar')
assert md.call_args[1]['parents'] is True
assert log_has('Created data directory: /foo/bar', caplog.record_tuples)
assert log_has('Created data directory: /foo/bar', caplog)
def test_create_userdata_dir(mocker, default_conf, caplog) -> None:
mocker.patch.object(Path, "is_dir", MagicMock(return_value=False))
md = mocker.patch.object(Path, 'mkdir', MagicMock())
x = create_userdata_dir('/tmp/bar', create_dir=True)
assert md.call_count == 7
assert md.call_args[1]['parents'] is False
assert log_has('Created user-data directory: /tmp/bar', caplog)
assert isinstance(x, Path)
assert str(x) == "/tmp/bar"
def test_create_userdata_dir_exists(mocker, default_conf, caplog) -> None:
mocker.patch.object(Path, "is_dir", MagicMock(return_value=True))
md = mocker.patch.object(Path, 'mkdir', MagicMock())
create_userdata_dir('/tmp/bar')
assert md.call_count == 0
def test_create_userdata_dir_exists_exception(mocker, default_conf, caplog) -> None:
mocker.patch.object(Path, "is_dir", MagicMock(return_value=False))
md = mocker.patch.object(Path, 'mkdir', MagicMock())
with pytest.raises(OperationalException, match=r'Directory `/tmp/bar` does not exist.*'):
create_userdata_dir('/tmp/bar', create_dir=False)
assert md.call_count == 0
def test_validate_tsl(default_conf):
default_conf['stoploss'] = 0.0
with pytest.raises(OperationalException, match='The config stoploss needs to be different '
'from 0 to avoid problems with sell orders.'):
validate_config_consistency(default_conf)
default_conf['stoploss'] = -0.10
default_conf['trailing_stop'] = True
default_conf['trailing_stop_positive'] = 0
default_conf['trailing_stop_positive_offset'] = 0
@ -618,21 +662,54 @@ def test_validate_tsl(default_conf):
with pytest.raises(OperationalException,
match=r'The config trailing_only_offset_is_reached needs '
'trailing_stop_positive_offset to be more than 0 in your config.'):
configuration = Configuration(Namespace())
configuration._validate_config_consistency(default_conf)
validate_config_consistency(default_conf)
default_conf['trailing_stop_positive_offset'] = 0.01
default_conf['trailing_stop_positive'] = 0.015
with pytest.raises(OperationalException,
match=r'The config trailing_stop_positive_offset needs '
'to be greater than trailing_stop_positive_offset in your config.'):
configuration = Configuration(Namespace())
configuration._validate_config_consistency(default_conf)
'to be greater than trailing_stop_positive in your config.'):
validate_config_consistency(default_conf)
default_conf['trailing_stop_positive'] = 0.01
default_conf['trailing_stop_positive_offset'] = 0.015
Configuration(Namespace())
configuration._validate_config_consistency(default_conf)
validate_config_consistency(default_conf)
# 0 trailing stop positive - results in "Order would trigger immediately"
default_conf['trailing_stop_positive'] = 0
default_conf['trailing_stop_positive_offset'] = 0.02
default_conf['trailing_only_offset_is_reached'] = False
with pytest.raises(OperationalException,
match='The config trailing_stop_positive needs to be different from 0 '
'to avoid problems with sell orders'):
validate_config_consistency(default_conf)
def test_validate_edge(edge_conf):
edge_conf.update({"pairlist": {
"method": "VolumePairList",
}})
with pytest.raises(OperationalException,
match="Edge and VolumePairList are incompatible, "
"Edge will override whatever pairs VolumePairlist selects."):
validate_config_consistency(edge_conf)
edge_conf.update({"pairlist": {
"method": "StaticPairList",
}})
validate_config_consistency(edge_conf)
def test_load_config_test_comments() -> None:
"""
Load config with comments
"""
config_file = Path(__file__).parents[0] / "config_test_comments.json"
print(config_file)
conf = load_config_file(str(config_file))
assert conf
def test_load_config_default_exchange(all_conf) -> None:
@ -686,3 +763,111 @@ def test_load_config_default_subkeys(all_conf, keys) -> None:
validate_config_schema(all_conf)
assert subkey in all_conf[key]
assert all_conf[key][subkey] == keys[2]
def test_pairlist_resolving():
arglist = [
'download-data',
'--pairs', 'ETH/BTC', 'XRP/BTC',
'--exchange', 'binance'
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert config['pairs'] == ['ETH/BTC', 'XRP/BTC']
assert config['exchange']['name'] == 'binance'
def test_pairlist_resolving_with_config(mocker, default_conf):
patched_configuration_load_config_file(mocker, default_conf)
arglist = [
'--config', 'config.json',
'download-data',
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert config['pairs'] == default_conf['exchange']['pair_whitelist']
assert config['exchange']['name'] == default_conf['exchange']['name']
# Override pairs
arglist = [
'--config', 'config.json',
'download-data',
'--pairs', 'ETH/BTC', 'XRP/BTC',
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert config['pairs'] == ['ETH/BTC', 'XRP/BTC']
assert config['exchange']['name'] == default_conf['exchange']['name']
def test_pairlist_resolving_with_config_pl(mocker, default_conf):
patched_configuration_load_config_file(mocker, default_conf)
load_mock = mocker.patch("freqtrade.configuration.configuration.json_load",
MagicMock(return_value=['XRP/BTC', 'ETH/BTC']))
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
mocker.patch.object(Path, "open", MagicMock(return_value=MagicMock()))
arglist = [
'--config', 'config.json',
'download-data',
'--pairs-file', 'pairs.json',
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert load_mock.call_count == 1
assert config['pairs'] == ['ETH/BTC', 'XRP/BTC']
assert config['exchange']['name'] == default_conf['exchange']['name']
def test_pairlist_resolving_with_config_pl_not_exists(mocker, default_conf):
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch("freqtrade.configuration.configuration.json_load",
MagicMock(return_value=['XRP/BTC', 'ETH/BTC']))
mocker.patch.object(Path, "exists", MagicMock(return_value=False))
arglist = [
'--config', 'config.json',
'download-data',
'--pairs-file', 'pairs.json',
]
args = Arguments(arglist, '').get_parsed_arg()
with pytest.raises(OperationalException, match=r"No pairs file found with path.*"):
configuration = Configuration(args)
configuration.get_config()
def test_pairlist_resolving_fallback(mocker):
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
mocker.patch.object(Path, "open", MagicMock(return_value=MagicMock()))
mocker.patch("freqtrade.configuration.configuration.json_load",
MagicMock(return_value=['XRP/BTC', 'ETH/BTC']))
arglist = [
'download-data',
'--exchange', 'binance'
]
args = Arguments(arglist, '').get_parsed_arg()
configuration = Configuration(args)
config = configuration.get_config()
assert config['pairs'] == ['ETH/BTC', 'XRP/BTC']
assert config['exchange']['name'] == 'binance'

File diff suppressed because it is too large Load Diff

View File

@ -1,7 +1,7 @@
# pragma pylint: disable=missing-docstring
from copy import deepcopy
from unittest.mock import MagicMock
from unittest.mock import MagicMock, PropertyMock
import pytest
@ -21,13 +21,13 @@ def test_parse_args_backtesting(mocker) -> None:
further argument parsing is done in test_arguments.py
"""
backtesting_mock = mocker.patch('freqtrade.optimize.start_backtesting', MagicMock())
backtesting_mock.__name__ = PropertyMock("start_backtesting")
# it's sys.exit(0) at the end of backtesting
with pytest.raises(SystemExit):
main(['backtesting'])
assert backtesting_mock.call_count == 1
call_args = backtesting_mock.call_args[0][0]
assert call_args.config == ['config.json']
assert call_args.live is False
assert call_args.verbosity == 0
assert call_args.subparser == 'backtesting'
assert call_args.func is not None
@ -36,6 +36,7 @@ def test_parse_args_backtesting(mocker) -> None:
def test_main_start_hyperopt(mocker) -> None:
hyperopt_mock = mocker.patch('freqtrade.optimize.start_hyperopt', MagicMock())
hyperopt_mock.__name__ = PropertyMock("start_hyperopt")
# it's sys.exit(0) at the end of hyperopt
with pytest.raises(SystemExit):
main(['hyperopt'])
@ -60,8 +61,8 @@ def test_main_fatal_exception(mocker, default_conf, caplog) -> None:
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Fatal exception!', caplog.record_tuples)
assert log_has('Using config: config.json.example ...', caplog)
assert log_has('Fatal exception!', caplog)
def test_main_keyboard_interrupt(mocker, default_conf, caplog) -> None:
@ -77,8 +78,8 @@ def test_main_keyboard_interrupt(mocker, default_conf, caplog) -> None:
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('SIGINT received, aborting ...', caplog.record_tuples)
assert log_has('Using config: config.json.example ...', caplog)
assert log_has('SIGINT received, aborting ...', caplog)
def test_main_operational_exception(mocker, default_conf, caplog) -> None:
@ -97,8 +98,8 @@ def test_main_operational_exception(mocker, default_conf, caplog) -> None:
# Test Main + the KeyboardInterrupt exception
with pytest.raises(SystemExit):
main(args)
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Oh snap!', caplog.record_tuples)
assert log_has('Using config: config.json.example ...', caplog)
assert log_has('Oh snap!', caplog)
def test_main_reload_conf(mocker, default_conf, caplog) -> None:
@ -121,7 +122,7 @@ def test_main_reload_conf(mocker, default_conf, caplog) -> None:
with pytest.raises(SystemExit):
main(['-c', 'config.json.example'])
assert log_has('Using config: config.json.example ...', caplog.record_tuples)
assert log_has('Using config: config.json.example ...', caplog)
assert worker_mock.call_count == 4
assert reconfigure_mock.call_count == 1
assert isinstance(worker.freqtrade, FreqtradeBot)

View File

@ -1,6 +1,7 @@
# pragma pylint: disable=missing-docstring,C0103
import datetime
from pathlib import Path
from unittest.mock import MagicMock
from freqtrade.data.converter import parse_ticker_dataframe
@ -34,12 +35,12 @@ def test_datesarray_to_datetimearray(ticker_history_list):
def test_file_dump_json(mocker) -> None:
file_open = mocker.patch('freqtrade.misc.open', MagicMock())
json_dump = mocker.patch('rapidjson.dump', MagicMock())
file_dump_json('somefile', [1, 2, 3])
file_dump_json(Path('somefile'), [1, 2, 3])
assert file_open.call_count == 1
assert json_dump.call_count == 1
file_open = mocker.patch('freqtrade.misc.gzip.open', MagicMock())
json_dump = mocker.patch('rapidjson.dump', MagicMock())
file_dump_json('somefile', [1, 2, 3], True)
file_dump_json(Path('somefile'), [1, 2, 3], True)
assert file_open.call_count == 1
assert json_dump.call_count == 1

View File

@ -151,7 +151,7 @@ def test_update_with_bittrex(limit_buy_order, limit_sell_order, fee, caplog):
assert trade.close_date is None
assert log_has("LIMIT_BUY has been fulfilled for Trade(id=2, "
"pair=ETH/BTC, amount=90.99181073, open_rate=0.00001099, open_since=closed).",
caplog.record_tuples)
caplog)
caplog.clear()
trade.open_order_id = 'something'
@ -162,7 +162,7 @@ def test_update_with_bittrex(limit_buy_order, limit_sell_order, fee, caplog):
assert trade.close_date is not None
assert log_has("LIMIT_SELL has been fulfilled for Trade(id=2, "
"pair=ETH/BTC, amount=90.99181073, open_rate=0.00001099, open_since=closed).",
caplog.record_tuples)
caplog)
@pytest.mark.usefixtures("init_persistence")
@ -184,7 +184,7 @@ def test_update_market_order(market_buy_order, market_sell_order, fee, caplog):
assert trade.close_date is None
assert log_has("MARKET_BUY has been fulfilled for Trade(id=1, "
"pair=ETH/BTC, amount=91.99181073, open_rate=0.00004099, open_since=closed).",
caplog.record_tuples)
caplog)
caplog.clear()
trade.open_order_id = 'something'
@ -195,7 +195,7 @@ def test_update_market_order(market_buy_order, market_sell_order, fee, caplog):
assert trade.close_date is not None
assert log_has("MARKET_SELL has been fulfilled for Trade(id=1, "
"pair=ETH/BTC, amount=91.99181073, open_rate=0.00004099, open_since=closed).",
caplog.record_tuples)
caplog)
@pytest.mark.usefixtures("init_persistence")
@ -558,10 +558,9 @@ def test_migrate_new(mocker, default_conf, fee, caplog):
assert trade.ticker_interval is None
assert trade.stoploss_order_id is None
assert trade.stoploss_last_update is None
assert log_has("trying trades_bak1", caplog.record_tuples)
assert log_has("trying trades_bak2", caplog.record_tuples)
assert log_has("Running database migration - backup available as trades_bak2",
caplog.record_tuples)
assert log_has("trying trades_bak1", caplog)
assert log_has("trying trades_bak2", caplog)
assert log_has("Running database migration - backup available as trades_bak2", caplog)
def test_migrate_mid_state(mocker, default_conf, fee, caplog):
@ -621,9 +620,8 @@ def test_migrate_mid_state(mocker, default_conf, fee, caplog):
assert trade.max_rate == 0.0
assert trade.stop_loss == 0.0
assert trade.initial_stop_loss == 0.0
assert log_has("trying trades_bak0", caplog.record_tuples)
assert log_has("Running database migration - backup available as trades_bak0",
caplog.record_tuples)
assert log_has("trying trades_bak0", caplog)
assert log_has("Running database migration - backup available as trades_bak0", caplog)
def test_adjust_stop_loss(fee):

View File

@ -1,11 +1,12 @@
from copy import deepcopy
from pathlib import Path
from unittest.mock import MagicMock
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from freqtrade.configuration import Arguments, TimeRange
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import create_cum_profit, load_backtest_data
from freqtrade.plot.plotting import (add_indicators, add_profit,
@ -50,7 +51,7 @@ def test_init_plotscript(default_conf, mocker):
assert "pairs" in ret
assert "strategy" in ret
default_conf['pairs'] = "POWR/BTC,XLM/BTC"
default_conf['pairs'] = ["POWR/BTC", "XLM/BTC"]
ret = init_plotscript(default_conf)
assert "tickers" in ret
assert "POWR/BTC" in ret["tickers"]
@ -87,7 +88,7 @@ def test_add_indicators(default_conf, caplog):
# No indicator found
fig3 = add_indicators(fig=deepcopy(fig), row=3, indicators=['no_indicator'], data=data)
assert fig == fig3
assert log_has_re(r'Indicator "no_indicator" ignored\..*', caplog.record_tuples)
assert log_has_re(r'Indicator "no_indicator" ignored\..*', caplog)
def test_plot_trades(caplog):
@ -95,7 +96,7 @@ def test_plot_trades(caplog):
# nothing happens when no trades are available
fig = plot_trades(fig1, None)
assert fig == fig1
assert log_has("No trades found.", caplog.record_tuples)
assert log_has("No trades found.", caplog)
pair = "ADA/BTC"
filename = history.make_testdata_path(None) / "backtest-result_test.json"
trades = load_backtest_data(filename)
@ -150,8 +151,8 @@ def test_generate_candlestick_graph_no_signals_no_trades(default_conf, mocker, c
assert row_mock.call_count == 2
assert trades_mock.call_count == 1
assert log_has("No buy-signals found.", caplog.record_tuples)
assert log_has("No sell-signals found.", caplog.record_tuples)
assert log_has("No buy-signals found.", caplog)
assert log_has("No sell-signals found.", caplog)
def test_generate_candlestick_graph_no_trades(default_conf, mocker):
@ -209,18 +210,21 @@ def test_generate_Plot_filename():
def test_generate_plot_file(mocker, caplog):
fig = generage_empty_figure()
plot_mock = mocker.patch("freqtrade.plot.plotting.plot", MagicMock())
store_plot_file(fig, filename="freqtrade-plot-UNITTEST_BTC-5m.html")
store_plot_file(fig, filename="freqtrade-plot-UNITTEST_BTC-5m.html",
directory=Path("user_data/plots"))
assert plot_mock.call_count == 1
assert plot_mock.call_args[0][0] == fig
assert (plot_mock.call_args_list[0][1]['filename']
== "user_data/plots/freqtrade-plot-UNITTEST_BTC-5m.html")
assert log_has("Stored plot as user_data/plots/freqtrade-plot-UNITTEST_BTC-5m.html",
caplog)
def test_add_profit():
filename = history.make_testdata_path(None) / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
timerange = Arguments.parse_timerange("20180110-20180112")
timerange = TimeRange.parse_timerange("20180110-20180112")
df = history.load_pair_history(pair="POWR/BTC", ticker_interval='5m',
datadir=None, timerange=timerange)
@ -240,7 +244,7 @@ def test_add_profit():
def test_generate_profit_graph():
filename = history.make_testdata_path(None) / "backtest-result_test.json"
trades = load_backtest_data(filename)
timerange = Arguments.parse_timerange("20180110-20180112")
timerange = TimeRange.parse_timerange("20180110-20180112")
pairs = ["POWR/BTC", "XLM/BTC"]
tickers = history.load_data(datadir=None,

View File

@ -0,0 +1,28 @@
# pragma pylint: disable=missing-docstring, C0103
import pytest
from freqtrade.configuration import TimeRange
def test_parse_timerange_incorrect() -> None:
assert TimeRange(None, 'line', 0, -200) == TimeRange.parse_timerange('-200')
assert TimeRange('line', None, 200, 0) == TimeRange.parse_timerange('200-')
assert TimeRange('index', 'index', 200, 500) == TimeRange.parse_timerange('200-500')
assert TimeRange('date', None, 1274486400, 0) == TimeRange.parse_timerange('20100522-')
assert TimeRange(None, 'date', 0, 1274486400) == TimeRange.parse_timerange('-20100522')
timerange = TimeRange.parse_timerange('20100522-20150730')
assert timerange == TimeRange('date', 'date', 1274486400, 1438214400)
# Added test for unix timestamp - BTC genesis date
assert TimeRange('date', None, 1231006505, 0) == TimeRange.parse_timerange('1231006505-')
assert TimeRange(None, 'date', 0, 1233360000) == TimeRange.parse_timerange('-1233360000')
timerange = TimeRange.parse_timerange('1231006505-1233360000')
assert TimeRange('date', 'date', 1231006505, 1233360000) == timerange
# TODO: Find solution for the following case (passing timestamp in ms)
timerange = TimeRange.parse_timerange('1231006505000-1233360000000')
assert TimeRange('date', 'date', 1231006505, 1233360000) != timerange
with pytest.raises(Exception, match=r'Incorrect syntax.*'):
TimeRange.parse_timerange('-')

View File

@ -1,8 +1,13 @@
from freqtrade.utils import setup_utils_configuration, start_list_exchanges
from freqtrade.tests.conftest import get_args
from freqtrade.state import RunMode
import re
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
import pytest
from freqtrade.state import RunMode
from freqtrade.tests.conftest import get_args, log_has, patch_exchange
from freqtrade.utils import (setup_utils_configuration, start_create_userdir,
start_download_data, start_list_exchanges)
def test_setup_utils_configuration():
@ -40,3 +45,110 @@ def test_list_exchanges(capsys):
assert not re.match(r"Exchanges supported by ccxt and available.*", captured.out)
assert re.search(r"^binance$", captured.out, re.MULTILINE)
assert re.search(r"^bittrex$", captured.out, re.MULTILINE)
def test_create_datadir_failed(caplog):
args = [
"create-userdir",
]
with pytest.raises(SystemExit):
start_create_userdir(get_args(args))
assert log_has("`create-userdir` requires --userdir to be set.", caplog)
def test_create_datadir(caplog, mocker):
cud = mocker.patch("freqtrade.utils.create_userdata_dir", MagicMock())
args = [
"create-userdir",
"--userdir",
"/temp/freqtrade/test"
]
start_create_userdir(get_args(args))
assert cud.call_count == 1
assert len(caplog.record_tuples) == 0
def test_download_data(mocker, markets, caplog):
dl_mock = mocker.patch('freqtrade.utils.download_pair_history', MagicMock())
patch_exchange(mocker)
mocker.patch(
'freqtrade.exchange.Exchange.markets', PropertyMock(return_value=markets)
)
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
mocker.patch.object(Path, "unlink", MagicMock())
args = [
"download-data",
"--exchange", "binance",
"--pairs", "ETH/BTC", "XRP/BTC",
"--erase",
]
start_download_data(get_args(args))
assert dl_mock.call_count == 4
assert dl_mock.call_args[1]['timerange'].starttype is None
assert dl_mock.call_args[1]['timerange'].stoptype is None
assert log_has("Deleting existing data for pair ETH/BTC, interval 1m.", caplog)
assert log_has("Downloading pair ETH/BTC, interval 1m.", caplog)
def test_download_data_days(mocker, markets, caplog):
dl_mock = mocker.patch('freqtrade.utils.download_pair_history', MagicMock())
patch_exchange(mocker)
mocker.patch(
'freqtrade.exchange.Exchange.markets', PropertyMock(return_value=markets)
)
mocker.patch.object(Path, "exists", MagicMock(return_value=True))
mocker.patch.object(Path, "unlink", MagicMock())
args = [
"download-data",
"--exchange", "binance",
"--pairs", "ETH/BTC", "XRP/BTC",
"--days", "20",
]
start_download_data(get_args(args))
assert dl_mock.call_count == 4
assert dl_mock.call_args[1]['timerange'].starttype == 'date'
assert log_has("Downloading pair ETH/BTC, interval 1m.", caplog)
def test_download_data_no_markets(mocker, caplog):
dl_mock = mocker.patch('freqtrade.utils.download_pair_history', MagicMock())
patch_exchange(mocker)
mocker.patch(
'freqtrade.exchange.Exchange.markets', PropertyMock(return_value={})
)
args = [
"download-data",
"--exchange", "binance",
"--pairs", "ETH/BTC", "XRP/BTC",
]
start_download_data(get_args(args))
assert dl_mock.call_count == 0
assert log_has("Skipping pair ETH/BTC...", caplog)
assert log_has("Pairs [ETH/BTC,XRP/BTC] not available on exchange binance.", caplog)
def test_download_data_keyboardInterrupt(mocker, caplog, markets):
dl_mock = mocker.patch('freqtrade.utils.download_pair_history',
MagicMock(side_effect=KeyboardInterrupt))
patch_exchange(mocker)
mocker.patch(
'freqtrade.exchange.Exchange.markets', PropertyMock(return_value=markets)
)
args = [
"download-data",
"--exchange", "binance",
"--pairs", "ETH/BTC", "XRP/BTC",
]
with pytest.raises(SystemExit):
start_download_data(get_args(args))
assert dl_mock.call_count == 1

View File

@ -1,11 +1,17 @@
import logging
import sys
from argparse import Namespace
from pathlib import Path
from typing import Any, Dict
from freqtrade.configuration import Configuration
from freqtrade.exchange import available_exchanges
from freqtrade.state import RunMode
import arrow
from freqtrade.configuration import Configuration, TimeRange
from freqtrade.configuration.directory_operations import create_userdata_dir
from freqtrade.data.history import download_pair_history
from freqtrade.exchange import available_exchanges
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@ -17,7 +23,7 @@ def setup_utils_configuration(args: Namespace, method: RunMode) -> Dict[str, Any
:return: Configuration
"""
configuration = Configuration(args, method)
config = configuration.load_config()
config = configuration.get_config()
config['exchange']['dry_run'] = True
# Ensure we do not use Exchange credentials
@ -39,3 +45,69 @@ def start_list_exchanges(args: Namespace) -> None:
else:
print(f"Exchanges supported by ccxt and available for Freqtrade: "
f"{', '.join(available_exchanges())}")
def start_create_userdir(args: Namespace) -> None:
"""
Create "user_data" directory to contain user data strategies, hyperopts, ...)
:param args: Cli args from Arguments()
:return: None
"""
if "user_data_dir" in args and args.user_data_dir:
create_userdata_dir(args.user_data_dir, create_dir=True)
else:
logger.warning("`create-userdir` requires --userdir to be set.")
sys.exit(1)
def start_download_data(args: Namespace) -> None:
"""
Download data (former download_backtest_data.py script)
"""
config = setup_utils_configuration(args, RunMode.OTHER)
timerange = TimeRange()
if 'days' in config:
time_since = arrow.utcnow().shift(days=-config['days']).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
dl_path = Path(config['datadir'])
logger.info(f'About to download pairs: {config["pairs"]}, '
f'intervals: {config["timeframes"]} to {dl_path}')
pairs_not_available = []
try:
# Init exchange
exchange = ExchangeResolver(config['exchange']['name'], config).exchange
for pair in config["pairs"]:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for ticker_interval in config["timeframes"]:
pair_print = pair.replace('/', '_')
filename = f'{pair_print}-{ticker_interval}.json'
dl_file = dl_path.joinpath(filename)
if config.get("erase") and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}, interval {ticker_interval}.')
dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {ticker_interval}.')
download_pair_history(datadir=dl_path, exchange=exchange,
pair=pair, ticker_interval=str(ticker_interval),
timerange=timerange)
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(
f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {config['exchange']['name']}.")
# configuration.resolve_pairs_list()
print(config)

View File

@ -127,11 +127,10 @@ class Worker(object):
time.sleep(duration)
return result
def _process(self) -> bool:
def _process(self) -> None:
logger.debug("========================================")
state_changed = False
try:
state_changed = self.freqtrade.process()
self.freqtrade.process()
except TemporaryError as error:
logger.warning(f"Error: {error}, retrying in {constants.RETRY_TIMEOUT} seconds...")
time.sleep(constants.RETRY_TIMEOUT)
@ -144,10 +143,6 @@ class Worker(object):
})
logger.exception('OperationalException. Stopping trader ...')
self.freqtrade.state = State.STOPPED
# TODO: The return value of _process() is not used apart tests
# and should (could) be eliminated later. See PR #1689.
# state_changed = True
return state_changed
def _reconfigure(self) -> None:
"""

View File

@ -1,16 +1,16 @@
# requirements without requirements installable via conda
# mainly used for Raspberry pi installs
ccxt==1.18.992
SQLAlchemy==1.3.6
ccxt==1.18.1068
SQLAlchemy==1.3.7
python-telegram-bot==11.1.0
arrow==0.14.3
arrow==0.14.5
cachetools==3.1.1
requests==2.22.0
urllib3==1.24.2 # pyup: ignore
urllib3==1.25.3
wrapt==1.11.2
scikit-learn==0.21.2
scikit-learn==0.21.3
joblib==0.13.2
jsonschema==3.0.1
jsonschema==3.0.2
TA-Lib==0.4.17
tabulate==0.8.3
coinmarketcap==5.0.3
@ -20,13 +20,16 @@ scikit-optimize==0.5.2
filelock==3.0.12
# find first, C search in arrays
py_find_1st==1.1.3
py_find_1st==1.1.4
#Load ticker files 30% faster
python-rapidjson==0.7.2
python-rapidjson==0.8.0
# Notify systemd
sdnotify==0.3.2
# Api server
flask==1.1.1
# Support for colorized terminal output
colorama==0.4.1

View File

@ -2,13 +2,13 @@
-r requirements.txt
-r requirements-plot.txt
coveralls==1.8.2
flake8==3.7.8
flake8-type-annotations==0.1.0
flake8-tidy-imports==2.0.0
pytest==5.0.1
pytest-mock==1.10.4
mypy==0.720
pytest==5.1.0
pytest-asyncio==0.10.0
pytest-cov==2.7.1
pytest-mock==1.10.4
pytest-random-order==1.0.4
coveralls==1.8.1
mypy==0.720

View File

@ -1,5 +1,5 @@
# Include all requirements to run the bot.
-r requirements.txt
plotly==4.0.0
plotly==4.1.0

View File

@ -3,4 +3,4 @@
numpy==1.17.0
pandas==0.25.0
scipy==1.3.0
scipy==1.3.1

View File

@ -1,143 +1,11 @@
#!/usr/bin/env python3
"""
This script generates json files with pairs history data
"""
import arrow
import json
import sys
from pathlib import Path
from typing import Any, Dict, List
from freqtrade.configuration import Arguments, TimeRange
from freqtrade.configuration import Configuration
from freqtrade.configuration.arguments import ARGS_DOWNLOADER
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.data.history import download_pair_history
from freqtrade.exchange import Exchange
from freqtrade.misc import deep_merge_dicts
import logging
print("This script has been integrated into freqtrade "
"and its functionality is available by calling `freqtrade download-data`.")
print("Please check the documentation on https://www.freqtrade.io/en/latest/backtesting/ "
"for details.")
logger = logging.getLogger('download_backtest_data')
DEFAULT_DL_PATH = 'user_data/data'
# Do not read the default config if config is not specified
# in the command line options explicitely
arguments = Arguments(sys.argv[1:], 'Download backtest data',
no_default_config=True)
arguments._build_args(optionlist=ARGS_DOWNLOADER)
args = arguments._parse_args()
# Use bittrex as default exchange
exchange_name = args.exchange or 'bittrex'
pairs: List = []
configuration = Configuration(args)
config: Dict[str, Any] = {}
if args.config:
# Now expecting a list of config filenames here, not a string
for path in args.config:
logger.info(f"Using config: {path}...")
# Merge config options, overwriting old values
config = deep_merge_dicts(configuration._load_config_file(path), config)
config['stake_currency'] = ''
# Ensure we do not use Exchange credentials
config['exchange']['dry_run'] = True
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
pairs = config['exchange']['pair_whitelist']
if config.get('ticker_interval'):
timeframes = args.timeframes or [config.get('ticker_interval')]
else:
timeframes = args.timeframes or ['1m', '5m']
else:
config = {
'stake_currency': '',
'dry_run': True,
'exchange': {
'name': exchange_name,
'key': '',
'secret': '',
'pair_whitelist': [],
'ccxt_async_config': {
'enableRateLimit': True,
'rateLimit': 200
}
}
}
timeframes = args.timeframes or ['1m', '5m']
configuration._process_logging_options(config)
if args.config and args.exchange:
logger.warning("The --exchange option is ignored, "
"using exchange settings from the configuration file.")
# Check if the exchange set by the user is supported
check_exchange(config)
configuration._process_datadir_options(config)
dl_path = Path(config['datadir'])
pairs_file = Path(args.pairs_file) if args.pairs_file else dl_path.joinpath('pairs.json')
if not pairs or args.pairs_file:
logger.info(f'Reading pairs file "{pairs_file}".')
# Download pairs from the pairs file if no config is specified
# or if pairs file is specified explicitely
if not pairs_file.exists():
sys.exit(f'No pairs file found with path "{pairs_file}".')
with pairs_file.open() as file:
pairs = list(set(json.load(file)))
pairs.sort()
timerange = TimeRange()
if args.days:
time_since = arrow.utcnow().shift(days=-args.days).strftime("%Y%m%d")
timerange = arguments.parse_timerange(f'{time_since}-')
logger.info(f'About to download pairs: {pairs}, intervals: {timeframes} to {dl_path}')
pairs_not_available = []
try:
# Init exchange
exchange = Exchange(config)
for pair in pairs:
if pair not in exchange._api.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for ticker_interval in timeframes:
pair_print = pair.replace('/', '_')
filename = f'{pair_print}-{ticker_interval}.json'
dl_file = dl_path.joinpath(filename)
if args.erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}, interval {ticker_interval}.')
dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {ticker_interval}.')
download_pair_history(datadir=dl_path, exchange=exchange,
pair=pair, ticker_interval=str(ticker_interval),
timerange=timerange)
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(
f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {config['exchange']['name']}.")
sys.exit(1)

View File

@ -16,8 +16,6 @@ import logging
import sys
from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import Arguments
from freqtrade.configuration.arguments import ARGS_PLOT_DATAFRAME
from freqtrade.data.btanalysis import extract_trades_of_period
@ -30,20 +28,6 @@ from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def generate_dataframe(strategy, tickers, pair) -> pd.DataFrame:
"""
Get tickers then Populate strategy indicators and signals, then return the full dataframe
:return: the DataFrame of a pair
"""
dataframes = strategy.tickerdata_to_dataframe(tickers)
dataframe = dataframes[pair]
dataframe = strategy.advise_buy(dataframe, {'pair': pair})
dataframe = strategy.advise_sell(dataframe, {'pair': pair})
return dataframe
def analyse_and_plot_pairs(config: Dict[str, Any]):
"""
From arguments provided in cli:
@ -57,6 +41,7 @@ def analyse_and_plot_pairs(config: Dict[str, Any]):
"""
plot_elements = init_plotscript(config)
trades = plot_elements['trades']
strategy = plot_elements["strategy"]
pair_counter = 0
for pair, data in plot_elements["tickers"].items():
@ -64,7 +49,8 @@ def analyse_and_plot_pairs(config: Dict[str, Any]):
logger.info("analyse pair %s", pair)
tickers = {}
tickers[pair] = data
dataframe = generate_dataframe(plot_elements["strategy"], tickers, pair)
dataframe = strategy.analyze_ticker(tickers[pair], {'pair': pair})
trades_pair = trades.loc[trades['pair'] == pair]
trades_pair = extract_trades_of_period(dataframe, trades_pair)
@ -77,7 +63,8 @@ def analyse_and_plot_pairs(config: Dict[str, Any]):
indicators2=config["indicators2"].split(",")
)
store_plot_file(fig, generate_plot_filename(pair, config['ticker_interval']))
store_plot_file(fig, filename=generate_plot_filename(pair, config['ticker_interval']),
directory=config['user_data_dir'] / "plot")
logger.info('End of ploting process %s plots generated', pair_counter)

View File

@ -32,7 +32,8 @@ def plot_profit(config: Dict[str, Any]) -> None:
# Create an average close price of all the pairs that were involved.
# this could be useful to gauge the overall market trend
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"], trades)
store_plot_file(fig, filename='freqtrade-profit-plot.html', auto_open=True)
store_plot_file(fig, filename='freqtrade-profit-plot.html',
directory=config['user_data_dir'] / "plot", auto_open=True)
def plot_parse_args(args: List[str]) -> Dict[str, Any]:

View File

@ -8,6 +8,30 @@ if version_info.major == 3 and version_info.minor < 6 or \
from freqtrade import __version__
# Requirements used for submodules
api = ['flask']
plot = ['plotly>=4.0']
develop = [
'coveralls',
'flake8',
'flake8-type-annotations',
'flake8-tidy-imports',
'mypy',
'pytest',
'pytest-asyncio',
'pytest-cov',
'pytest-mock',
'pytest-random-order',
]
jupyter = [
'jupyter',
'nbstripout',
'ipykernel',
]
all_extra = api + plot + develop + jupyter
setup(name='freqtrade',
version=__version__,
@ -20,26 +44,40 @@ setup(name='freqtrade',
setup_requires=['pytest-runner', 'numpy'],
tests_require=['pytest', 'pytest-mock', 'pytest-cov'],
install_requires=[
'ccxt',
# from requirements-common.txt
'ccxt>=1.18',
'SQLAlchemy',
'python-telegram-bot',
'arrow',
'cachetools',
'requests',
'urllib3',
'wrapt',
'pandas',
'scikit-learn',
'scipy',
'joblib',
'jsonschema',
'TA-Lib',
'tabulate',
'cachetools',
'coinmarketcap',
'scikit-optimize',
'filelock',
'py_find_1st',
'python-rapidjson',
'py_find_1st'
'sdnotify',
'colorama',
# from requirements.txt
'numpy',
'pandas',
'scipy',
],
extras_require={
'api': api,
'dev': all_extra,
'plot': plot,
'all': all_extra,
'jupyter': jupyter,
},
include_package_data=True,
zip_safe=False,
entry_points={

View File

@ -11,6 +11,12 @@ function check_installed_pip() {
# Check which python version is installed
function check_installed_python() {
if [ -n "${VIRTUAL_ENV}" ]; then
echo "Please deactivate your virtual environment before running setup.sh."
echo "You can do this by running 'deactivate'."
exit 2
fi
which python3.7
if [ $? -eq 0 ]; then
echo "using Python 3.7"
@ -37,17 +43,19 @@ function updateenv() {
echo "-------------------------"
echo "Updating your virtual env"
echo "-------------------------"
if [ ! -f .env/bin/activate ]; then
echo "Something went wrong, no virtual environment found."
exit 1
fi
source .env/bin/activate
echo "pip install in-progress. Please wait..."
# Install numpy first to have py_find_1st install clean
${PYTHON} -m pip install --upgrade pip numpy
${PYTHON} -m pip install --upgrade -r requirements.txt
${PYTHON} -m pip install --upgrade pip
read -p "Do you want to install dependencies for dev [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]
then
${PYTHON} -m pip install --upgrade -r requirements-dev.txt
else
${PYTHON} -m pip install --upgrade -r requirements.txt
echo "Dev dependencies ignored."
fi
@ -70,6 +78,10 @@ function install_talib() {
./configure --prefix=/usr/local
make
sudo make install
if [ -x "$(command -v apt-get)" ]; then
echo "Updating library path using ldconfig"
sudo ldconfig
fi
cd .. && rm -rf ./ta-lib/
cd ..
}
@ -90,7 +102,7 @@ function install_macos() {
# Install bot Debian_ubuntu
function install_debian() {
sudo apt-get update
sudo apt-get install build-essential autoconf libtool pkg-config make wget git
sudo apt-get install -y build-essential autoconf libtool pkg-config make wget git
install_talib
}
@ -105,12 +117,12 @@ function reset() {
echo "----------------------------"
echo "Reseting branch and virtual env"
echo "----------------------------"
if [ "1" == $(git branch -vv |grep -cE "\* develop|\* master") ]
then
if [ -d ".env" ]; then
echo "- Delete your previous virtual env"
rm -rf .env
fi
read -p "Reset git branch? (This will remove all changes you made!) [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]; then
git fetch -a
@ -123,12 +135,21 @@ function reset() {
echo "- Hard resetting of 'master' branch."
git reset --hard origin/master
fi
fi
else
echo "Reset ignored because you are not on 'master' or 'develop'."
fi
if [ -d ".env" ]; then
echo "- Delete your previous virtual env"
rm -rf .env
fi
echo
${PYTHON} -m venv .env
if [ $? -ne 0 ]; then
echo "Could not create virtual environment. Leaving now"
exit 1
fi
updateenv
}

View File

View File

@ -1,11 +1,10 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
from functools import reduce
from math import exp
from typing import Any, Callable, Dict, List
from datetime import datetime
import numpy as np# noqa F401
import numpy as np
import talib.abstract as ta
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real
@ -14,48 +13,67 @@ import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# This class is a sample. Feel free to customize it.
class SampleHyperOpts(IHyperOpt):
"""
This is a test hyperopt to inspire you.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
You can:
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your hyperopt
- Add any lib you need to build your hyperopt
You must keep:
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
roi_space, generate_roi_table, stoploss_space
"""
This is a sample Hyperopt to inspire you.
Feel free to customize it.
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
You should:
- Rename the class name to some unique name.
- Add any methods you want to build your hyperopt.
- Add any lib you need to build your hyperopt.
You must keep:
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
The roi_space, generate_roi_table, stoploss_space methods are no longer required to be
copied in every custom hyperopt. However, you may override them if you need the
'roi' and the 'stoploss' spaces that differ from the defaults offered by Freqtrade.
Sample implementation of these methods can be found in
https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Add several indicators needed for buy and sell strategies defined below.
"""
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stochastic Fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
# Minus-DI
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_upperband'] = bollinger['upper']
# SAR
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if 'mfi-enabled' in params and params['mfi-enabled']:
conditions.append(dataframe['mfi'] < params['mfi-value'])
@ -91,7 +109,7 @@ class SampleHyperOpts(IHyperOpt):
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(10, 25, name='mfi-value'),
@ -108,14 +126,14 @@ class SampleHyperOpts(IHyperOpt):
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
Sell strategy Hyperopt will build and use.
"""
# print(params)
conditions = []
# GUARDS AND TRENDS
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
@ -151,7 +169,7 @@ class SampleHyperOpts(IHyperOpt):
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(75, 100, name='sell-mfi-value'),
@ -167,47 +185,11 @@ class SampleHyperOpts(IHyperOpt):
'sell-sar_reversal'], name='sell-trigger')
]
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
"""
return [
Real(-0.5, -0.02, name='stoploss'),
]
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include buy
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include buy space.
"""
dataframe.loc[
(
@ -222,9 +204,9 @@ class SampleHyperOpts(IHyperOpt):
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include sell
Based on TA indicators. Should be a copy of same method from strategy.
Must align to populate_indicators in this file.
Only used when --spaces does not include sell space.
"""
dataframe.loc[
(
@ -234,4 +216,5 @@ class SampleHyperOpts(IHyperOpt):
(dataframe['fastd'] > 54)
),
'sell'] = 1
return dataframe

Some files were not shown because too many files have changed in this diff Show More