Merge pull request #7701 from freqtrade/add-single-precision-freqai

add option to force single precision
This commit is contained in:
Matthias
2022-11-14 07:02:35 +01:00
committed by GitHub
8 changed files with 76 additions and 9 deletions

View File

@@ -159,6 +159,7 @@ CONF_SCHEMA = {
'ignore_buying_expired_candle_after': {'type': 'number'},
'trading_mode': {'type': 'string', 'enum': TRADING_MODES},
'margin_mode': {'type': 'string', 'enum': MARGIN_MODES},
'reduce_df_footprint': {'type': 'boolean', 'default': False},
'liquidation_buffer': {'type': 'number', 'minimum': 0.0, 'maximum': 0.99},
'backtest_breakdown': {
'type': 'array',

View File

@@ -7,6 +7,7 @@ from datetime import datetime, timezone
from operator import itemgetter
from typing import Dict, List
import numpy as np
import pandas as pd
from pandas import DataFrame, to_datetime
@@ -313,3 +314,29 @@ def convert_ohlcv_format(
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe, candle_type=candle_type)
def reduce_dataframe_footprint(df: DataFrame) -> DataFrame:
"""
Ensure all values are float32 in the incoming dataframe.
:param df: Dataframe to be converted to float/int 32s
:return: Dataframe converted to float/int 32s
"""
logger.debug(f"Memory usage of dataframe is "
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
df_dtypes = df.dtypes
for column, dtype in df_dtypes.items():
if column in ['open', 'high', 'low', 'close', 'volume']:
continue
if dtype == np.float64:
df_dtypes[column] = np.float32
elif dtype == np.int64:
df_dtypes[column] = np.int32
df = df.astype(df_dtypes)
logger.debug(f"Memory usage after optimization is: "
f"{df.memory_usage().sum() / 1024**2:.2f} MB")
return df

View File

@@ -19,6 +19,7 @@ from sklearn.neighbors import NearestNeighbors
from freqtrade.configuration import TimeRange
from freqtrade.constants import Config
from freqtrade.data.converter import reduce_dataframe_footprint
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_seconds
from freqtrade.strategy.interface import IStrategy
@@ -1275,6 +1276,9 @@ class FreqaiDataKitchen:
dataframe = self.remove_special_chars_from_feature_names(dataframe)
if self.config.get('reduce_df_footprint', False):
dataframe = reduce_dataframe_footprint(dataframe)
return dataframe
def fit_labels(self) -> None: