First commit for integrating buy_reasons into FT

This commit is contained in:
froggleston 2022-05-22 23:24:52 +01:00
parent 7f3853bbcd
commit 9488e8992d
5 changed files with 317 additions and 2 deletions

View File

@ -6,6 +6,7 @@ Contains all start-commands, subcommands and CLI Interface creation.
Note: Be careful with file-scoped imports in these subfiles.
as they are parsed on startup, nothing containing optional modules should be loaded.
"""
from freqtrade.commands.analyze_commands import start_analysis_entries_exits
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data, start_convert_trades,

View File

@ -101,6 +101,9 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
"print_json", "hyperoptexportfilename", "hyperopt_show_no_header",
"disableparamexport", "backtest_breakdown"]
ARGS_ANALYZE_ENTRIES_EXITS = ["analysis_groups", "enter_reason_list",
"exit_reason_list", "indicator_list"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-data",
"hyperopt-list", "hyperopt-show", "backtest-filter",
@ -182,8 +185,9 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_backtesting, start_backtesting_show,
start_convert_data, start_convert_db, start_convert_trades,
from freqtrade.commands import (start_analysis_entries_exits, start_backtesting,
start_backtesting_show, start_convert_data,
start_convert_db, start_convert_trades,
start_create_userdir, start_download_data, start_edge,
start_hyperopt, start_hyperopt_list, start_hyperopt_show,
start_install_ui, start_list_data, start_list_exchanges,
@ -415,3 +419,9 @@ class Arguments:
parents=[_common_parser])
webserver_cmd.set_defaults(func=start_webserver)
self._build_args(optionlist=ARGS_WEBSERVER, parser=webserver_cmd)
# Add backtesting analysis subcommand
analysis_cmd = subparsers.add_parser('analysis', help='Analysis module.',
parents=[_common_parser, _strategy_parser])
analysis_cmd.set_defaults(func=start_analysis_entries_exits)
self._build_args(optionlist=ARGS_ANALYZE_ENTRIES_EXITS, parser=analysis_cmd)

View File

@ -614,4 +614,35 @@ AVAILABLE_CLI_OPTIONS = {
"that do not contain any parameters."),
action="store_true",
),
"analysis_groups": Arg(
"--analysis_groups",
help=("grouping output - ",
"0: simple wins/losses by enter tag, ",
"1: by enter_tag, ",
"2: by enter_tag and exit_tag, ",
"3: by pair and enter_tag, ",
"4: by pair, enter_ and exit_tag (this can get quite large)"),
nargs='?',
default="0,1,2",
),
"enter_reason_list": Arg(
"--enter_reason_list",
help=("Comma separated list of entry signals to analyse. Default: all. ",
"e.g. 'entry_tag_a,entry_tag_b'"),
nargs='?',
default='all',
),
"exit_reason_list": Arg(
"--exit_reason_list",
help=("Comma separated list of exit signals to analyse. Default: all. ",
"e.g. 'exit_tag_a,roi,stop_loss,trailing_stop_loss'"),
nargs='?',
default='all',
),
"indicator_list": Arg(
"--indicator_list",
help=("Comma separated list of indicators to analyse. ",
"e.g. 'close,rsi,bb_lowerband,profit_abs'"),
nargs='?',
),
}

View File

@ -95,6 +95,8 @@ class Configuration:
self._process_data_options(config)
self._process_analyze_options(config)
# Check if the exchange set by the user is supported
check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True))
@ -433,6 +435,19 @@ class Configuration:
self._args_to_config(config, argname='candle_types',
logstring='Detected --candle-types: {}')
def _process_analyze_options(self, config: Dict[str, Any]) -> None:
self._args_to_config(config, argname='analysis_groups',
logstring='Analysis reason groups: {}')
self._args_to_config(config, argname='enter_reason_list',
logstring='Analysis enter tag list: {}')
self._args_to_config(config, argname='exit_reason_list',
logstring='Analysis exit tag list: {}')
self._args_to_config(config, argname='indicator_list',
logstring='Analysis indicator list: {}')
def _process_runmode(self, config: Dict[str, Any]) -> None:
self._args_to_config(config, argname='dry_run',

View File

@ -0,0 +1,258 @@
import joblib
import logging
import os
from pathlib import Path
from typing import List, Optional
import pandas as pd
from tabulate import tabulate
from freqtrade.data.btanalysis import (load_backtest_data, get_latest_backtest_filename)
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def _load_signal_candles(backtest_dir: Path):
scpf = Path(backtest_dir,
os.path.splitext(
get_latest_backtest_filename(backtest_dir))[0] + "_signals.pkl"
)
try:
scp = open(scpf, "rb")
signal_candles = joblib.load(scp)
logger.info(f"Loaded signal candles: {str(scpf)}")
except Exception as e:
logger.error("Cannot load signal candles from pickled results: ", e)
return signal_candles
def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles):
analysed_trades_dict = {}
analysed_trades_dict[strategy_name] = {}
try:
logger.info(f"Processing {strategy_name} : {len(pairlist)} pairs")
for pair in pairlist:
if pair in signal_candles[strategy_name]:
analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators(
pair,
trades,
signal_candles[strategy_name][pair])
except Exception:
pass
return analysed_trades_dict
def _analyze_candles_and_indicators(pair, trades, signal_candles):
buyf = signal_candles
if len(buyf) > 0:
buyf = buyf.set_index('date', drop=False)
trades_red = trades.loc[trades['pair'] == pair].copy()
trades_inds = pd.DataFrame()
if trades_red.shape[0] > 0 and buyf.shape[0] > 0:
for t, v in trades_red.open_date.items():
allinds = buyf.loc[(buyf['date'] < v)]
if allinds.shape[0] > 0:
tmp_inds = allinds.iloc[[-1]]
trades_red.loc[t, 'signal_date'] = tmp_inds['date'].values[0]
trades_red.loc[t, 'enter_reason'] = trades_red.loc[t, 'enter_tag']
tmp_inds.index.rename('signal_date', inplace=True)
trades_inds = pd.concat([trades_inds, tmp_inds])
if 'signal_date' in trades_red:
trades_red['signal_date'] = pd.to_datetime(trades_red['signal_date'], utc=True)
trades_red.set_index('signal_date', inplace=True)
try:
trades_red = pd.merge(trades_red, trades_inds, on='signal_date', how='outer')
except Exception as e:
print(e)
return trades_red
else:
return pd.DataFrame()
def _do_group_table_output(bigdf, glist):
if "0" in glist:
wins = bigdf.loc[bigdf['profit_abs'] >= 0] \
.groupby(['enter_reason']) \
.agg({'profit_abs': ['sum']})
wins.columns = ['profit_abs_wins']
loss = bigdf.loc[bigdf['profit_abs'] < 0] \
.groupby(['enter_reason']) \
.agg({'profit_abs': ['sum']})
loss.columns = ['profit_abs_loss']
new = bigdf.groupby(['enter_reason']).agg({'profit_abs': [
'count',
lambda x: sum(x > 0),
lambda x: sum(x <= 0)]})
new = pd.merge(new, wins, left_index=True, right_index=True)
new = pd.merge(new, loss, left_index=True, right_index=True)
new['profit_tot'] = new['profit_abs_wins'] - abs(new['profit_abs_loss'])
new['wl_ratio_pct'] = (new.iloc[:, 1] / new.iloc[:, 0] * 100)
new['avg_win'] = (new['profit_abs_wins'] / new.iloc[:, 1])
new['avg_loss'] = (new['profit_abs_loss'] / new.iloc[:, 2])
new.columns = ['total_num_buys', 'wins', 'losses', 'profit_abs_wins', 'profit_abs_loss',
'profit_tot', 'wl_ratio_pct', 'avg_win', 'avg_loss']
sortcols = ['total_num_buys']
_print_table(new, sortcols, show_index=True)
if "1" in glist:
new = bigdf.groupby(['enter_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['enter_reason', 'num_buys', 'profit_abs_sum', 'profit_abs_median',
'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct',
'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
if "2" in glist:
new = bigdf.groupby(['enter_reason', 'exit_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['enter_reason', 'exit_reason', 'num_buys', 'profit_abs_sum',
'profit_abs_median', 'profit_abs_mean', 'median_profit_pct',
'mean_profit_pct', 'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
if "3" in glist:
new = bigdf.groupby(['pair', 'enter_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['pair', 'enter_reason', 'num_buys', 'profit_abs_sum',
'profit_abs_median', 'profit_abs_mean', 'median_profit_pct',
'mean_profit_pct', 'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
if "4" in glist:
new = bigdf.groupby(['pair', 'enter_reason', 'exit_reason']) \
.agg({'profit_abs': ['count', 'sum', 'median', 'mean'],
'profit_ratio': ['sum', 'median', 'mean']}
).reset_index()
new.columns = ['pair', 'enter_reason', 'exit_reason', 'num_buys', 'profit_abs_sum',
'profit_abs_median', 'profit_abs_mean', 'median_profit_pct',
'mean_profit_pct', 'total_profit_pct']
sortcols = ['profit_abs_sum', 'enter_reason']
new['median_profit_pct'] = new['median_profit_pct'] * 100
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
new['total_profit_pct'] = new['total_profit_pct'] * 100
_print_table(new, sortcols)
def _print_results(analysed_trades, stratname, group,
enter_reason_list, exit_reason_list,
indicator_list, columns=None):
if columns is None:
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
bigdf = pd.DataFrame()
for pair, trades in analysed_trades[stratname].items():
bigdf = pd.concat([bigdf, trades], ignore_index=True)
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
if group is not None:
glist = group.split(",")
_do_group_table_output(bigdf, glist)
if enter_reason_list is not None and not enter_reason_list == "all":
enter_reason_list = enter_reason_list.split(",")
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
if exit_reason_list is not None and not exit_reason_list == "all":
exit_reason_list = exit_reason_list.split(",")
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
if indicator_list is not None:
if indicator_list == "all":
print(bigdf)
else:
available_inds = []
for ind in indicator_list.split(","):
if ind in bigdf:
available_inds.append(ind)
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
print(tabulate(bigdf[ilist].sort_values(['exit_reason']),
headers='keys', tablefmt='psql', showindex=False))
else:
print(tabulate(bigdf[columns].sort_values(['pair']),
headers='keys', tablefmt='psql', showindex=False))
else:
print("\\_ No trades to show")
def _print_table(df, sortcols=None, show_index=False):
if (sortcols is not None):
data = df.sort_values(sortcols)
else:
data = df
print(
tabulate(
data,
headers='keys',
tablefmt='psql',
showindex=show_index
)
)
def process_entry_exit_reasons(backtest_dir: Path,
pairlist: List[str],
strategy_name: str,
analysis_groups: Optional[str] = "0,1,2",
enter_reason_list: Optional[str] = "all",
exit_reason_list: Optional[str] = "all",
indicator_list: Optional[str] = None):
try:
trades = load_backtest_data(backtest_dir, strategy_name)
except ValueError as e:
raise OperationalException(e) from e
if not trades.empty:
signal_candles = _load_signal_candles(backtest_dir)
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
trades, signal_candles)
_print_results(analysed_trades_dict,
strategy_name,
analysis_groups,
enter_reason_list,
exit_reason_list,
indicator_list)