Merge branch 'develop' into feat/short
This commit is contained in:
101
docs/hyperopt.md
101
docs/hyperopt.md
@@ -253,7 +253,7 @@ We continue to define hyperoptable parameters:
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
buy_adx = DecimalParameter(20, 40, decimals=1, default=30.1, space="buy")
|
||||
buy_rsi = IntParameter(20, 40, default=30, space="buy")
|
||||
buy_adx_enabled = CategoricalParameter([True, False], default=True, space="buy")
|
||||
buy_adx_enabled = BooleanParameter(default=True, space="buy")
|
||||
buy_rsi_enabled = CategoricalParameter([True, False], default=False, space="buy")
|
||||
buy_trigger = CategoricalParameter(["bb_lower", "macd_cross_signal"], default="bb_lower", space="buy")
|
||||
```
|
||||
@@ -316,6 +316,7 @@ There are four parameter types each suited for different purposes.
|
||||
* `DecimalParameter` - defines a floating point parameter with a limited number of decimals (default 3). Should be preferred instead of `RealParameter` in most cases.
|
||||
* `RealParameter` - defines a floating point parameter with upper and lower boundaries and no precision limit. Rarely used as it creates a space with a near infinite number of possibilities.
|
||||
* `CategoricalParameter` - defines a parameter with a predetermined number of choices.
|
||||
* `BooleanParameter` - Shorthand for `CategoricalParameter([True, False])` - great for "enable" parameters.
|
||||
|
||||
!!! Tip "Disabling parameter optimization"
|
||||
Each parameter takes two boolean parameters:
|
||||
@@ -326,7 +327,7 @@ There are four parameter types each suited for different purposes.
|
||||
!!! Warning
|
||||
Hyperoptable parameters cannot be used in `populate_indicators` - as hyperopt does not recalculate indicators for each epoch, so the starting value would be used in this case.
|
||||
|
||||
### Optimizing an indicator parameter
|
||||
## Optimizing an indicator parameter
|
||||
|
||||
Assuming you have a simple strategy in mind - a EMA cross strategy (2 Moving averages crossing) - and you'd like to find the ideal parameters for this strategy.
|
||||
|
||||
@@ -336,8 +337,8 @@ from functools import reduce
|
||||
|
||||
import talib.abstract as ta
|
||||
|
||||
from freqtrade.strategy import IStrategy
|
||||
from freqtrade.strategy import CategoricalParameter, DecimalParameter, IntParameter
|
||||
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IStrategy, IntParameter)
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
@@ -413,6 +414,98 @@ While this strategy is most likely too simple to provide consistent profit, it s
|
||||
While this may slow down the hyperopt startup speed, the overall performance will increase as the Hyperopt execution itself may pick the same value for multiple epochs (changing other values).
|
||||
You should however try to use space ranges as small as possible. Every new column will require more memory, and every possibility hyperopt can try will increase the search space.
|
||||
|
||||
## Optimizing protections
|
||||
|
||||
Freqtrade can also optimize protections. How you optimize protections is up to you, and the following should be considered as example only.
|
||||
|
||||
The strategy will simply need to define the "protections" entry as property returning a list of protection configurations.
|
||||
|
||||
``` python
|
||||
from pandas import DataFrame
|
||||
from functools import reduce
|
||||
|
||||
import talib.abstract as ta
|
||||
|
||||
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IStrategy, IntParameter)
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
stoploss = -0.05
|
||||
timeframe = '15m'
|
||||
# Define the parameter spaces
|
||||
cooldown_lookback = IntParameter(2, 48, default=5, space="protection", optimize=True)
|
||||
stop_duration = IntParameter(12, 200, default=5, space="protection", optimize=True)
|
||||
use_stop_protection = BooleanParameter(default=True, space="protection", optimize=True)
|
||||
|
||||
|
||||
@property
|
||||
def protections(self):
|
||||
prot = []
|
||||
|
||||
prot.append({
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": self.cooldown_lookback.value
|
||||
})
|
||||
if self.use_stop_protection.value:
|
||||
prot.append({
|
||||
"method": "StoplossGuard",
|
||||
"lookback_period_candles": 24 * 3,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": self.stop_duration.value,
|
||||
"only_per_pair": False
|
||||
})
|
||||
|
||||
return protection
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# ...
|
||||
|
||||
```
|
||||
|
||||
You can then run hyperopt as follows:
|
||||
`freqtrade hyperopt --hyperopt-loss SharpeHyperOptLossDaily --strategy MyAwesomeStrategy --spaces protection`
|
||||
|
||||
!!! Note
|
||||
The protection space is not part of the default space, and is only available with the Parameters Hyperopt interface, not with the legacy hyperopt interface (which required separate hyperopt files).
|
||||
Freqtrade will also automatically change the "--enable-protections" flag if the protection space is selected.
|
||||
|
||||
!!! Warning
|
||||
If protections are defined as property, entries from the configuration will be ignored.
|
||||
It is therefore recommended to not define protections in the configuration.
|
||||
|
||||
### Migrating from previous property setups
|
||||
|
||||
A migration from a previous setup is pretty simple, and can be accomplished by converting the protections entry to a property.
|
||||
In simple terms, the following configuration will be converted to the below.
|
||||
|
||||
``` python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
protections = [
|
||||
{
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": 4
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
Result
|
||||
|
||||
``` python
|
||||
class MyAwesomeStrategy(IStrategy):
|
||||
|
||||
@property
|
||||
def protections(self):
|
||||
return [
|
||||
{
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": 4
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
You will then obviously also change potential interesting entries to parameters to allow hyper-optimization.
|
||||
|
||||
## Loss-functions
|
||||
|
||||
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
|
||||
|
@@ -15,6 +15,10 @@ All protection end times are rounded up to the next candle to avoid sudden, unex
|
||||
!!! Note "Backtesting"
|
||||
Protections are supported by backtesting and hyperopt, but must be explicitly enabled by using the `--enable-protections` flag.
|
||||
|
||||
!!! Warning "Setting protections from the configuration"
|
||||
Setting protections from the configuration via `"protections": [],` key should be considered deprecated and will be removed in a future version.
|
||||
It is also no longer guaranteed that your protections apply to the strategy in cases where the strategy defines [protections as property](hyperopt.md#optimizing-protections).
|
||||
|
||||
### Available Protections
|
||||
|
||||
* [`StoplossGuard`](#stoploss-guard) Stop trading if a certain amount of stoploss occurred within a certain time window.
|
||||
@@ -47,15 +51,17 @@ This applies across all pairs, unless `only_per_pair` is set to true, which will
|
||||
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
|
||||
|
||||
``` python
|
||||
protections = [
|
||||
{
|
||||
"method": "StoplossGuard",
|
||||
"lookback_period_candles": 24,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": 4,
|
||||
"only_per_pair": False
|
||||
}
|
||||
]
|
||||
@property
|
||||
def protections(self):
|
||||
return [
|
||||
{
|
||||
"method": "StoplossGuard",
|
||||
"lookback_period_candles": 24,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": 4,
|
||||
"only_per_pair": False
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
!!! Note
|
||||
@@ -69,15 +75,17 @@ protections = [
|
||||
The below sample stops trading for 12 candles if max-drawdown is > 20% considering all pairs - with a minimum of `trade_limit` trades - within the last 48 candles. If desired, `lookback_period` and/or `stop_duration` can be used.
|
||||
|
||||
``` python
|
||||
protections = [
|
||||
{
|
||||
"method": "MaxDrawdown",
|
||||
"lookback_period_candles": 48,
|
||||
"trade_limit": 20,
|
||||
"stop_duration_candles": 12,
|
||||
"max_allowed_drawdown": 0.2
|
||||
},
|
||||
]
|
||||
@property
|
||||
def protections(self):
|
||||
return [
|
||||
{
|
||||
"method": "MaxDrawdown",
|
||||
"lookback_period_candles": 48,
|
||||
"trade_limit": 20,
|
||||
"stop_duration_candles": 12,
|
||||
"max_allowed_drawdown": 0.2
|
||||
},
|
||||
]
|
||||
```
|
||||
|
||||
#### Low Profit Pairs
|
||||
@@ -88,15 +96,17 @@ If that ratio is below `required_profit`, that pair will be locked for `stop_dur
|
||||
The below example will stop trading a pair for 60 minutes if the pair does not have a required profit of 2% (and a minimum of 2 trades) within the last 6 candles.
|
||||
|
||||
``` python
|
||||
protections = [
|
||||
{
|
||||
"method": "LowProfitPairs",
|
||||
"lookback_period_candles": 6,
|
||||
"trade_limit": 2,
|
||||
"stop_duration": 60,
|
||||
"required_profit": 0.02
|
||||
}
|
||||
]
|
||||
@property
|
||||
def protections(self):
|
||||
return [
|
||||
{
|
||||
"method": "LowProfitPairs",
|
||||
"lookback_period_candles": 6,
|
||||
"trade_limit": 2,
|
||||
"stop_duration": 60,
|
||||
"required_profit": 0.02
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
#### Cooldown Period
|
||||
@@ -106,12 +116,14 @@ protections = [
|
||||
The below example will stop trading a pair for 2 candles after closing a trade, allowing this pair to "cool down".
|
||||
|
||||
``` python
|
||||
protections = [
|
||||
{
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": 2
|
||||
}
|
||||
]
|
||||
@property
|
||||
def protections(self):
|
||||
return [
|
||||
{
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": 2
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
!!! Note
|
||||
@@ -136,39 +148,42 @@ from freqtrade.strategy import IStrategy
|
||||
|
||||
class AwesomeStrategy(IStrategy)
|
||||
timeframe = '1h'
|
||||
protections = [
|
||||
{
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": 5
|
||||
},
|
||||
{
|
||||
"method": "MaxDrawdown",
|
||||
"lookback_period_candles": 48,
|
||||
"trade_limit": 20,
|
||||
"stop_duration_candles": 4,
|
||||
"max_allowed_drawdown": 0.2
|
||||
},
|
||||
{
|
||||
"method": "StoplossGuard",
|
||||
"lookback_period_candles": 24,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": 2,
|
||||
"only_per_pair": False
|
||||
},
|
||||
{
|
||||
"method": "LowProfitPairs",
|
||||
"lookback_period_candles": 6,
|
||||
"trade_limit": 2,
|
||||
"stop_duration_candles": 60,
|
||||
"required_profit": 0.02
|
||||
},
|
||||
{
|
||||
"method": "LowProfitPairs",
|
||||
"lookback_period_candles": 24,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": 2,
|
||||
"required_profit": 0.01
|
||||
}
|
||||
]
|
||||
|
||||
@property
|
||||
def protections(self):
|
||||
return [
|
||||
{
|
||||
"method": "CooldownPeriod",
|
||||
"stop_duration_candles": 5
|
||||
},
|
||||
{
|
||||
"method": "MaxDrawdown",
|
||||
"lookback_period_candles": 48,
|
||||
"trade_limit": 20,
|
||||
"stop_duration_candles": 4,
|
||||
"max_allowed_drawdown": 0.2
|
||||
},
|
||||
{
|
||||
"method": "StoplossGuard",
|
||||
"lookback_period_candles": 24,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": 2,
|
||||
"only_per_pair": False
|
||||
},
|
||||
{
|
||||
"method": "LowProfitPairs",
|
||||
"lookback_period_candles": 6,
|
||||
"trade_limit": 2,
|
||||
"stop_duration_candles": 60,
|
||||
"required_profit": 0.02
|
||||
},
|
||||
{
|
||||
"method": "LowProfitPairs",
|
||||
"lookback_period_candles": 24,
|
||||
"trade_limit": 4,
|
||||
"stop_duration_candles": 2,
|
||||
"required_profit": 0.01
|
||||
}
|
||||
]
|
||||
# ...
|
||||
```
|
||||
|
@@ -36,7 +36,7 @@ Freqtrade is a crypto-currency algorithmic trading software developed in python
|
||||
|
||||
Please read the [exchange specific notes](exchanges.md) to learn about eventual, special configurations needed for each exchange.
|
||||
|
||||
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](exchanges.md#blacklists))
|
||||
- [X] [Binance](https://www.binance.com/) ([*Note for binance users](docs/exchanges.md#binance-blacklist))
|
||||
- [X] [Bittrex](https://bittrex.com/)
|
||||
- [X] [FTX](https://ftx.com)
|
||||
- [X] [Kraken](https://kraken.com/)
|
||||
|
Reference in New Issue
Block a user