Merge branch 'develop' into pr/wizrds/7303

This commit is contained in:
Matthias
2022-09-20 06:56:15 +02:00
103 changed files with 1189 additions and 442 deletions

View File

@@ -45,20 +45,7 @@ class FreqaiExampleStrategy(IStrategy):
std_dev_multiplier_buy = CategoricalParameter(
[0.75, 1, 1.25, 1.5, 1.75], default=1.25, space="buy", optimize=True)
std_dev_multiplier_sell = CategoricalParameter(
[0.1, 0.25, 0.4], space="sell", default=0.2, optimize=True)
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
@@ -183,25 +170,31 @@ class FreqaiExampleStrategy(IStrategy):
dataframe = self.freqai.start(dataframe, metadata, self)
for val in self.std_dev_multiplier_buy.range:
dataframe[f'target_roi_{val}'] = dataframe["&-s_close_mean"] + \
dataframe["&-s_close_std"] * val
dataframe[f'target_roi_{val}'] = (
dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * val
)
for val in self.std_dev_multiplier_sell.range:
dataframe[f'sell_roi_{val}'] = dataframe["&-s_close_mean"] - \
dataframe["&-s_close_std"] * val
dataframe[f'sell_roi_{val}'] = (
dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * val
)
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"]
> df[f"target_roi_{self.std_dev_multiplier_buy.value}"]]
enter_long_conditions = [
df["do_predict"] == 1,
df["&-s_close"] > df[f"target_roi_{self.std_dev_multiplier_buy.value}"],
]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
] = (1, "long")
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"]
< df[f"sell_roi_{self.std_dev_multiplier_sell.value}"]]
enter_short_conditions = [
df["do_predict"] == 1,
df["&-s_close"] < df[f"sell_roi_{self.std_dev_multiplier_sell.value}"],
]
if enter_short_conditions:
df.loc[
@@ -211,13 +204,17 @@ class FreqaiExampleStrategy(IStrategy):
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] <
df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25]
exit_long_conditions = [
df["do_predict"] == 1,
df["&-s_close"] < df[f"sell_roi_{self.std_dev_multiplier_sell.value}"] * 0.25,
]
if exit_long_conditions:
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] >
df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25]
exit_short_conditions = [
df["do_predict"] == 1,
df["&-s_close"] > df[f"target_roi_{self.std_dev_multiplier_buy.value}"] * 0.25,
]
if exit_short_conditions:
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1

View File

@@ -95,20 +95,6 @@ class FreqaiExampleHybridStrategy(IStrategy):
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
# FreqAI required function, leave as is or add additional informatives to existing structure.
def informative_pairs(self):
whitelist_pairs = self.dp.current_whitelist()
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
informative_pairs = []
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
for pair in whitelist_pairs:
informative_pairs.append((pair, tf))
for pair in corr_pairs:
if pair in whitelist_pairs:
continue # avoid duplication
informative_pairs.append((pair, tf))
return informative_pairs
# FreqAI required function, user can add or remove indicators, but general structure
# must stay the same.
def populate_any_indicators(

View File

@@ -1,21 +1,21 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# flake8: noqa: F401
# isort: skip_file
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from pandas import DataFrame # noqa
from datetime import datetime # noqa
from typing import Optional, Union # noqa
import numpy as np
import pandas as pd
from pandas import DataFrame
from datetime import datetime
from typing import Optional, Union
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
IntParameter, IStrategy, merge_informative_pair)
# --------------------------------
# Add your lib to import here
import talib.abstract as ta
import pandas_ta as pta
import freqtrade.vendor.qtpylib.indicators as qtpylib
from technical import qtpylib
class {{ strategy }}(IStrategy):

View File

@@ -4,6 +4,7 @@ from typing import Dict
from pandas import DataFrame
from freqtrade.constants import Config
from freqtrade.optimize.hyperopt import IHyperOptLoss
@@ -36,7 +37,7 @@ class SampleHyperOptLoss(IHyperOptLoss):
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
config: Dict, processed: Dict[str, DataFrame],
config: Config, processed: Dict[str, DataFrame],
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results